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A new recognition method of Support Vector Machines (SVMs) combined with wavelet-
based feature extraction is proposed for identifying drugs hidden in human body. Prelimin-
ary data sets of eight kinds of samples are acquired by a home-built instrument using
energy-dispersive X-ray diffraction (EDXRD) technology in a short detection time. Small
sample size, poor signal-to-noise ratio (SNR) and high dimension of data make drugs iden-
tification a challenging problem. In this paper, the potential effective method solves the
problem well. The spectral signal with poor SNR is obtained and processed with wavelet
for feature extraction and then the wavelet coefficients are used as the inputs of SVMs.
A multi-classifier of SVMs based on binary tree architecture (SVMs-BAT) is trained. The
method of SVMs-BAT combined with wavelet-based feature extraction (WSVMs-BAT) is
firstly compared with two methods: one is single SVMs-BAT which uses original data as
inputs without preprocessing, the other is SVMs-BAT combined with feature extraction
based on principal component analysis (PCA-SVMs-BAT). The high identification accuracy
of WSVMs-BAT indicates that the method of feature extraction using wavelet can effec-
tively represent the original data better. Then the recognition result of the proposed
method is also compared with artificial neural network (ANN) and K-nearest neighbor
(KNN) methods. Our findings show that the proposed method combined with EDXRD tech-
nology provides a good access to achieve the aim of automatic identification of illicit drugs.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Illegal drug detection is of great importance for public
safety and security. Generally, packaging in human body
is considered as a primary approach for smuggling drugs.
In the past decades, detection of drugs and explosives
covered by skin and clothing has been focused on
extensively. In contrast to some other techniques, the en-
. All rights reserved.
6

nter for Biomimetic
titute of Intelligent
, PR China. Tel.: +86

m.ac.cn (M. Li).
ergy-dispersive X-ray diffraction (EDXRD) technology has
proved to be a suitable method due to its non-destruction,
non-invasion, low cost and high resolution for detecting
drugs hidden in human body [1–4].

Both of the peak and profile of EDXRD spectrum of each
material are unique according to Braggs’ law [5]. However,
under the complex measurement conditions of packing
and short detection time, the high-dimensional EDXRD
spectrum with poor signal-to-noise ratio (SNR) (1024-
dimension) is hard to analysis. Especially, small sample
size makes the identification towards them to be a great
challenge. In our investigation, the method for extracting
features from EDXRD spectra and design an intelligent
classifier is proposed and demonstrated in this paper.
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Fig. 1. Geometry of the diffraction system.
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Principal component analysis (PCA), which linearly
transforms the original signals into new uncorrelated fea-
tures, has been a well-known method for feature extrac-
tion. However, the principal components (PCs) always
carry information on both signal and disturbance so that
the problem how many principal components should be
chosen remains a significant question. Excessive PCs will
contain too much noise, while insufficient PCs may miss
some important features [6]. As we know, another method
called wavelet is also used in data preprocessing fre-
quently. The wavelet coefficients can capture time and fre-
quency localized information of original data by
decomposing a timeseries into time/frequency space,
which is different from other approaches for feature
extraction [7,8]. The method of wavelet-based feature
extraction has proved to be robust to the added noise
and distortions. Therefore, in contrast to PCA, wavelet is
a more ideal tool to be applied to denoising tasks and as
feature extraction for the signal with poor SNR. In order
to extract the primary features from poor EDXRD spectra
and avoid influence of unstable factors, wavelet is applied
for its robustness in this paper.

Besides, classification is another important task for
intelligent identification system design, which has been
rarely studied for drug EDXRD spectra. A novel classifica-
tion method based on SVM is adopted for its attractive
properties [9,10]. Compared with traditional method such
as artificial nervous network (ANN), SVM based on the idea
of structural risk minimization (SRM) overcomes the prob-
lems of failing into local minimum and lacking of rules of
designing network structure and does well in the case of
small sample size and high dimension. An SVM maps the
input points into a high-dimensional feature space and
finds a separating hyperplane that maximizes the margin
between two classes in the high-dimensional space, which
is suitable to the case of small number of sample specially.
Consequently, SVM has been widely used because of its
high accuracy and good generalization capabilities, such
as face detection, handwriting recognition, chemical pat-
tern classification, and fault diagnosis [11–14].

The SVM has been mentioned to identify airline bag-
gage for two class problem [15]. However, a multi-classi-
fier of SVMs is necessary for identifying various kinds of
material. As we know, the common multi-class classifiers
of SVMs are constructed by several binary classifiers [16].
In this paper, a multi-classifier, hierarchical support vector
machines with binary tree architecture (SVMs-BTA), is
chosen due to its efficient computation of the tree architec-
ture and high classification accuracy of SVMs comparing
with other approaches. For an N-class problem, (N � 1)
SVMs are required to be trained but only log2N SVMs are
needed to test for the classification decision [17].

The goal of this paper is to develop a method of SVMs-
BAT combined with wavelet-based feature extraction
(WSVMs-BAT) to identify drug spectra with poor SNR. All
computation was performed in MATLAB�. The structure
of the paper is organized as follows. Section 2 describes
the experimental system based on EDXRD technology in
detail. Section 3 presents a brief overview of wavelet
decomposition and wavelet-based feature extraction. Sec-
tion 4 provides the necessary background and relevant
concepts of SVM and introduces multi-class identification
algorithm of SVM briefly. Then Sections 5 and 6 give the
analysis and conclusions of our work.
2. EDXRD experimental system

Compared with the conventional XRD, EDXRD utilizes
the polychromatic X-ray as the light source and much
higher X-ray energies. Besides, EDXRD is more convenient
than traditional XRD, which uses photon energy E to re-
place wavelength k [18,19]. The formula is given as:

2d sin
h
2
¼ nhc

E
ð1Þ

where h is Planck’s constant, c is velocity of light, d is the
spacing between diffraction centres, and h is the angle
through which the photon is diffracted. Obviously a pri-
mary X-ray photon with high energy is diffracted under a
small diffraction angle h for a given lattice spacing d. Fixing
the diffraction angle, different lattice spacing characteriz-
ing the crystalline structure of the material result in differ-
ent diffraction peaks within the energy spectrum of the
diffracted X-ray photons. According to the Bragg-condition,
the spectrum will be shifted along the energy axis if the
diffraction angle is changed.

The home-built instrument which consists of an EDXRD
spectrometer shown in Fig. 1 and mechanical control sys-
tem is used in the experiments. The spectrometer contains
an X-ray source, optical system, detection systems. Tung-
sten tube is chosen to produce continuous X-ray radiation
in the range 75–100 kV and 3–5 mA. Two vertical-slits colli-
mators with 0.3 mm in width and 15 mm in height are
placed vertically to adjust diffraction beams on mechanical
support system. The detection system includes low-energy
high purity germanium detector (Canberra, GL0055PS) and
multi-channel analyzer InSpector 2000 (1024 channels)
whose detection range and effective area of detection
window are 0.3–300 keV and 50 mm2 respectively. The
mechanical control system includes rotating platform for
the installation of detectors and slit sola framework and
aligning samples, sola slit and detector. Stepper motor dri-
ver platform is controlled by compute. The diffraction angles
are obtained by rotating around the sample center. Angular
displacement accuracy is 0.01 and rotation range is ±45�. By
means of the Bragg’s law (1), the peak position E within the
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normalized spectrum can be used to calculate the corre-
sponding lattice spacing d by comparison with literature
data (Powder Diffraction File). Through comparison with
the measured peak position, it can be confirmed weather
the home-built instrument is stable. NaCl is used to test
the system and the obtained spectra by the instrument sug-
gest that the total measurement system is reliable and can
be used to detect different kinds of materials.
3. Wavelet decomposition based on minimum-entropy

The theory of wavelet was firstly introduced by Groupil-
laud et al. in 1984, and it was developed and applied as a
tool for data processing in many fields successfully in the
next several decades. The continuous wavelet transform
(CWT) of x(t) e L2(R) is a time-domain method of signal
processing that can be defined as the sum over all time
of the signal multiplied by scaled, shifted versions of the
wavelet function. The equation is given as:

Wwða; bÞ ¼ hwa;bðtÞ; xðtÞi ¼ jaj
1=2
Z

xðtÞw�a;bdt ð2Þ

W(a, b) is the wavelet coefficient, a is scale factor and b is
time factor. w(t) denotes basic wavelet function or mother
wavelet, which satisfies the admissibility condition:

Xw ¼
Z 1

�1
jŵðwÞj2=jxjdx <1 ð3Þ

The discrete wavelet transform (DWT) is derived from
the discretization of CWT and used widely for reducing
computation in real application. Let a = a0

j, b = kb0a0
j,

a0 > 1, b0 2 R, j, k are integer numbers. In the case a0 = 2,
b0 = 1, DWT can be defined as follows:

Wwðj; kÞ ¼ 2�j=2
XN�1

i¼1

xðtÞ�wð2�jt � kÞ ð4Þ

On the basis of wavelet theory, an efficient computation
method for multiresolution signal decomposition was pro-
posed by Malatt in 1989 [20]. The procedure of multireso-
lution decomposition of a signal X is schematically
illustrated in Fig. 2a. Each stage of this scheme consists
of two digital filters and two downsamplers by 2. The first
filter, g[.] is the discrete mother wavelet (high-pass filter),
and h[.] is its mirror version (low-pass filter). The
downsampled outputs of first high-pass and low-pass filter
provide the detail coefficients D1 and the approximation
Fig. 2. Process of the signal decomposition. (a) Decomposition detail, the
coefficients A1. These vectors are obtained by convolving
X[n] with the low-pass filter for approximation, and with
the high-pass filter for detail, followed by dyadic decima-
tion (downsampling). The approximation coefficients and
detail coefficients can be expressed with,

Ajþ1ðkÞ ¼
X

m

hðm� 2kÞAjðmÞ ð5Þ

Djþ1ðkÞ ¼
X

m

gðm� 2kÞAjðmÞ ð6Þ

where Aj and Dj are approximation and detail coefficients
at j level decomposition, respectively. If the length of each
filter is equal to 2N (here N = 5) and the length of the origi-
nal signal X is n, the coefficients A1 and D1 are of length

n�1
2

� �
þ N. Then the first approximation coefficients A1 is

further decomposed and this process is continued as
shown in Fig. 2b.

Because the analysis process is iterative, it can be con-
tinued infinitely in theory. However, in application, the
decomposition can proceed only until the individual de-
tails consist of a single sample by selecting a suitable num-
ber of levels based on the nature of the signal, or on a
suitable criterion such as entropy. Classical entropy-based
criteria describe information-related properties for an
accurate representation of a given signal. Entropy is a com-
mon concept in many fields, especially in signal processing
[21]. Assuming that s is the signal and si are the coefficients
of s in an orthonormal basis, the (nonnormalized) Shannon
entropy can be defined as:

EðsÞ ¼ �
X

i
s2

i logðs2
i Þ ð7Þ

with the convention 0log(0) = 0.
4. Basic theory of support vector machines

4.1. The definition of support vector machines

SVM is a powerful tool for two-group classification
problems. Its foundation developed by Vapnik, embodies
the structural risk minimization (SRM) principle which
minimizes an upper bound on the expected risk. SVM
has been widely used for its high accuracy and good
generalization capabilities. It is usually used to describe
classification and regression. In this paper, SVM is used
for recognition.
initialization of A0 is the original signal X. (b) Decomposition tree.
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Consider the problem of separating the set of training
vectors belonging to two separate classes, (x1,y1), . . . , (xN,yN)
where input xi 2 RN (N-dimensional input space) and class
labels (target output) yi 2 {1,�1}. With a hyperplane,

hw; xi þ b ¼ 0 ð8Þ

where h,i represents the inner product, w is a weight vector
and b is bias. A separating hyperplane in canonical form
must satisfy the following constraints,

yi½hw; xii þ b�P 1; i ¼ 1;2; . . . N ð9Þ

To obtain the optimal classifier, ||w|| should be mini-
mized under the following constraints,

yi½hw; xii þ b�P 1� ni; i ¼ 1;2; . . . N ð10Þ

The variables ni are positive slack variables, which is
necessary to allow misclassification. Hence the solution
to the hyperplane that optimally separates the data is the
one that minimizes.

Uðw; fÞ ¼ 1
2
kwk2 þ C

Xn

i¼1

ni ð11Þ

where the parameter C is specified beforehand and con-
trols the trade-off between maximizing the margin the
training error. The corresponding quadratic programming
(QP) problem can be described as,

Maximize QðaÞ ¼
XN

i¼1

ai �
1
2

XN

i¼1

XN

j¼1

aiajyiyjx
T
i xj ð12Þ

where a are the Lagrange multipliers, N is the size of sam-
ple. With constraints,

XN

i¼1

aiyi ¼ 0

0 6 ai 6 C; 8i

ð13Þ

When a linear boundary is inappropriate, the SVM can
map the input vector into a high dimensional feature
space. Fig. 3 shows that an optimal separating hyperplane
is constructed in this higher dimensional space. Kernel
function is defined as:

Kðxi; xjÞ ¼ h/ðxiÞ;/ðxjÞi ð14Þ

K is a symmetric positive definite function, which satis-
fies Mercer’s Conditions. The optimization problem can be
rewritten as follows
Fig. 3. Classification of data for SVM.
max WðaÞ ¼ �1
2

XN

i;j¼1

aiajyiyjKðxi; xjÞ þ
XN

i¼1

ai ð15Þ

Then the nonlinear classifier can be expressed as,

y ¼ sgn
X

sv
a�i yiKðxi; xÞ þ b�

 !
ð16Þ

It is well known that SVM is decided by training sam-
ples and kernel function. The construction and selection
of kernel function is important to SVM. The common ker-
nel functions have linear kernel function, polynomial ker-
nel function and Gaussian radial basis function, etc.
Which kernel function selected always depends on experi-
ence. In this paper, the Gaussian radial basis function is
used. The form is given as:

Kðxi; xjÞ ¼ exp �kxi � xjk2

2r2

 !
ð17Þ

where r is the kernel width parameter.

4.2. Multi-class identification algorithm of SVM

The SVM is a tool for two-class problems and its appli-
cation to multi-class problems is not straightforward. The
common approaches for SVMs convert multi-class classifi-
cation problem into many binary-class problems. There-
fore, an N-class problem needs N(N � 1)/2 binary SVMs
with the ‘‘one-against-one’’ approach presented by Krebel,
while N SVMs for the ‘‘one-against-rest’’ approach pre-
sented by Vapnik [22]. SVMs-BTA is a novel method and
needs only (N � 1) SVMs for an N-class problem. But it only
needs to test log2N SVMs for the classification decision
[17]. This approach is applied in many cases to improve
classification accuracy and reduce computation during pat-
tern recognition.

5. Results and discussion

5.1. Experimental condition selection and data acquisition

A setup based on EDXRD is used to detect illicit materi-
als hidden in human body. During the measuring process,
an anthropomorphic phantom is utilized to take place of
real human body. The model is composed by bones, mus-
cles and organs whose materials’ scattering and absorp-
tion of radiation are similar to human tissues. The
detected materials are uniformly packed in round plastic
tubes for easy comparison. Here the length of tube is
4.0 cm and the radius is about 1.2 cm. Then the packets
are hidden in the anthropomorphic phantom. The measur-
ing environment is shown in Fig. 4.

It has been illustrated that the Compton cross section is
suppressed at small angles in literature [15]. Taking the
complex detection condition of human body into consider-
ation, 3–6� are chosen as suitable angles and the spectra at
different angles are shown in the below Fig. 5. It can be
found that a good EDXRD spectrum of methamphetamine
hidden in human body is achieved at 4� and the number
of photons will decrease below 4�. So 4� is chosen as the



Fig. 4. Complex detection environment of human body.

Table 1
Class labels of samples.

Class labels Samples

a Background of body
b Phenylacetic acid + body
c Methamphetamine + body
d Heroin + body
e Heliotropin + body
f Wheat flour + body
g TNT + body
h NaCl + body
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best diffraction angle where spectra of materials are distin-
guished. 7 kinds of materials in total are investigated in the
experiments. Chemically pure heroin, methamphetamine,
TNT, phenylacetic acid, heliotropin as detection targets
and analytical pure NaCl, wheat flour as distraction were
measured for forty times under the conditions of the best
diffraction angle with detection time of 30 s. According to
the Bragg’s law, Bragg peaks in the energy spectrum corre-
spond to distances between planes. Both of the peak posi-
tion and profile of spectrum are characteristics of the
crystal structure and can be used to identify the material.
Different sample concentrations will lead to different
intensities of peak. However, the peak position and profile
of spectrum which represent the essential characteristics
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Fig. 5. EDXRD spectra of Methamphetamine hidden in anth
of the materials remain the same. The eight kinds of sam-
ples are represented by class labels for easy processing in
Table1 and the spectra of eight materials are shown in
Fig. 6. The horizontal axis represents 1024 channels of
multichannel analyzer, equivalent in energy spectrum of
0–100 keV. The vertical axis represents the number of pho-
tons in each channel, which is equivalent in energy of
photon.

5.2. Optimal wavelet decomposition and feature extraction

Due to mechanical noise and instability of X-ray source,
the obtained original spectra shown in Fig. 6 had poor SNR
which leads to a huge difficulty for spectra recognition. So
extraction of effective features is very important in pattern
recognition. In this paper, wavelet decomposition with
Daubechies 3 wavelet function is used to extract features
of the spectra for its robustness. Methamphetamine whose
original signal is shown in Fig. 6C is taken as a typical
example. Although the decomposition process can be
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ropomorphic phantom at different diffraction angles.
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Fig. 6. Original EDXRD spectra of materials hidden in anthropomorphic phantom in30 s.
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continued indefinitely in theory, it is always processed by
selecting a suitable number of levels based on the nature
of the signal. Shannon entropy which has proved to be a
useful and efficient tool of wavelet analysis detailed in
literature [23], is used here to measure spectra variations
for finding a suitable number of levels. The calculated
Shannon entropy at different level is shown in Fig. 7. From
Fig. 7, the Shannon entropy minimums at four-level
decomposition, which imply that the decomposition is
interesting until the fourth time. It is noted that minimum
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entropy corresponded to less randomness and thus it leads
to clustering. Therefore, the wavelet basis at level 4 is a
best basis according to Shannon entropy. Approximation
signal and detail signal at four-level decomposition and
its reconstruction are shown in Fig. 8. It illustrates that
fluctuations in the original signal are decomposed into de-
tail signals which can be regarded as high frequency dis-
turbance (noise). The peak and profile of the original
signal are protected well in the approximation signal a4,
which is greatly useful for drug recognition. According to
above analysis, the primary features of the signal could
be represented with information of wavelet approximation
Fig. 8. The results of wavelet decomposition a
coefficients containing 72 data at level 4 and the results of
feature extraction are shown in Fig. 9. Using this method,
the rest of samples are processed. The features extracted
from EDXRD spectra of eight measured samples form a ma-
trix (80 � 72) which is used as input for training classifier.
5.3. The choice of parameters of SVMs and Multi-classifier for
identification

Currently, there is no clear criterion for choosing the
kernel of SVM. In general, the RBF kernel is a reasonable
choice. In our study, all of the SVMs of the classifier adopt
Gaussian radial basis function as their kernel, and the
parameter r of the function is set to 1. Some actions also
have been taken for finding best parameter C, and the re-
sults show that parameter C affects the classifier accuracy
little. For easier operation, the parameter C of all SVMs is
set to 10.

Using the feature vector based on wavelet approxima-
tion coefficients as inputs, a multi-class classifier based
on SVM-BTA according to the structure shown in Fig. 10,
is trained for identification. In this paper, eight kinds of
samples {a, b, c, d, e, f, g, h} in total are used to train the
multi-classifier. Firstly, all samples are divided into two
classes {a, b, c, d} and {e, f, g, h} by SVM1. Secondly,
SVM2 and SVM3 put {a, b, c, d}, {e, f, g, h} into {a, b}, {c,
d} and {e, f}, {g, h} respectively. According to the above
method mentioned, classification continues until all the
nd construction of methamphetamine.
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Fig. 9. The results of eight materials using wavelet-based feature extraction.

Fig. 10. Structure of multi-classifier.

Table 2
Confusion matrix for single SVMs-BAT classification results, true vs.
predicted (rows vs. columns).

a b c d e f g h

a 30 0 0 0 0 0 0 0
b 0 30 0 0 0 0 0 0
c 0 0 30 0 0 0 0 0
d 0 0 0 29 1 0 0 0
e 0 0 0 1 29 0 0 0
f 0 3 0 10 0 16 0 1
g 0 0 0 0 0 0 7 23
h 0 0 0 0 0 0 0 30
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samples have been identified and then the classification
process is completed.

5.4. Classification results analysis

Forty sets of data of each sample are obtained in our
experiments. The classifier of WSVMs-BAT is trained and
tested. Ten sets of data are selected as training samples
randomly, and the others are used as validation samples
to evaluate the classifier. Two other methods of single
SVMs-BAT and SVMs-BAT combined with PCA based fea-
ture extraction (PCA-SVMs-BAT) is used for comparison.
All interrelated parameters of SVMs are set with the same
value. Classification results of single SVMs-BAT and
WSVMs-BAT are shown in Tables 2 and 3. In the tables,
Rows indicate true values and columns mean prediction
respectively. As noted in Table 2, the method of single
SVMs-BAT makes some mistakes in predicting heroin (d),
heliotropin (e), wheat flour (f) and TNT (g). The proposed
method of WSVMs-BAT solves the above problem well that
those spectra in Table 2 could not be classified correctly
and the results are shown in Table 3. PCA-SVMs-BAT uti-
lizes PCA to extract feature for inputs of SVMs-BAT. With
the same number of principal components (72 PCs) as
extracted wavelet feature size, the drugs identification
accuracy of the method of PCA-SVMs-BAT is only 89.6%.
In this case, the threshold with respected to variance
and corresponding with the PCs is 75%. Then spectra



Table 3
Confusion matrix for SVMs-BAT combined with wavelet-based feature
extraction classification results, true vs. predicted (rows vs. columns).

a b c d e f g h

a 30 0 0 0 0 0 0 0
b 0 30 0 0 0 0 0 0
c 0 0 30 0 0 0 0 0
d 0 0 0 30 0 0 0 0
e 0 0 0 0 30 0 0 0
f 0 0 0 0 0 30 0 0
g 0 0 0 0 0 0 30 0
h 0 0 0 0 0 0 0 30
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Fig. 11. Identification accuracy of SVMs-BAT combined with PCA.
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identification accuracy of PCA-SVMs-BAT is computed with
different thresholds for finding the reason of poor perfor-
mance. The result in Fig. 11 illustrates that the identifica-
tion accuracy does not vary linearly with the increase of
PCs. In fact, it is the result of adding some PCs carrying
the information about noise. As the PCs increasing, feature
vector represents the pattern of original signal largely, but
it is forced to add a lot of noise which leads to poor identi-
fication accuracy. On the other hand, insufficient PCs may
miss some important features. So the selection of number
of PCs and non-robustness for noise lead to the difficulty
of PCA in dealing with poor drugs spectra. Compared with
PCA, wavelet-based feature extraction mentioned above is
robust and can combine with prior knowledge of signal to
select effective feature vectors. What’s more, two other
common classifiers, KNN and ANN (a three layer neural
network with 72 neurons in the input layer, 20 neurons
in the hidden layer and eight neurons in the output layer)
are compared with SVM and the corresponding classifica-
tion results are 84.4% and 66.2%, respectively. It is demon-
strated that SVM performs better than the two other
classifiers in the cases of high dimension and small training
simple size. As mentioned above, it can be found that the
WSVMs-BAT algorithm is a more general-purpose classifi-
cation scheme in drug identification.
6. Conclusion

A general-purpose classification method is developed to
classify different categories of high-dimensional EDXRD
spectral signals. The classification method utilizes wavelet
coefficient based feature extraction procedure from spec-
tral signals, which are used as inputs to develop SVM based
classifiers. The obtained spectral signals with poor SNR are
decomposed optimally on the basis of Shannon entropy
and the approximation coefficients at four-level are used
as feature vectors for inputs of SVMs. Using a tree structure
of binary SVM, the method performs well for multiclass
classification problems and a good overall identification
accuracy can be obtained. For comparing with the pro-
posed method, the classifiers based on single SVMs-BAT,
PCA-SVMs-BAT, KNN and NN are also investigated. It is
found that the proposed method has more effective feature
selection and higher accuracy in the recognition of multi-
ple drug signals with weak SNR than other approaches in
the cases of small sample size and high dimension. In sum-
mary, the method of SVMs-BAT combined with feature
extraction based wavelet is suitable for processing and rec-
ognition of EDXRD spectra of illegal drugs in practical
application. The proposed method combining with EDXRD
technology provides a good choice for non-invasion detec-
tion of human body.
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