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a b s t r a c t

Based on the extended Huygens–Fresnel principle and second-order moments of the Wigner distribu-

tion function (WDF), the analytical formulation for the average intensity, the root-mean-square (rms)

beam width and M2-factor of partially coherent higher-order cosh-Gaussian (ChG) beams propagating

in non-Kolmogorov turbulence are derived. The influences of the beam parameters and the spectrum

parameters associated with the non-Kolmogorov turbulence on the propagation properties of partially

coherent higher-order ChG beams in non-Kolmogorov turbulence are numerically investigated.

Numerical results reveal that partially coherent higher-order ChG beams with higher beam order,

larger decentered parameter and smaller coherence length are less affected by the turbulence.

Furthermore, it is found that the beams will be more affected by the turbulence with smaller inner

scale, larger outer scale or larger structure constant. In addition, numerical results reveal that the

propagation properties of beams in non-Kolmogorov turbulence are largely dependent on the general-

ized exponent a, the structure constant, the inner and outer scale, which is much different from that in

the case of Kolmogorov turbulence. This research may be useful for the practical applications of

partially coherent higher-order ChG beams in connection with optical communications and the remote

sensing.

Crown Copyright & 2013 Published by Elsevier Ltd. All rights reserved.
1. Introduction

For a long time, the studies on beams propagation are mainly
based on Kolmogorov0s power spectrum of refractive index
fluctuations. However, in last several decades, both experimental
results [1] and theoretical investigations [2] have pointed out that
turbulence in portions of troposphere and stratosphere deviates
from predictions of the Kolmogorov model. Since the vertical
component is suppressed when the atmosphere is extremely
stable, the turbulence is no longer homogeneous in three dimen-
sions. Therefore, it is very important and necessary to find new
models for the solution of this anomalous behavior. Fortunately,
Toselli et al. proposed a new theoretical spectrum model, known
as non-Kolmogorov power spectrum [3], by using a power-law
parameter ‘‘a’’ instead of a constant standard exponent value
11/3, and a generalized amplitude factor instead of constant value
0.033. It is meaningful to analyze the impact of non-Kolmogorov
nature of the spectrum on beams propagation when one is
dealing with optical communication over slant atmospheric paths
013 Published by Elsevier Ltd. All

u),
or over the horizontal paths in upper layers of the atmosphere.
So far, based on this non-Kolmogorov power spectrum, a con-
siderable number of interesting work has been presented, such
as second-order statistics of stochastic electromagnetic beams [4],
beam propagation factor of partially coherent Laguerre–Gaussian
and Hermite–Gassian beams [5,6], propagation of elegant
Laguerre–Gaussian beam and cosh-Gaussian beam [7–9], average
spreading of a Gaussian beam array [10,11], angle of arrival
fluctuations for free space laser beam propagation [12], scintilla-
tion behavior of cosh Gaussian beams [13] and so on.

In recent years, as a special case of Hermite–sinusoidal-Gaus-
sian (HSG) beam, the ChG beam and its propagation characteristics
have attracted extensive attention due to its practical applications
[8,9,13–19]. It is well known that a ChG beam can be regarded as
the superposition of four decentered Gaussian beams with the
same waist width. A group of virtual sources that generate a ChG
beam has been proposed [14]. Various intensity profiles can be
derived by a suitable choice of beam parameters [8,9] and used in
the space diversity applications in free-space optics (FSO) systems.
Considerable theoretical investigations of ChG beams have been
proposed to study the propagation properties in the present of
turbulence atmosphere. For instance, the scintillation [13,16], the
polarization [17], and the reciprocity between the cos- and cosh-
Gaussian beams [18] were investigated by Eyyuboğlu. Chu and
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Zhou studied the propagation factor [19] and the kurtosis para-
meter [20] of ChG beams in a turbulence atmosphere. The proper-
ties of cosh-Gaussian and partially coherent cos-Gaussian beams
through a paraxial ABCD optical system in turbulent atmosphere
have been demonstrated [15,21]. Angular spread of partially
coherent Hermite–ChG beams through atmospheric turbulence
has been examined [22]. The behaviour of ChG beams and elliptical
ChG beams diffracted by a circular aperture in turbulent atmo-
sphere were evaluated [23,24]. More recently, the higher-order
ChG beams, as the special cases of ChG beams, have also been
extensively investigated [25,26].

Partial coherence, originating from random phase shift and tilt,
is a key ingredient of a laser beam. Thus it is of practical
significance to incorporate partial coherence into beams and
discuss the influence of the spatial coherent length on the
propagation properties in turbulence atmosphere. Recently, more
and more attention is being paid to the investigation of partially
coherent beams in turbulence atmosphere [27–32], which have
shown that partially coherent beams are less affected by turbu-
lence than fully coherent beams. But to the best of our knowledge,
the propagation of a partially coherent higher-order ChG beam in
non-Kolmogorov turbulence has not been reported. In the present
paper, our main motivations are to understand whether the use
of partially coherent higher-order ChG beams as the special cases
of ChG beams will improve system performance in turbulent
atmosphere, and to study the properties of partially coherent
higher-order ChG beams in non-Kolmogorov turbulence.
2. Theory

2.1. Average intensity and the rms beam width of a partially

coherent higher-order ChG beam in turbulent atmosphere

In the Cartesian coordinate system, taking the z-axis as the
propagation axis, the electric field distribution of higher-order
ChG beam in the source plane (z¼0) can be written as [25,26]

Enðx0,y0,0Þ ¼ coshn
ðO0x0Þcoshn

ðO0y0Þexp �
x2
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where n is the beam order, w0 is the initial waist width of the
Gaussian amplitude distribution, and O0 which has the unit of
m�1, is the parameter associated with the cosh function. When
n¼0 and n¼1, Eq. (1) reduces to be the well-known Gaussian
beam and ChG beam, respectively. According to [26], the higher-
order ChG beam can also be expressed as the form of super-
position of nþ1 decentered Gaussian beam with the same waist
width
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where ph ¼ ðh�n=2Þdw0 and pl ¼ ðl�n=2Þdw0 with d¼w0O0 being
the decentered parameter.

The fully coherent beam can be extended to the partially
coherent one by incorporating the spectral degree of coherence
into the source beam [27–32], the cross-spectral density function
of a partially coherent higher-order ChG beam is generally
characterized as
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where q
0

¼ ðx
0

,y
0

Þ is the transverse coordinates in the source plane,
dh i denotes averaging over the field ensemble, s0 is the spatial

correlation length of partially coherent higher-order ChG beams
at the source plane. Eq. (3) reduces to the cross-spectral density of
a coherent higher-order ChG beams when s0-N.

By using the extended Huygens–Fresnel principle [9,27–32],
the cross-spectral density of a partially coherent higher-order
ChG beams propagating in turbulence atmosphere can be
obtained by

Wðq1,q2,z,oÞ ¼ k
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where k¼2p/l and l denote the wave number and the wave-
length, respectively.

Hðq01,q02,zÞ ¼ exp½cðq1,q01,zÞþcn
ðq2,q02,zÞ�
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cðq,q
0

Þ represents the random part of the complex phase of a
spherical wave that propagates from the source point ðq01,0Þ to the
receiver pointðq1,0Þ, and the term of dh im denotes the average
over the ensemble of the turbulence medium statistics, and the
asterisk means the complex conjugate. Here, the term Tða,zÞ is set
as a quantity to describe the strength of turbulence perturbation,
which will be discussed in detail in Section 2.3.

On substituting from Eqs. (3) and (5) into Eq. (4), we obtain the
average intensity of partially coherent ChG beams propagating in
non-Kolmogorov turbulence
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We have further studied the rms beam width to examine the
spreading properties of partially coherent higher-order ChG
beams in non-Kolmogorov turbulence, and the rms beam width
is defined as [10,11,31]
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On substituting from Eq. (6) into Eq. (8), the analytical
formulae for the rms beam width of partially coherent higher-
order ChG beams in non-Kolmogorov turbulence is derived.
Owing to the symmetry of the rms beam widths in x-direction
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and in y-direction, we obtain
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Eqs. (6)–(10) can be used conveniently to study the average
intensity and the rms beam width of partially coherent higher-
order ChG beams in non-Kolmogorov turbulence.

2.2. WDF and M2-factor of partially coherent higher-order ChG

beams in turbulent atmosphere

By using the paraxial form of the extended Huygens–Fresnel
principle, the cross-spectral density of partially coherent higher-
order ChG beams propagating in turbulence atmosphere can be
obtained by [5,6,27–29]
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To evaluate the above equation, it is convenient to introduce
new variables of integration
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expressed as
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Eq. (11) can be expressed in the following alternative form
[5,6,27–29]
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In Eq. (14), the term exp �H qd,qdþ
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effect of the turbulence, and H can be written as
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It is well known that the WDF can characterize partially
coherent beams in space and in spatial frequency domain simul-
taneously and can be expressed in terms of the cross-spectral
density [5,6,27–29]

hðq,h,zÞ ¼
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where vector h¼ ðyx,yyÞ denotes an angle of propagation, kyx and
kyy is the wave vector component along the x-axis and y-axis,
respectively.

Based on the second-order moments of WDF, the M2-factor of
beams can be defined as [27–29]

M2
ðzÞ ¼ k q2

� �
h2
D E

� qUh
� �2

� 1=2

¼ k x2
� �
þ y2
� �
Þð y2

x

D E
þ y2

y

D E
Þ�ð xyx

� �
þ yyy

� �� 2
� �1=2

ð18Þ

According to definition, moments of the order n1þn2þm1þm2

of WDF, it can be expressed as
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Substituting Eqs. (14)–(17) into Eq. (19), after some tedious
integration, we obtain
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Substituting Eqs. (21)–(23) into Eq. (18), the expression of
M2-factor for partially coherent higher-order ChG beams in
turbulent atmosphere can be expressed as
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2.3. Turbulence model

In the above sections, the term T(a,z) is set as a quantity to
describe the strength of turbulence perturbation, and can be
expressed as [3–13]
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here k is the magnitude of two-dimensional spatial frequency and
Fnðk,aÞ denotes the spatial power spectrum of the refractive
Fig. 1. The evolution of normalized average intensity distributions of coherent and p

turbulence.
index fluctuations of the atmosphere turbulence. Including both
the inner- and outer-scale effects, the non-Kolmogorov spectrum
is defined as [3–13]

Fnðk,aÞ ¼ AðaÞ ~C
2

n

exp½�ðk2=k2
mÞ�

ðk2þk2
0Þ

, 0rko1 , 3oao4 ð26Þ

where k0 ¼ 2p=L0 with L0 being the outer scale parameter and
km ¼ cðaÞ=l0 with l0 being the inner scale parameter,
cðaÞ ¼ ½Gð5�a=2ÞUAðaÞU2p=3�½1=ða�5Þ�, the parameter a is the power-
law exponent or the spectral index, AðaÞ ¼ Gða�1Þcosðap=2Þ=4p2

with GðdÞ being the gamma function, the term ~C
2

n is the generalized
structure parameter with unit of m3�a. When the power law
approaches the limiting value a¼3, the function AðaÞ approaches
zero and consequently the refractive-index power spectral density
vanishes.

For non-Kolmogorov model, the integration over the spatial
power spectrum in Eq. (25), one obtains

Tða,zÞ ¼
1

3
p2k2z

Z 1
0

k3Fnðk,aÞdk

¼
p2k2zAðaÞ ~C

2

n

6

k2�a
m bexpðk2

0=k2
mÞGð2�a=2,k2

0=k2
mÞ�2k4�a

0

a�2
ð27Þ

with b¼ 2k2
0�2k2

mþak2
m.

However, when a¼11/3, A(a)¼0.033, L0¼N, l0¼0 and
~C

2

n ¼ C2
n, the spectrum expressed in Eq. (26) reduces to conven-

tional Kolmogorov spectrum [3,10,11], and the spatial power
spectrum of the refractive index fluctuations can be written as
[31,32]

FnðkÞ ¼ 0:033C2
nk
�11=3 ð28Þ

for Kolmogorov model [31,32]

Tð11=3,zÞ ¼ 1=r2
0 ð29Þ

where r0 ¼ ð0:545C2
nk2zÞ-3=5 is the coherence length (induced by

the atmospheric turbulence) of a spherical wave propagating in
the turbulent medium with C2

n being the structure constant.
3. Numerical results and analysis

In this section, the evolution behavior of the normalized
average intensity, the spreading of the rms beam width and the
normalized M2-factor of partially coherent higher-order ChG
beams in non-Kolmogorov turbulence are discussed in detail. In
artially coherent higher-order ChG beams propagating through non-Kolmogorov



Fig. 2. Normalized average intensity distribution at z¼1.5 km, the rms beam

width and the normalized M2-factor of partially coherent higher-order ChG beams

for different values of beam order on propagation in non-Kolmogorov turbulence.

The calculation parameters are n¼3, w0¼0.02 m O0¼80 m�1, and s0¼0.02 m,

Fig. 3. Normalized average intensity distribution at z¼2 km, the rms beam width

and the normalized M2-factor of partially coherent higher-order ChG beams for

different values of the decentered parameter on propagation in non-Kolmogorov

turbulence. The calculation parameters are n¼3, and s0¼0.02 m. The other

calculation parameters are same as Fig. 1.
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the source plane, the intensity profile of a partially coherent
higher-order ChG beam can be obtained as a Gaussian-like beam,
a flat-topped beam and a dark-hollow beam by a suitable choice
of beam parameters; however, it is independent of the initial
coherence. Without loss of generality, we take the dark-hollow
beam as an example. The evolution behaviors of normalized
average intensity distributions of coherent and partially coherent
higher-order ChG beams propagating through non-Kolmogorov
turbulence are depicted in Fig. 1. It is necessary to note that the
non-Kolmogorov spectrum parameters are set as a¼3.8, L0¼

1 m, l0¼0.01 m and ~C
2

n ¼ 1� 10�14 m3�a, and the other beam
parameters are adopted as n¼3, l¼0.85 mm, w0¼0.02 m and
O0¼60 m�1. From Fig. 1 we can see that, with increase in
propagation distance through non-Kolmogorov turbulence, the
central dip of the hollow shape gradually disappears, the dark
hollow beam tends to a flattened distribution and finally evolves
into a Gaussian-like profile, which agrees well with the results
reported in [8,9,26]. Moreover, under the same conditions, the
central dip of the fully coherent higher-order ChG beam or the
beam with higher spatial coherence can be sustained for longer
propagation distance. This may be caused by the fact that the
fluctuation of the source field increases as the coherence
decreases. Figs. 2–4 show the normalized average intensity
distribution, the rms beam width and the normalized M2-factor
of partially coherent higher-order ChG beams for different values
of beam order, decentered parameter and initial coherence on



Fig. 4. Normalized average intensity distribution at z¼2 km, the rms beam width

and the normalized M2-factor of partially coherent higher-order ChG beams for

different values of the initial coherence on propagation in non-Kolmogorov

turbulence. The other calculation parameters are n¼3, w0¼0.02 m, and

O0¼60 m�1.

Fig. 5. Normalized average intensity distribution at z¼2 km, the rms beam width

and the normalized M2-factor of partially coherent higher-order ChG beams on

propagation both in Kolmogorov turbulence and in non-Kolmogorov turbulence

for different outer scale and inner scale, respectively. The beam calculation

parameters are n¼3, w0¼0.02 m, O0¼60 m�1 and s0¼0.02 m, and the turbulence

parameters are set as a¼3.667, and ~C
2

n ¼ 1� 10�14 m3�a for non-Kolmogorov

turbulence, and C2
n ¼ 1� 10�14 m-2=3 for Kolmogorov turbulence.
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propagation in non-Kolmogorov turbulence, respectively. For the
case of beam order n¼1, the partially coherent higher order ChG
beam reduces to the partially coherent ChG beam. As can be
expected by Ref. [26], the conversion of the average intensity
distribution of partially coherent higher-order ChG beams with
smaller beam order or decentered parameter is quicker than that
with larger one. One finds from Figs. 2 and 3(b) that the partially
coherent higher-order ChG beam with the large beam order or
decentered parameter has the large effective beam size in the
source plane; however, the beam with smaller beam parameters
spreads more rapidly with increasing the propagation distance,
and the apparent distinction will disappear after propagating over
a sufficiently long distance. As shown in Fig. 4 (a) and (b), the
behavior of the normalized average intensity distribution and the
rms beam width are also closely determined by the initial
coherence of the beam. As seen from Figs. 2–4(c), the normalized
M2-factor increase more rapidly with smaller beam order, smaller
decentered parameter or larger initial coherence. One comes to
the conclusion that we can use partially coherent higher order
ChG beams instead of ChG beams to improve system performance
in turbulence atmosphere.

Figs. 5–7 show the normalized average intensity distribution,
the rms beam width and the normalized M2-factor of partially



Fig. 6. Normalized average intensity distribution at z¼2 km, the rms beam width

and the normalized M2-factor of partially coherent higher-order ChG beams in

Kolmogorov turbulence and in non-Kolmogorov turbulence for different para-

meter a, respectively. The beam calculation parameters are the same as Fig.5, the

turbulence parameters are set as L0¼1 m, l0¼0.01 m, and ~C
2

n ¼ 1� 10�14 m3�a for

non-Kolmogorov turbulence, and C2
n ¼ 1� 10�14 m-2=3 for Kolmogorov turbulence.

Fig. 7. Normalized average intensity distribution at z¼2 km, the rms beam width and

the normalized M2-factor of partially coherent higher-order ChG beams for different

values of the decentered parameter on propagation in non-Kolmogorov turbulence. The

other calculation parameters are n¼3, w0¼0.02 m, O0¼60 m�1,s0¼0.02 m, a¼3.8,

L0¼1 m, and l0¼0.01 m.
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coherent higher-order ChG beams on propagation in turbulent
atmosphere for different outer scale, inner scale, parameter a and
structure constant, respectively. From Figs. 5–7(a) it is seen that
the hollow shape evolves into a Gaussian profile more rapidly in
the turbulence with smaller inner scale, larger outer scale, smaller
parameter a or larger structure constant. In Fig. 5(b) and (c), in
order to compare the results in non-Kolmogorov turbulence with
that in Kolmogorov turbulence, the turbulence condition is set to
be a¼3.667 and ~C

2

n ¼ 1� 10�14 m3�a for non-Kolmogorov turbu-
lence, and C2

n ¼ 1� 10�14 m-2=3 for Kolmogorov turbulence. It is
clear from Fig. 5(b) and (c) that the propagation properties of
partially coherent higher-order ChG beams in non-Kolmogorov
turbulence are much different from that in the case of conven-
tional Kolmogorov turbulence. It is largely dependent on the
outer scale and inner scale. The rms beam width and the normal-
ized M2-factor of the beams spread more rapidly with decreasing
inner scale l0 or increasing outer scale L0 in non-Kolmogorov
turbulence. It is seen from Fig. 6(b) and (c) that the propagation
property of partially coherent higher-order ChG beams are also
closely dependent on the exponent a in non-Kolmogorov turbu-
lence. In addition, as indicated by Fig. 7, the rms beam width and
the normalized M2-factor of the beams spread more rapidly in the
turbulence for a larger structure constant. The results can be
interpreted physically as follows. The inner scale l0 forms the
lower limit of the inertial range and the outer scale L0 forms the
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upper limit of the inertial range. It is to be noted that decrease in
inner-scale parameter and increase in outer-scale parameter
corresponds to atmosphere turbulence with more intensity.
The beam will be affected more in a stronger turbulence because
of the larger wave front randomness. As a result, the partially
coherent higher-order ChG beam will be more affected in non-
Kolmogorov turbulence with smaller inner scale, larger outer
scale or larger structure constant.

Fig. 8 shows the rms beam width of partially coherent higher-
order ChG beams versus the propagation distance z in non-
Kolmogorov turbulence with ~C

2

n ¼ 10�14 m3�a and in free space
for different values of initial coherence, other parameters are the
same as Fig. 1. It is clear from Fig. 8 that when the initial
coherence is very small, there is no distinct difference between
the spreading properties of partially coherent higher-order ChG
beams in turbulence and in free space. As the initial coherence
increases, the difference becomes apparent, and the difference is
quite evident for fully coherent beams. One comes to the conclu-
sion that partially coherent higher-order ChG beams with smaller
initial coherence length are less affected by the turbulence
although the beams with smaller initial coherence have greater
spreading both in turbulent atmosphere and in free space.
The physical interpretation is that the beams with lower initial
coherence will suffer larger wave front randomness on their
propagation, and the existence of substantial original randomness
on wave front reduces the effect of turbulent atmosphere.
The results are in good agreement with previous results of
[30,31].

To further learn about the influence of other parameters on the
spreading properties of partially coherent higher-order ChG
beams in non-Kolmogorov turbulence, numerical results are
compiled in Fig. 9. The plot, shown in Fig. 9(a), illustrates the
impact of a variation on the spreading performance of partially
coherent higher-order ChG beams in non-Kolmogorov turbulence
for different initial coherence width. As indicated by Fig. 9(a),
there is a remarkable increase of the rms beam width with the
increasing of a and consequently a major penalty on system
performance. However, after it reaches its maximum value
(approximately a¼3.078), the curve changes its slope and gradu-
ally decreases because the term A(a) begins to decrease to zero.
The obvious physical interpretation of a approaching 3 is that the
turbulence power spectrum tends to vanish. On the other hand, in
the limiting case of a being close to 4, the power spectrum
contains fewer eddies of high wave numbers, i.e. the wave front
tilt is the primary aberration, leading to an improvement on the
beam spreading. It is indicated, in non-Kolmogorov turbulence,
Fig. 8. The rms beam width of partially coherent higher-order ChG beams in non-

Kolmogorov turbulence and in free space with different values of initial coherence.

The other parameters are the same as Fig. 1.

Fig. 9. The rms beam width of partially coherent higher-order ChG beams as a

function of a, s0, w0 and O0 in the reference plane of z¼2 km in non-Kolmogorov

turbulence.
that the beam spreading is largely dependent on the generalized
exponent a, which leads to the results much different from those in
the case of Kolmogorov turbulence with a¼11/3. Fig. 9(b) is a plot
of the rms beam width of partially coherent higher-order ChG
beams versus the initial Gaussian waist width w0 for different
values of the cosh-part parameter O0. It is shown that the rms
beam width decreases sharply with the increasing of w0 when w0

is extremely small; however, with further increases of w0, the rms
beam width gradually increases, and the beams with larger O0

spread more quickly. The plot shown in Fig. 9(c) illustrates the
impact of the cosh-part parameter O0 variation on the beams
spreading for different values of beam order, and the Gaussian
width is set to w0¼0.02 m. Notice that, when the parameter O0 is
very small (O0r30 m�1), the rms beam width does not seem to
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change appreciably with O0, and there is no distinct difference
between the spreading properties of partially coherent higher-
order ChG beams with different beam orders. The results can be
physically interpreted as follows. For a small value of the para-
meter w0 or O0, the intensity profile of the partially coherent
higher-order ChG beam is similar to a Gaussian distribution, and
the corresponding effective beam width is equal to the Gaussian
width w0 in the source plane, so it almost shows the same
spreading properties. The larger w0, O0 or n means the larger
effective beam width. This is the physical reason why the rms
beam width of partially coherent higher-order ChG beams
increases with the further increase of w0, O0 and n.
4. Conclusions

In the present paper, the analytical formulas for the average
intensity, the rms beam width and M2-factor of partially coherent
higher-order cosh-Gaussian beams in non-Kolmogorov turbu-
lence have been derived by use of the extended Huygens–
Fresnel principle and definition of the WDF. We mainly concen-
trate on the influences of different beam parameters and turbu-
lence parameters on the propagation characteristics of partially
coherent higher-order ChG beams in non-Kolmogorov turbulence.
It has been found that partially coherent higher-order ChG beams
with higher beam order, larger decentered parameter and smaller
coherence length are less affected by the turbulence. It means
that one may use partially coherent higher-order ChG beams as
special cases of ChG beams to improve the system performance
on propagation in turbulent atmosphere. The decreasing inner
scale l0, or increasing outer scale L0 or the structure constant is
equivalent to the increasing strength of the turbulence, and as a
result, the partially coherent higher-order ChG beam will be more
affected. Results show that the inner and outer scale, the expo-
nent value a and the structure constant have serious influences
on the beam propagation properties through non-Kolmogorov
turbulence and is different from that in the case of Kolmogorov
turbulence; that is, a¼11/3. It is to be noted that our results will
be useful for the practical applications of the partially coherent
higher-order ChG beams, such as remote sensing and optical
communications.
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