This article was downloaded by: [Hefei Institutes of Physical Science]

On: 19 August 2013, At: 00:52 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,

37-41 Mortimer Street, London W1T 3JH, UK



# Separation Science and Technology

Publication details, including instructions for authors and subscription information: <a href="http://www.tandfonline.com/loi/lsst20">http://www.tandfonline.com/loi/lsst20</a>

# Retention of Pb(II) by a Low-Cost Magnetic Composite Prepared by Environmentally-Friendly Plasma Technique

Xuemei Ren <sup>a</sup> , Shitong Yang <sup>a</sup> , Dadong Shao <sup>a</sup> & Xiaoli Tan <sup>a</sup>

<sup>a</sup> Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, P.R. China

Accepted author version posted online: 04 Dec 2012. Published online: 24 Apr 2013.

To cite this article: Xuemei Ren, Shitong Yang, Dadong Shao & Xiaoli Tan (2013) Retention of Pb(II) by a Low-Cost Magnetic Composite Prepared by Environmentally-Friendly Plasma Technique, Separation Science and Technology, 48:8, 1211-1219, DOI: 10.1080/01496395.2012.726307

To link to this article: http://dx.doi.org/10.1080/01496395.2012.726307

#### PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <a href="http://www.tandfonline.com/page/terms-and-conditions">http://www.tandfonline.com/page/terms-and-conditions</a>

Separation Science and Technology, 48: 1211–1219, 2013 Copyright  $\odot$  Taylor & Francis Group, LLC

ISSN: 0149-6395 print/1520-5754 online DOI: 10.1080/01496395.2012.726307



# Retention of Pb(II) by a Low-Cost Magnetic Composite Prepared by Environmentally-Friendly Plasma Technique

# Xuemei Ren, Shitong Yang, Dadong Shao, and Xiaoli Tan

Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, P.R. China

A low-cost magnetic composite (gelatin/Fe<sub>3</sub>O<sub>4</sub>) is prepared by Fe<sub>3</sub>O<sub>4</sub> nanoparticles treated with gelatin using an environmentallyfriendly plasma technique, and is applied for the removal of toxic Pb(II) ions from aqueous solutions. Not only that it originates from cheap and abundant raw materials, the gelatin/Fe<sub>3</sub>O<sub>4</sub> composite also has advantages in convenient magnetic separation from aqueous solution, which can hopefully reduce water treatment expenses. The batch experimenta results indicate that the maximum adsorption capacity  $(q_{max})$  of Pb(II) on this gelatin/Fe<sub>3</sub>O<sub>4</sub> composite is  $\sim$ 115 mg/g, higher than most of the other bare and modified magnetic materials, which is considered to be attributed to the strong interaction between Pb(II) and the abundant functional groups introduced by gelatin. When exposed to acidic solutions, the dissolution of the gelatin/Fe<sub>3</sub>O<sub>4</sub> nanoparticles is minimal due to the protective character of the grafted gelatin layer on the Fe<sub>3</sub>O<sub>4</sub> nanoparticles. The utilization of the plasma technique in the synthesis of magnetic composite agrees well with the tenet of green chemistry. It is promising that this gelatin/Fe<sub>3</sub>O<sub>4</sub> composite would become an efficient and economic material for heavy metal ion removal in the practical environmental remediation.

**Keywords** gelatin/Fe<sub>3</sub>O<sub>4</sub> composite; magnetic separation; Pb(II); surface modification

#### **INTRODUCTION**

Compared to the traditional microsized materials used in the recovery process (1–6), nanosized materials possess quite good performance due to high specific surface area and the absence of internal diffusion resistance (7,8). The application of nanomaterials in solving environmental problems has received considerable attention in recent years. However, the main disadvantage of the nanoparticles is that their sizes are too small to be recovered by the conventional filtration or centrifugation (9), limiting their application in large scale in real work. Recent research focused on the development of magnetic nanomaterials with enhanced adsorption capacity and easiness to

Received 27 May 2012; accepted 29 August 2012.

Address correspondence to Xuemei Ren, Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P. O. Box 1126, 230031, Hefei, P.R. China. Tel.: +86-551-5591368; Fax: +86-551-5591310. E-mail: renxm@mail.ustc.edu.cn

separate from large volumes of aqueous solutions. Numerous magnetic nanoadsorbents such as Fe<sub>3</sub>O<sub>4</sub>, MnFe<sub>2</sub>O<sub>4</sub>, MgFe<sub>2</sub>O<sub>4</sub>, ZnFe<sub>2</sub>O<sub>4</sub>, CuFe<sub>2</sub>O<sub>4</sub>, NiFe<sub>2</sub>O<sub>4</sub>, and CoFe<sub>2</sub>O<sub>4</sub> were developed for the removal of heavy metal ions (10). However, bare magnetic nanoparticles are found to be susceptible to air oxidation (11), unstable at low pH (12,13), and easy to form aggregation in aqueous solutions (9). Therefore, it is necessary to coat a protective layer to ensure their chemical stability. The strategies for the protection of magnetic nanoparticles comprise grafting or coating with organic species (e.g., surfactants or polymers), or coating with an inorganic layer (e.g., silica or carbon) (12,14). It is important to note that in many cases the protecting polymer shells not only stabilize the nanoparticles, but also can be used for the functionalization of the nanoparticles. For example, chitosan-coated magnetic nanoparticles have wide-ranging application in the sequestration or removal of Cu<sup>2+</sup> ions (15). Humic acid coated Fe<sub>3</sub>O<sub>4</sub> nanoparticles were found to have an excellent ability for the removal of Hg(II), Pb(II), Cd(II), and Cu(II) ions from aqueous solutions (11). A series of NH<sub>2</sub>-functionalized magnetic polymer nanomaterials with different amino groups showed different removal efficiency for Cr(VI) ions (16). Magnetic  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles coated with poly-L-cysteine has larger sorption capacities than bare γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles for As(III), Cu(II), Ni(II), and Zn(II) ions (17). As mentioned above, many works have been published on the use of bare and modified magnetic particles as adsorbents for various types of metal ion removal. However, the potential effectiveness of gelatin coated magnetic nanoparticles, which have been used as drug delivery (18,19), are still not available for the removal of metal ions. Especially, the research work on the use of plasma treatment introducing gelatin on the surface of Fe<sub>3</sub>O<sub>4</sub> to improve the adsorption capacity and stability property of Fe<sub>3</sub>O<sub>4</sub> and the application of modified Fe<sub>3</sub>O<sub>4</sub> in the removal of metal ions from aqueous solution is still scarce.

Gelatin is a natural, harmless, and environmentally friendly polymer. The utilization of gelatin as heavy metal

ion carrier should enhance the adsorption capacity of heavy metal ions due to its abundant active functional groups like carboxylate and amine groups (9,20). Plasma-induced treatment is an environmentally friendly method to introduce functional groups to a material surface without altering the material bulk properties (21). The excited species, radicals, electrons, ions, and UV light within the plasma strongly interact with the surfaces of material and create active sites for binding of functional groups. Compared to other chemical modified methods, the plasma treatment method has the advantages of shorter reaction time, nonpolluting process, and providing a wide range of different functional groups depending on plasma parameters such as power, used gases, treatment time, and pressure (22,23). In this work, gelatin is introduced on Fe<sub>3</sub>O<sub>4</sub> (denoted as gelatin/Fe<sub>3</sub>O<sub>4</sub>) by using N<sub>2</sub> plasma induced treatment. Then, Fourier transforms infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and potentiometric titrations are used to characterize the derived gelatin/Fe<sub>3</sub>O<sub>4</sub> composites. Finally, gelatin/Fe<sub>3</sub>O<sub>4</sub> is used to remove heavy metal ions from large volumes of aqueous solutions to evaluate the application of the synthesized gelatin/Fe<sub>3</sub>O<sub>4</sub> in environmental pollution cleanup. Pb(II) is chosen as a representative bivalent metal ion, because it is ubiquitous in the environment and is hazardous at high levels (24–28). A mechanism of Pb(II) interaction with gelatin/Fe<sub>3</sub>O<sub>4</sub> is proposed based on modeling the experimental data using diffuse-layer model (DLM) with the aid of FITEQL 3.1.

# **MATERIALS AND METHODS**

# **Material and Adsorbent Preparation**

All chemicals used in the experiments were of analytical purity and purchased from Guoyao Chemical Reagent Corporation (China). Milli-Q water obtained from a Direct-Q water purification system (Millipore Corporation, America) was used in all experiments. Analytical-grade lead nitrate was employed to prepare the Pb(II) stock solution, which was further diluted with Milli-Q water to the required concentrations ( $60\,\mathrm{mg}\cdot\mathrm{L}^{-1}$ ) in the adsorption measurements.

The magnetite nanoparticles were prepared by the conventional coprecipitation method (29). Briefly, 10.81 g FeCl<sub>3</sub>·6H<sub>2</sub>O, and 3.97 g FeCl<sub>2</sub>·4H<sub>2</sub>O were dissolved in 100 mL water and heated to 70°C, then 10 mL of ammonium hydroxide (25%) was added rapidly and sequentially under a nitrogen flow (45 mL/min) with vigorous stirring. The mixture was stirred at 70°C for 1h and then cooled to room temperature. The precipitate was collected by filtration and rinsed with Milli-Q water. The sample was dried in oven at 60°C for 48 h, and thus the as-prepared Fe<sub>3</sub>O<sub>4</sub> was obtained. The plasma treatment of the as-prepared Fe<sub>3</sub>O<sub>4</sub> nanoparticles was performed in

a custom-built grafting reactor for 40 min under continuous stirring. The scheme of the plasma reactor set-up was described in the previous study (30). N<sub>2</sub> was used as the plasma forming gas. The purpose of plasma treatment is to make the surface of Fe<sub>3</sub>O<sub>4</sub> active, so the gelatin can react with Fe<sub>3</sub>O<sub>4</sub> directly without using any additional chemicals. The plasma treatment conditions were N<sub>2</sub> plasma of 38 Pa, discharge power of 109 W, and voltage of 880 V. After Fe<sub>3</sub>O<sub>4</sub> were treated with N<sub>2</sub> plasma,  $100 \,\mathrm{mL} \, 3.4 \,\mathrm{g/L}$ gelatin solution was injected into the grafting reactor and Fe<sub>3</sub>O<sub>4</sub> were grafted with gelatin at 80°C for 24 h under continuous stirring. The derived samples were repeatedly washed with Milli-Q water thoroughly to remove the residual amount of the physical adsorbed gelatin. At last, the sample was dried in an oven at 80°C for 48 h, and thus gelatin/Fe<sub>3</sub>O<sub>4</sub> nanoparticles were obtained.

# Characterization

Fe<sub>3</sub>O<sub>4</sub> and gelatin/Fe<sub>3</sub>O<sub>4</sub> were characterized by FT-IR spectroscopy and TGA. The FT-IR measurements of Fe<sub>3</sub>O<sub>4</sub> and gelatin/Fe<sub>3</sub>O<sub>4</sub> samples were carried out by using a Perkin-Elmer 100 spectrometer (America) in KBr pellet at room temperature. The TGA measurements were carried out by using a Shimadzu TGA-50 thermogravimetric analyzer (Japan) from room temperature to 800°C at the heating rate of 10°C/min with a nitrogen flow rate of 100 mL/ min. The potentiometric titrations of the samples were performed at 20 ± 1°C with a Mettler Toledo DL50 titration apparatus (Switzerland) under Ar gas conditions, using NaClO<sub>4</sub> as background electrolyte, and NaOH as titration solution. Briefly, the potentiometric titration of adsorbent suspension (2.5 g/L) in 0.01 mol/L NaClO<sub>4</sub> solutions was carried out in a 100 mL Teflon vessel under argon gas condition at  $T = 20 \pm 1$ °C. Before beginning the titration, the pH values of suspensions were quickly lowered to approximately 3.0 by addition of 1.4721 mol/L HClO<sub>4</sub> and purged with argon for at least two hours to exclude  $CO_2(g)$ . Then, the titration was carried out from pH  $\sim$ 3 to  $\sim$ 11 by using 0.1972 mol/L NaOH. The equilibrium value was taken when showing a drift less than 0.03 mV per second.

# **Batch Experiments**

The adsorption experiments of Pb(II) on Fe<sub>3</sub>O<sub>4</sub> and gelatin/Fe<sub>3</sub>O<sub>4</sub> were carried out in polyethylene tubes at  $T=20\pm1^{\circ}C$  by using batch technique. The stock suspensions of Fe<sub>3</sub>O<sub>4</sub> or gelatin/Fe<sub>3</sub>O<sub>4</sub> and the stock solutions of Pb(II) and NaClO<sub>4</sub> were added in polyethylene test tubes to achieve the desired concentrations of different components. The desired pH values of the suspensions in each tube were adjusted by adding a negligible amount of 0.1 or 0.01 mol/L HClO<sub>4</sub> or NaOH. The use of strong acid and base (HClO<sub>4</sub> or NaOH) could get the desired pH of suspension quickly without obvious changing of the solution volume. After the

suspensions were shaken at a constant speed of 120 rpm for 24 h to achieve adsorption equilibration, the solid phase was separated from the solution by using a permanent magnet. The concentration of Pb(II) was determined by spectrophotometry (722, Shanghai) at wavelength 616 nm by using Pb(II)-Chlorophosphonazo(III) complex. The detection limit of this analytical method is  $0.10 \, \text{mg/L}$ . All the experimental data were the average of duplicate determinations and the relative errors were about 5%.

The amount of Pb(II) adsorbed on Fe<sub>3</sub>O<sub>4</sub> or gelatin/ Fe<sub>3</sub>O<sub>4</sub> was calculated from the difference between the initial concentration (C<sub>0</sub> (mg/L)) and the equilibrium one (C<sub>e</sub> (mg/L)) (Adsorption%=(C<sub>0</sub>-C<sub>e</sub>)/C<sub>0</sub>×100%, and q=(C<sub>0</sub>-C<sub>e</sub>)/m<sub>adsorbent</sub>×V, where q (mg/g) is the amount of Pb(II) adsorbed on the solid phase, V (L) is the volume of the suspension, and m<sub>adsorbent</sub> (g) is the mass of the adsorbent).

#### **RESULTS AND DISCUSSION**

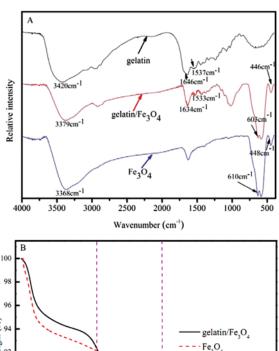

# Characterization

Figure 1a presents the FT-IR spectra of gelatin,  $Fe_3O_4$ , and gelatin/ $Fe_3O_4$ . The spectrum of pure gelatin exhibits O-H and N-H stretching at  $\sim 3420\,\mathrm{cm}^{-1}$ , C=O stretching at  $\sim 1650\,\mathrm{cm}^{-1}$  for the amide I, and N-H deformation at  $\sim 1530\,\mathrm{cm}^{-1}$  for the amide II (18,31). The peaks at  $\sim 610$  and  $448\,\mathrm{cm}^{-1}$  are the characteristic peaks for  $Fe_3O_4$  (32). All these characteristic bands are present in the spectrum of gelatin/ $Fe_3O_4$ , suggesting that gelatin has been successfully coated on  $Fe_3O_4$ .

The amount of gelatin coated on Fe<sub>3</sub>O<sub>4</sub> is estimated from the TGA analysis of Fe<sub>3</sub>O<sub>4</sub> and gelatin/Fe<sub>3</sub>O<sub>4</sub> (Fig. 1b) (33). The weight loss which occurs at 17–100°C is due to the loss of physically adsorbed water on the surface of the nanoparticles. For Fe<sub>3</sub>O<sub>4</sub>, the weight loss between 100–450°C is related to further water loss and dehydroxylation (34). The weight loss of gelatin/Fe<sub>3</sub>O<sub>4</sub> observed around 100 to 250°C is due to further water loss. The weight loss of gelatin/Fe<sub>3</sub>O<sub>4</sub> in the third part between 250 to 450°C is ~5.1% due to the decomposition of gelatin. For pure gelatin, the TGA curve shows maximum weight loss between 250 to 450°C, with 29% of residue left after the thermal degradation (31). The wt% of grafted gelatin in gelatin/Fe<sub>3</sub>O<sub>4</sub> is calculated to be ~7.2%.

# **Stability of the Adsorbents in Acidic Conditions**

The stability of gelatin/ $Fe_3O_4$  and  $Fe_3O_4$  nanoparticles is investigated by exposing the materials to different acidic solutions with pH varying from 1.5 to 4.0 for 24 h. Figure 2a shows that the colors of the left bottle ( $Fe_3O_4$ ) in each picture become deeper due to the dissolution of the  $Fe_3O_4$  and the right one (gelatin/



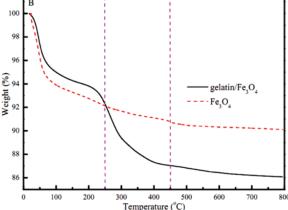
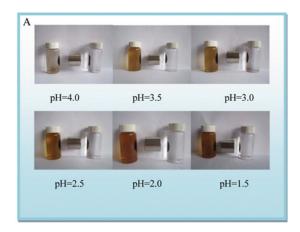




FIG. 1. FT-IR spectra of gelatin,  $Fe_3O_4$  and  $gelatin/Fe_3O_4$  (A) and TGA curves of  $Fe_3O_4$  and  $gelatin/Fe_3O_4$  (B). (Color figure available online)

 $Fe_3O_4$ ) is almost colorless with decreasing pH values, suggesting that gelatin/ $Fe_3O_4$  is stable whereas the  $Fe_3O_4$  is partly dissolved in solution when they are exposed to acidic solutions. Figure 2a also shows that it is possible to remove magnetic gelatin/ $Fe_3O_4$  from water by an external magnet (N40,  $25 \times 25 \, \text{mm}$ ). The stable gelatin/ $Fe_3O_4$  nanoparticles can be easily and quickly (<1 minute) separated from aqueous solutions by using magnetic separation techniques in our experiments.

The iron ions leaching to the solution are measured with an atomic absorption spectrometer (Perkin-Elmer AA800, America) and the results are shown in Fig. 2b. At pH  $1.08\pm0.02$ , the aqueous dispersed gelatin/Fe<sub>3</sub>O<sub>4</sub> (3.6 g/L) gives a free concentration of  $1.26\,\mathrm{mg/L}$  iron ions, whereas the free iron ions in the aqueous dispersion of Fe<sub>3</sub>O<sub>4</sub> nanoparticles (3.6 g/L) are 125.6 mg/L, which is almost 100-fold of that of gelatin/Fe<sub>3</sub>O<sub>4</sub>, suggesting that the grafted gelatin markedly improves the stability of gelatin/Fe<sub>3</sub>O<sub>4</sub> nanoparticles under acidic conditions.



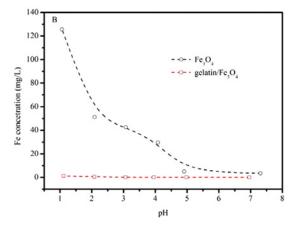
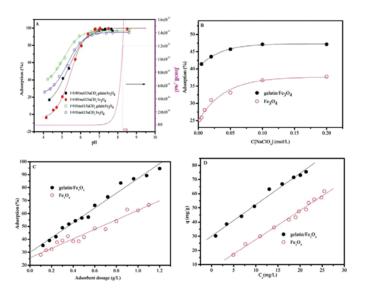



FIG. 2. The stability of  $Fe_3O_4$  and  $gelatin/Fe_3O_4$  in acidic solutions. (A) Digital photograph of the  $Fe_3O_4$  (the left ones) and  $gelatin/Fe_3O_4$  (the right ones) suspensions after magnetic separation using an external magnet at pH values varying from 1.5 to 4.0; (B) Concentration of Fe released from  $Fe_3O_4$  and  $gelatin/Fe_3O_4$  to solution at pH values varying from 1.0 to 7.5. (Color figure available online)


# The Batch Experiments

Effect of pH and Ionic Strength

pH can influence the speciation of Pb(II) ions and the surface properties of gelatin/Fe<sub>3</sub>O<sub>4</sub>. It is one of the most important parameters affecting the adsorption process of Pb(II) ions on gelatin/Fe<sub>3</sub>O<sub>4</sub> (35). The adsorption of Pb(II) on gelatin/Fe<sub>3</sub>O<sub>4</sub> and on Fe<sub>3</sub>O<sub>4</sub> are studied over a pH range of 4.0-9.0. Figure 3a shows the pH effect on the adsorption of Pb(II) on gelatin/Fe<sub>3</sub>O<sub>4</sub> and on Fe<sub>3</sub>O<sub>4</sub> in 0.001 and 0.01 mol/L NaClO<sub>4</sub>, respectively. The removal percentage of Pb(II) on gelatin/Fe<sub>3</sub>O<sub>4</sub> is higher than that on Fe<sub>3</sub>O<sub>4</sub> at pH < 6.5. The functional amine and carboxyl groups of gelatin have lone pairs of electrons from nitrogen and oxygen, which primarily act as active sites for the formation of gelatin-Pb(II) complexes, and thereby enhances the adsorption of Pb(II) on gelatin/Fe<sub>3</sub>O<sub>4</sub>. The surface modification of Fe<sub>3</sub>O<sub>4</sub> not only can protect magnetic nanoparticles from the erosion of acidic solution, but also can provide lots of functional groups, which markedly promote the adsorption of Pb(II) on gelatin/Fe<sub>3</sub>O<sub>4</sub>.

It can also be seen from Fig. 3a that no obvious effect of ionic strength on Pb(II) adsorption is observed at pH > 6.5. The ionic strength independent adsorption at pH > 6.5 suggests that inner-sphere surface complexation/chemical adsorption are the main mechanism of Pb(II) adsorption on Fe<sub>3</sub>O<sub>4</sub> and on gelatin/Fe<sub>3</sub>O<sub>4</sub>. However, the adsorption of Pb(II) is obviously affected by ionic strength at pH < 6.5. At pH < 6.5, the adsorption curve in 0.01 mol/ L NaClO<sub>4</sub> exhibits a shift to lower pH as compared to that in 0.001 mol/L NaClO<sub>4</sub> systems, suggesting the adsorption increases with increasing ionic strength. The results are similar to Co(II) sorption on gibbsite (36) and Cu(II) sorption on rutile (37). Girvin et al. (36) attributed this apparent effect as an evidence for outer-sphere surface complexation. Yang et al. (37) credited the observed shift to the changes in the electrostatic interactions as the ionic strength increased below the pH<sub>ZPC</sub>. Similar results were also observed by Wiesner et al. (38).

In order to further announce the effect of ionic strength on the adsorption of Pb(II) on Fe<sub>3</sub>O<sub>4</sub> and on gelatin/Fe<sub>3</sub>O<sub>4</sub>, the effect of NaClO<sub>4</sub> concentrations on Pb(II) adsorption is investigated and the results are shown in Fig. 3b. The adsorption percentages of Pb(II) on Fe<sub>3</sub>O<sub>4</sub> and gelatin/Fe<sub>3</sub>O<sub>4</sub> increase with increasing NaClO<sub>4</sub> concentrations in the range of 0.0–0.2 mol/L. The effects may be attributed to the changes in the electric potential



in the interface, which decreases the electrostatic repulsion between the charged surface and Pb(II) ions and favors the interaction of Pb(II) with the solid particles (39). López-Ramón et al. (40) studied the adsorption of metal ions on activated carbons at variable ionic strengths, and they reported that the electrostatic interactions can be reduced by increasing ionic strength of the solution due to a screening effect of the surface charge produced by the salt added. When the electrostatic interaction between solid surface and metal ion is repulsive, or the surface concentration is sufficiently high, an increase in the ionic strength will increase the adsorption.

The effect of ionic strength on the adsorption of Pb(II) on gelatin/Fe<sub>3</sub>O<sub>4</sub> can also be partly attributed to the decrease of water molecules adsorbed on gelatin surface. With the salt concentration increasing, water molecules available to interact with the charged part of the gelatin may decrease because some of them are attracted by the ions of the salt (41), and thereby more adsorption sites will be provided for Pb(II) adsorption.

# Effect of Adsorbent Dosage

The amount of adsorbent used in the removal of heavy metal ions from wastewater is one of critical factors affecting the application of adsorbent in heavy metal ion elimination. The less the amount of adsorbent is used, the lower is the cost needed under the effective removal percentage uncertainties. The removal percentages of Pb(II) on Fe<sub>3</sub>O<sub>4</sub> and on gelatin/Fe<sub>3</sub>O<sub>4</sub> are studied by varying the adsorbent dosage ranging from 0.1 to  $1.2 \,\mathrm{g/L}$ at pH 5.0 (Fig. 3c). The removal percentage increases with increasing adsorbent dose. With increasing adsorbent doses, more surface sites and surface functional groups are available to bind Pb(II) on adsorbent surfaces, and thereby results in more Pb(II) ions to be removed from aqueous solution (42). With the increase of the adsorbent dosage from 0.1 to 1.2 g/L, the adsorption of Pb(II) on gelatin/Fe<sub>3</sub>O<sub>4</sub> increases from ~35% to ~95%, whereas the adsorption of Pb(II) on Fe<sub>3</sub>O<sub>4</sub> increases from ~28% to  $\sim 67\%$  under the same experimental conditions. The results show that the adsorption efficiency of gelatin/ Fe<sub>3</sub>O<sub>4</sub> is higher than that of Fe<sub>3</sub>O<sub>4</sub> under the same adsorbent dose. This is very important in the application of gelatin/Fe<sub>3</sub>O<sub>4</sub> in the removal of Pb(II) from wastewaters in real work.

# Adsorption Isotherms

The adsorption isotherms of Pb(II) on Fe<sub>3</sub>O<sub>4</sub> and gelatin/Fe<sub>3</sub>O<sub>4</sub> are carried out in the concentration range of 10.0–44.0 mg/L at pH 5.0. The results are shown in Fig. 3d. It is clear that the adsorption amounts of Pb(II) on gelatin/Fe<sub>3</sub>O<sub>4</sub> are higher than that on Fe<sub>3</sub>O<sub>4</sub>. The high adsorption capacity of gelatin/Fe<sub>3</sub>O<sub>4</sub> is attributed to the

strong affinity of amine and carboxyl groups introduced by gelatin towards Pb(II) ions. The amine and carboxyl groups can act as efficient anchor for Pb(II) ions, and thereby obviously increases the adsorption capacity of  $gelatin/Fe_3O_4$ .

The adsorption isotherms are analyzed with Langmuir (29) and Freundlich (43) models. The Langmuir and Freundlich adsorption isotherms are expressed as follow (44):

$$\frac{C_e}{q} = \frac{1}{K_L q_{\text{max}}} + \frac{C_e}{q_{\text{max}}} \tag{1}$$

$$\log q = \log K_F + \frac{1}{n} \log C_e \tag{2}$$

where  $C_e$  is the equilibrium concentration of Pb(II) in supernatant after centrifugation, q is the amount of Pb(II) adsorbed on the adsorbent,  $q_{max}$  is the maximum adsorption capacity, and  $K_L$  is the Langmuir constant.  $K_F$  and n are Freundlich constants.

The relative parameters for Pb(II) adsorption on Fe<sub>3</sub>O<sub>4</sub> and gelatin/Fe<sub>3</sub>O<sub>4</sub> are listed in Table 1. From the correlation coefficients, it can be seen that the Langmuir model fits the adsorption data better than the Freundlich model. According to the Langmuir model simulation, the maximum adsorption capacities  $(q_{max})$  of Pb(II) on gelatin/Fe<sub>3</sub>O<sub>4</sub> is  $\sim$ 115 mg/g. The maximum Pb(II) adsorption capacities of various magnetic adsorbents are given in Table 2 for comparison. The complete monolayer adsorption capacity of gelatin/Fe<sub>3</sub>O<sub>4</sub> for Pb(II) is higher than that of other magnetic adsorbents such as iron oxide (43), chitosan/magnetite nanocomposite (45), Poly-Lcysteine coated  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> (17). The relatively high adsorption capacity of gelatin/Fe<sub>3</sub>O<sub>4</sub> indicates that gelatin/ Fe<sub>3</sub>O<sub>4</sub> would be a suitable and promising material in the preconcentration and solidification of heavy metal ions from large volumes of aqueous solutions in environmental pollution cleanup.

TABLE 1. Langmuir and Freundlich parameters of Pb(II) adsorption on  $Fe_3O_4$  and  $gelatin/Fe_3O_4$ 

|                   |                                                                                                                | Fe <sub>3</sub> O <sub>4</sub> | gelatin/<br>Fe <sub>3</sub> O <sub>4</sub> |
|-------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|
| Langmuir<br>model | $q_{max}(mg/g) \ K_L(L/mg) \ R^2$                                                                              | 95.238<br>0.044<br>0.987       | 114.942<br>0.089<br>0.993                  |
| Freundlich model  | $K_{F}(\operatorname{mg}^{1-n} \cdot \operatorname{L}^{n} \cdot \operatorname{g}^{-1})$ $\operatorname{R}^{2}$ | 0.752<br>5.076<br>0.989        | 0.474<br>17.865<br>0.987                   |

TABLE 2 Comparison of Pb(II) adsorption by various magnetic adsorbents

| Adsorbent                                                         | $q_{max}$ (mg/g) | Conditions               | Reference    |
|-------------------------------------------------------------------|------------------|--------------------------|--------------|
| Fe <sub>3</sub> O <sub>4</sub> @SiO <sub>2</sub> -NH <sub>2</sub> | 76.66            | pH 6.2; T 298 K          | (29)         |
| HA coated Fe <sub>3</sub> O <sub>4</sub>                          | 92.4             | pH 6.0; T 293 K          | (11)         |
| Poly-L-cysteine coated γ-Fe <sub>2</sub> O <sub>3</sub>           | 14.71            | pH 7.0; room temperature | (17)         |
| γ–Fe <sub>2</sub> O <sub>3</sub>                                  | 18.65            | pH 7.0; room temperature | (17)         |
| Iron oxide                                                        | 36.0             | pH 5.5; T 298 K          | (43)         |
| Chitosan/magnetite nanocomposite                                  | 63.33            | pH 6.0; room temperature | (45)         |
| gelatin/Fe <sub>3</sub> O <sub>4</sub>                            | 114.92           | pH 5.0; T 293 K          | This<br>work |

# Interaction Mechanisms of Pb(II) with Fe<sub>3</sub>O<sub>4</sub> and Gelatin/Fe<sub>3</sub>O<sub>4</sub>

The hydroxyl groups, the abundant surface functional groups participating in the reactions on solid surfaces, are amphoteric and reactive. The following protonation and deprotonation reactions are expected to occur at solid surfaces at different pH values:

$$\equiv XOH + H^+ \to \equiv XOH_2^+ \tag{3}$$

$$\equiv XOH + OH^- \rightarrow \equiv XO^- + H_2O \tag{4}$$

where  $\equiv$ XOH represents a singly protonated site. Fe<sub>3</sub>O<sub>4</sub> and gelatin/Fe<sub>3</sub>O<sub>4</sub> are characterized using potentiometric titration to achieve the surface properties. Figure 4a shows the titration curves of Fe<sub>3</sub>O<sub>4</sub> and gelatin/Fe<sub>3</sub>O<sub>4</sub>. As can be seen from Fig. 4a, the pH value jump of gelatin/Fe<sub>3</sub>O<sub>4</sub> is softer than that of Fe<sub>3</sub>O<sub>4</sub>, suggesting that the buffer capacities of gelatin/Fe<sub>3</sub>O<sub>4</sub> are higher than that of Fe<sub>3</sub>O<sub>4</sub>. The content of the functional group on gelatin/Fe<sub>3</sub>O<sub>4</sub> is higher than that on Fe<sub>3</sub>O<sub>4</sub> surfaces, which is also confirmed from the curves of TOTH vs. pH (Fig. 4b) (TOTH, the total concentration of protons consumed in the titration process (46)). The different site concentrations calculated with the aid of FITEQL 3.1 as a function of pH are shown in Fig. 4c. The site densities of Fe<sub>3</sub>O<sub>4</sub> calculated from the titration curve are 2.98 ×  $10^{-4}$  mol/g for  $\equiv$ XOH (-OH functional groups). The consecutive acidity constants as pKa are optimized to be:  $pK_{XO^-} = 5.638$  and  $pK_{XOH_2^+} = -2.616$ . The site densities of gelatin/Fe<sub>3</sub>O<sub>4</sub> are  $1.96 \times 10^{-4}$  mol/g for  $\equiv$ XOH (–OH functional groups) and  $8.15 \times 10^{-4} \text{ mol/g}$  for  $\equiv \text{YOH}$  (-NH<sub>2</sub> functional groups). The consecutive acidity constants as  $pK_a$  are primized to be:  $pK_{XO^-} = 5.720$ ,  $pK_{XOH^+} = -3.689$ , and  $pK_{YO^-} = 8.131$ . It reveals that the site densities of gelatin/Fe<sub>3</sub>O<sub>4</sub> are much higher than that of Fe<sub>3</sub>O<sub>4</sub>.

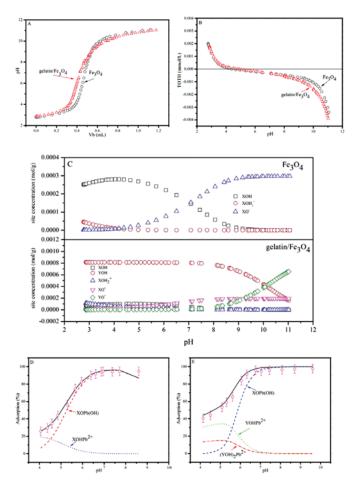



FIG. 4. (A) Potentiometric titration curves of Fe<sub>3</sub>O<sub>4</sub> and gelatin/Fe<sub>3</sub>O<sub>4</sub> suspension.  $V_0=40\,\mathrm{mL},~T=20\pm1^\circ\mathrm{C},~\mathrm{C[NaClO_4]}=0.01\,\mathrm{mol/L},$  C[NaOH]=0.1972 mol/L, m=0.1 g; (B) TOTH curves as a function of pH simulated with DLM; (C) Surface site distribution of Fe<sub>3</sub>O<sub>4</sub> and gelatin/Fe<sub>3</sub>O<sub>4</sub> as a function of pH simulated by DLM with the aid of FITEQL 3.1 code; (D) Surface species of Pb(II) adsorption on Fe<sub>3</sub>O<sub>4</sub> as a function of pH; (E) Surface species of Pb(II) adsorption on gelatin/Fe<sub>3</sub>O<sub>4</sub> as a function of pH.  $T=20\pm1^\circ\mathrm{C},~\mathrm{C[Pb^{2+}]_{(initial)}}=30.0\,\mathrm{mg/L},~\mathrm{m/V}=0.60\,\mathrm{g/L}.$  (Color figure available online)

Various surface complexation models have been developed to simulate metal ion adsorption. The constant capacitance model (CCM), the diffuse-layer model (DLM) and the triple-layer model (TLM) are the commonly used models (47). In this study, the adsorption data are fitted using the DLM with the aid of FITEQL 3.1 code, and the results are shown in Fig. 4d and 4E. For Fe<sub>3</sub>O<sub>4</sub>,  $\equiv$ XOH is the dominating surface species at low pH. With increasing pH,  $\equiv$ XO<sup>-</sup> becomes the dominating species. Thus, the general adsorption reaction of Pb(II) on Fe<sub>3</sub>O<sub>4</sub> can be described by the following equation:

$$\equiv XOH + Pb^{2+} \rightarrow \equiv XOHPb^{2+}\log K = 2.593 \quad (5)$$

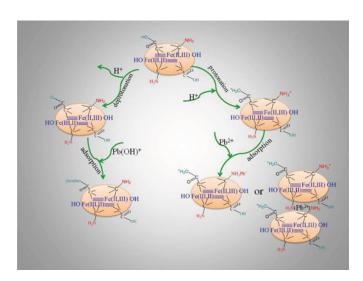



FIG. 5. Schematic diagram of Pb(II) interaction with gelatin/Fe $_3$ O $_4$ ·(Color figure available online)

$$\equiv XO^{-} + Pb(OH)^{+} \rightarrow \equiv XOPb(OH) \log K = -1.933$$
(6)

The uptake of Pb(II) by  $Fe_3O_4$  is proposed to take place through different reaction mechanisms, including surface adsorption and electrostatic interaction. It is proposed that the reaction between  $Pb^{2+}$  and protons of surface hydroxyl groups could take place. The precipitation constant of  $Pb(OH)_2(s)$  is  $1.2\times 10^{-15}$  (48). From the precipitation curve of Pb(II) at the concentration of  $30\, mg/L$  (Fig. 3a), one can see that Pb(II) begins to form precipitation at pH  $\sim$ 8.3 if no Pb(II) is adsorbed. However,  $\sim$ 90% Pb(II) is adsorbed at pH  $\sim$ 6.5, the precipitation of  $Pb(OH)_2$  can be negligible at pH < 8.3. Furthermore, the replacement of  $Fe^{2+}$  in the lattice structure of magnetite with  $Pb^{2+}$  ions in solution is also suggested to take place as one of Pb(II) removal mechanisms (49).

As for Fe<sub>3</sub>O<sub>4</sub>-g-gelatin, the amine and carboxyl groups of gelatin are responsible for Pb(II) binding. On the basis of the adsorption data simulated using DLM with the aid of FITEQL 3.1 code, the change in the adsorption characteristics with solution pH may be more clearly explained by the following equations, which depict the major characteristic reactions at the surfaces of gelatin/Fe<sub>3</sub>O<sub>4</sub>:

$$-NH_2 + Pb^{2+} \rightarrow -NH_2Pb^{2+} \log K = 2.644$$
 (7)

$$-2NH_2 + Pb^{2+} \rightarrow -(NH_2)_2 Pb^{2+} \log K = 5.001$$
 (8)

$$-COO^{-} + Pb(OH)^{+} \rightarrow -COOPb(OH) \log K = -7.732$$
(9)

Equations (7) and (8) show the formation of surface complexes of Pb<sup>2+</sup> ions with the amine groups at low pH

values. At high pH values, the removal of Pb(II) by gelatin/Fe<sub>3</sub>O<sub>4</sub> is mainly dominated by Eq. (9). From the above description, the complicated adsorption mechanisms are proposed by a conceptual model as shown in Fig. 5.

# **CONCLUSIONS**

In this paper, we present an easy and environmentally friendly method to modify Fe<sub>3</sub>O<sub>4</sub> with gelatin by using N<sub>2</sub> induced plasma technique. The feasibility of gelatin/ Fe<sub>3</sub>O<sub>4</sub> nanoparticles as a magnetic material for the preconcentration of Pb(II) ions from aqueous solutions is studied. The gelatin/Fe<sub>3</sub>O<sub>4</sub> has remarkable stability in acidic solutions and relatively high adsorption capacity for Pb(II) ions. By introducing gelatin, the stability of Fe<sub>3</sub>O<sub>4</sub> in acidic aqueous suspensions is effectively improved and the magnetic property of Fe<sub>3</sub>O<sub>4</sub> is maintained, while the removal percentage of Pb(II) is increased. The gelatin/Fe<sub>3</sub>O<sub>4</sub> nanoparticles are very cheap because of the abundant Fe<sub>3</sub>O<sub>4</sub> and gelatin. Furthermore, the gelatin/Fe<sub>3</sub>O<sub>4</sub> with adsorbed heavy metals can be simply recovered from solution with magnetic separations at very low magnetic field gradients, which can hopefully reduce water treatment expenses. It is expected that gelatin/Fe<sub>3</sub>O<sub>4</sub> can be applied in the removal of heavy metal ions from acidic aqueous solution in real work.

#### **ACKNOWLEDGEMENTS**

Financial support from the 973 project of the Ministry of Science and Technology (2011CB933700) and National Natural Science Foundation of China (21007074; 21107115; 20971126) are acknowledged.

## **REFERENCES**

- Gupta, V.K.; Ali, I. (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. *Environ. Sci. Technol.*, 42: 766–770.
- Gupta, V.K.; Ali, I.; Saini, V.K. (2007) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. *J. Colloid Interface Sci.*, 315: 87–93.
- Gupta, V.K.; Carrott, P.J.M.; Carrott, M.; Suhas. (2009) Low-cost adsorbents: Growing approach to wastewater treatmenta review. Crit. Rev. Environ. Sci. Technol., 39: 783–842.
- Gupta, V.K.; Gupta, B.; Rastogi, A.; Agarwal, S.; Nayak, A. (2011) Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res., 45: 4047–4055.
- Gupta, V.K.; Jain, C.K.; Ali, I.; Chandra, S.; Agarwal, S. (2002) Removal of lindane and malathion from wastewater using bagasse fly ash: A sugar industry waste. Water Res., 36: 2483–2490.
- Gupta, V.K.; Mittal, A.; Gajbe, V.; Mittal, J. (2006) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: Bottom ash and de-oiled soya. *Ind. Eng. Chem. Res.*, 45: 1446–1453.
- Li, G.; Jiang, Y.; Huang, K.; Ding, P.; Yao, L. (2008) Kinetics of adsorption of *Saccharomyces cerevisiae* mandelated dehydrogenase on magnetic Fe<sub>3</sub>O<sub>4</sub>-chitosan nanoparticles. *Colloids Surf. A*, 320: 11–18.

- 8. Gupta, V.K.; Nayak, A. (2012) Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe<sub>2</sub>O<sub>3</sub> nanoparticles. *Chem. Eng. J.*, 180: 81–90.
- Nata, I.F.; Salim, G.W.; Lee, C.K. (2010) Facile preparation of magnetic carbonaceous nanoparticles for Pb<sup>2+</sup> ions removal. *J. Hazard. Mater.*, 183: 853–858.
- Hu, J.; Lo, I.M.C.; Chen, G. (2007) Comparative study of various magnetic nanoparticles for Cr(VI) removal. Sep. Purif. Technol., 56: 249–256.
- Liu, J.F.; Zhao, Z.S.; Jiang, G.B. (2008) Coating Fe<sub>3</sub>O<sub>4</sub> magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. *Environ. Sci. Technol.*, 42: 6949–6954.
- Lu, A.H.; Salabas, E.L.; Schüth, F. (2007) Magnetic nanoparticles: Synthesis, protection, functionalization, and application. *Angew. Chem. Int. Edit.*, 46: 1222–1244.
- Pyrzyńska, K.; Bystrzejewski, M.ł. (2010) Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. *Colloids Surf. A*, 362: 102–109.
- Bystrzejewski, M.; Pyrzyńska, K.; Huczko, A.; Lange, H. (2009) Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. *Carbon*, 47: 1201–1204.
- Zhou, Y.T.; Nie, H.L.; Branford-White, C.; He, Z.Y.; Zhu, L.M. (2009) Removal of Cu<sup>2+</sup> from aqueous solution by chitosan-coated magnetic nanoparticles modified with α -ketoglutaric acid. *J. Colloid Interface Sci.*, 330: 29–37.
- Zhao, Y.G.; Shen, H.Y.; Pan, S.D.; Hu, M.Q.; Xia, Q.H. (2010) Preparation and characterization of amino-functionalized nano-Fe<sub>3</sub>O<sub>4</sub> magnetic polymer adsorbents for removal of chromium(VI) ions. *J. Mater. Sci.*, 45: 5291–5301.
- White, B.R.; Stackhouse, B.T.; Holcombe, J.A. (2009) Magnetic γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). *J. Hazard. Mater.*, 161: 848–853.
- 18. Gaihre, B.; Khil, M.S.; Lee, D.R.; Kim, H.Y. (2009) Gelatin-coated magnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study. Int. J. Pharmaceut., 365: 180–189.
- Intorasoot, S.; Srirung, R.; Intorasoot, A.; Ngamratanapaiboon, S. (2009) Application of gelatin-coated magnetic particles for isolation of genomic DNA from bacterial cells. *Anal. Biochem.*, 386: 291–292.
- Liu, C.; Bai, R.; San Ly, Q. (2008) Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. *Water Res.*, 42: 1511–1522.
- Shao, D.D.; Jiang, Z.Q.; Wang, X.K.; Li, J.X.; Meng, Y.D. (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO<sub>2</sub><sup>2+</sup> from aqueous solution. *J. Phys. Chem. B*, 113: 860–864.
- Chen, C.L.; Liang, B.; Ogino, A.; Wang, X.K.; Nagatsu, M. (2009)
   Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment. *J. Phys. Chem.* C, 113: 7659–7665.
- Yang, S.B.; Hu, J.; Chen, C.L.; Shao, D.D.; Wang, X.K. (2011) Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. *Environ. Sci. Technol.*, 45: 3621–3627.
- Gupta, V.K.; Ali, I. (2004) Removal of lead and chromium from wastewater using bagasse fly ash: A sugar industry waste. *J. Colloid Interface Sci.*, 271: 321–328.
- Gupta, V.K.; Gupta, M.; Sharma, S. (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud: An aluminium industry waste. Water Res., 35: 1125–1134.

- Gupta, V.K.; Mohan, D.; Sharma, S. (1998) Removal of lead from wastewater using bagasse fly ash: A sugar industry waste material. Sep. Sci. Technol., 33: 1331–1343.
- Srivastava, S.K.; Gupta, V.K.; Mohan, D. (1997) Removal of lead and chromium by activated slag: A blast-furnace waste. *J. Environ.* Eng., 123: 461–468.
- Hu, J.; Shao, D.D.; Chen, C.L.; Sheng, G.D.; Li, J.X.; Wang, X.K.; Nagatsu, M. (2010) Plasma-induced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application. *J. Phys. Chem. B*, 114: 6779–6785.
- Wang, J.H.; Zheng, S.R.; Shao, Y.; Liu, J.L.; Xu, Z.Y.; Zhu, D.Q. (2010) Amino-functionalized Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. *J. Colloid Interface Sci.*, 349: 293–299.
- Shao, D.; Jiang, Z.; Wang, X. (2010) SDBS modified XC-72 carbon for the removal of Pb(II) from aqueous solutions. *Plasma Processes Polym.*, 7: 552–560.
- Gaihre, B.; Aryal, S.; Barakat, N.A.M.; Kim, H.Y. (2008) Gelatin stabilized iron oxide nanoparticles as a three-dimensional template for the hydroxyapatite crystal nucleation and growth. *Mater. Sci. Eng.* C, 28: 1297–1303.
- Gaihre, B.; Khil, M.S.; Kang, H.K.; Kim, H.Y. (2009) Bioactivity of gelatin coated magnetic iron oxide nanoparticles: In vitro evaluation. *J. Mater. Sci.-Mater. Med.*, 20: 573–581.
- Shao, D.D.; Hu, J.; Chen, C.L.; Sheng, G.D.; Ren, X.M.; Wang, X.K. (2010) Polyaniline multiwalled carbon nanotube magnetic composite prepared by plasma-induced graft technique and its application for removal of aniline and phenol. J. Phys. Chem. C, 114: 21524–21530.
- Wu, Z.; Wu, J.; Xiang, H.; Chun, M.-S.; Lee, K. (2006) Organosilanefunctionalized Fe<sub>3</sub>O<sub>4</sub> composite particles as effective magnetic assisted adsorbents. *Colloids Surf. A*, 279: 167–174.
- Ali, I.; Gupta, V.K. (2006) Advances in water treatment by adsorption technology. *Nat. Protoc.*, 1: 2661–2667.
- Girvin, D.C.; Gassman, P.L.; Bolton, H. (1996) Adsorption of nitrilotriacetate (NTA), Co and CoNTA by gibbsite. *Clays Clay Miner.*, 44: 757–768.
- Yang, J.K.; Lee, S.M.; Davis, A.P. (2006) Effect of background electrolytes and pH on the adsorption of Cu(II)/EDTA onto TiO<sub>2</sub>. J. Colloid Interface Sci., 295: 14–20.
- 38. Wiesner, A.D.; Katz, L.E.; Chen, C.C. (2006) The impact of ionic strength and background electrolyte on pH measurements in metal ion adsorption experiments. *J. Colloid Interface Sci.*, 301: 329–332.
- Hiemstra, T.; van Riemsdijk, W.H. (1990) Multiple activated complex dissolution of metal (hyrd) oxides: A thermodynamic approach applied to quartz. J. Colloid Interface Sci., 136: 132–150.
- López-Ramón, V.; Moreno-Castilla, C.; Rivera-Utrilla, J.; Radovic,
   L.R. (2003) Ionic strength effects in aqueous phase adsorption of metal ions on activated carbons. *Carbon*, 41: 2020–2022.
- Gaihre, B.; Parajuli, D.C.; Seo, H.C.; Khil, M.S.; Kim, H.Y. (2008) Effect of different parameters on gelatin adsorption and stability of the colloidal dispersion of gelatin-coated magnetic iron oxide nano-particles. *Adsorp. Sci. Technol.*, 26: 279–290.
- 42. Zhao, D.L.; Yang, X.; Zhang, H.; Chen, C.L.; Wang, X.K. (2010) Effect of environmental conditions on Pb(II) adsorption on β-MnO<sub>2</sub>. Chem. Eng. J., 164: 49–55.
- Nassar, N.N. (2010) Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater., 184: 538–546.
- 44. Gupta, V.K.; Jain, C.K.; Ali, I.; Sharma, M.; Saini, V.K. (2003) Removal of cadmium and nickel from wastewater using bagasse fly ash: A sugar industry waste. *Water Res.*, 37: 4038–4044.
- 45. Tran, H.V.; Tran, L.D.; Nguyen, T.N. (2010) Preparation of chitosan/ magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. *Mater. Sci. Eng. C*, 30: 304–310.

- Ren, X.M.; Shao, D.D.; Yang, S.T.; Hu, J.; Sheng, G.D.; Tan, X.L.; Wang, X.K. (2011) Comparative study of Pb(II) sorption on XC-72 carbon and multi-walled carbon nanotubes from aqueous solutions. *Chem. Eng. J.*, 170: 170–177.
- 47. Tan, X.L.; Fang, M.; Li, J.X.; Lu, Y.; Wang, X.K. (2009) Adsorption of Eu(III) onto TiO<sub>2</sub>: Effect of pH, concentration, ionic strength and soil fulvic acid. *J. Hazard. Mater.*, 168: 458–465.
- 48. Zhao, G.X.; Ren, X.M.; Gao, X.; Tan, X.L.; Li, J.X.; Chen, C.L.; Huang, Y.Y.; Wang, X.K. (2011) Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. *Dalton Trans.*, 40: 10945–10952.
- Uheida, A.; Salazar-Alvarez, G.; Björkman, E.; Yu, Z.; Muhammed, M. (2006) Fe<sub>3</sub>O<sub>4</sub> and γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles for the adsorption of Co<sup>2+</sup> from aqueous solution. *J. Colloid Interface Sci.*, 298: 501–507.