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Abstract
Deuterium high-confinement (H-mode) plasmas, lasting up to 3.45 s, have been generated in the EAST by ion
cyclotron range of frequency (ICRF) heating. H-mode access was achieved by coating the molybdenum-tiled first
wall with lithium to reduce the hydrogen recycling from the wall. H-mode plasmas with plasma currents between 0.4
and 0.6 MA and axial toroidal magnetic fields between 1.85 and 1.95 T were generated by 27 MHz ICRF heating of
deuterium plasma with hydrogen minority. The ICRF input power required to access the H-mode was 1.6–1.8 MW.
The line-averaged density was in the range (1.83–2.3)×1019 m−3. 200–500 Hz type-III edge localized mode activity
was observed during the H-mode phase. The H-mode confinement factor, H98IPB(y, 2), was ∼0.7.

(Some figures may appear in colour only in the online journal)

1. Introduction

The high-confinement or ‘H-mode’ of operation was first
discovered in the Asymmeteric Divertor Experiment (ASDEX)
when deuterium plasmas were heated by neutral beam injection
[1]. Later, on the same machine, H-mode plasmas were
generated in a deuterium plasma with a hydrogen minority
with ion cyclotron range of frequency (ICRF) minority heating
[2]. H-mode plasmas have since been observed in many
other tokomaks [3–6]. This paper presents results for the
first H-mode plasmas produced by using ICRF heating as the
only auxiliary power source in the Experimental Advanced
Superconducting Tokamak (EAST) [7]. These experiments
were performed with a molybdenum first-wall and all of these
results have been obtained with lithium wall conditioning
[8, 9], which reduced hydrogen recycling from the wall. As
a result, the hydrogen concentration was reduced to as low
as 5% in the plasma and the ICRF power absorption was
improved [10–12]. The ICRH H-mode plasmas in EAST were
characterized by an ICRF power deposition profile that was
strongly peaked on the magnetic axis and the low-confinement
(L-mode) to H-mode threshold power was close to the value

predicted by the international tokamak scaling [13]. The ICRH
H-modes were also exhibited by rapid type-III edge localized
mode (ELM) activity and had H-mode confinement factor,
H98IPB(y, 2), of ∼0.7.

2. Experimental setup

EAST is a superconducting tokamak with toroidal divertor
configuration [7] (R0 = 1.88 m, a = 0.45 m, B0 < 3.5 T,
Ip ∼ 1 MA), which commenced operation in September 2006.
EAST was designed for steady-state divertor operation for a
duration of 1000 s and has achieved 410 s to date. ICRF heating
is the sole auxiliary heating method used in these discharges.
Fundamental hydrogen (H)-minority heating at 27 MHz with
the power available (up to 1.8 MW) is used for central
heating of deuterium (D) majority plasmas for ICRF heated
H-mode studies. An example of a typical EAST equilibrium
shape at typical magnetic field B0 ∼ 1.95 T is shown in
figure 1.

The available source power of the ICRF system in the
2012 experimental campaign was 6.0 MW with two dedicated
horizontal ports, at B-port and I-port. The ICRF antenna at
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Figure 1. Double null magnetic flux contour from a typical H-mode
discharge in EAST (Ip = 0.5 MA and B0 = 1.95 T).

B-port had two straps constructed of stainless steel and coated
with boron carbide (B4C). The I-port antenna had four straps
and was also constructed of stainless steel, but it was not coated.

The ICRF power deposition profile during the H-mode
phase, as calculated with the 2D full wave TORIC code
[14, 15], was peaked near the magnetic axis, ρ ∼ 0.1 (as
indicated by the vertical red line in figure 1). This is also
confirmed by an ECE imaging (ECEI) diagnostic [16, 17],
as shown in figure 2. The ECE data clearly show that the
electron temperature increase during the ICRF heating pulse
is peaked near the magnetic axis, at ρ ∼ 0.1, as predicted by
TORIC. For the purposes of this study, and consistent with
previous reports [10], the ICRF coupling efficiency can be
simply estimated by calculating dWdia/dt at the time of the
ICRF power turn-on.

3. Experimental results

In this campaign, 25 H-mode discharges were obtained in total.
The H modes have been obtained with double null only with
an elongation ∼1.7, and a triangularity ∼0.45. The H-mode
plasmas with ICRF heating alone have been produced in a
narrow range of operation parameters with plasma currents
of 0.4 MA < IP < 0.6 MA, line-averaged density from
1.83 × 1019 m−3 to 2.35 × 1019 m−3, B0 = 1.85 − 1.95 T. The
total input power for ICRF H-mode plasmas in this campaign

has varied from 1.6 to 1.8 MW. Note that a higher plasma
density is needed for effective coupling of ICRF power into
the core plasma. Normally, arcing was encountered in the RF
transmission line when the line-averaged plasma density was
less than 1.8 × 1019 m−3. This was due to increased reflection
of RF power back into the antennas causing standing waves in
the transmission line.

ELMing ICRF heated H-mode discharges were generated
in EAST with durations of up to 3.45 s, as shown in figures 3
and 4. Figure 3 shows a discharge that had a total ICRF power
of 1.7 MW (figure 3(g)). The pre-transition plasma density is
about 2.0 × 1019 m−3 (figure 3(b)). Transition from L-mode
to H-mode takes place after a sudden drop of Dα emission (as
indicated in figure 4(a)) and a successive increase in stored
energy and electron density. Plasma density and stored energy
more than doubled during the H-mode phase (figures 4(b)
and (d)). Confirmation of pedestal formation during the
H-mode phase came from the density profiles (figure 3(b))
and the extreme ultra-violet (XUV) radiation (figure 3(f )).
The density profiles from the microwave reflectometry clearly
demonstrated pedestal formation at the onset of H-mode. This
was further confirmed by a sharp rise in the XUV radiation
at the plasma edge (ρ = 0.9) as shown in figure 3(f ).
Unlike EAST H-mode discharges generated by lower hybrid
wave (LHW) heating alone, which exhibit a decrease of the
core electron temperature, the electron temperature (see in
figure 5(a)) measured by an x-ray crystal spectrometer (XCS)
[18] showed an increase of 300 eV in the plasma core of a
H-mode discharge heated only by ICRF power, even though
the enhanced density and radiation power loss during the H-
mode phase were greatly enhanced. The increase in the ion
temperature and the toroidal rotation at the plasma centre
are about 300 eV and 20 km s−1, respectively. As shown
in figure 4, H-modes started with a short ELM-free period,
lasting ∼500 ms, followed by type-III ELMs (figure 4(a)) with
frequencies from 200 to 500 Hz (figure 4(b)). Confinement
times for the H-mode discharges (with type-III ELMs) are in
the range 110–150 ms for 1.7 MW of total heating power at
500 kA. The H factor, HIPB98(y,2), for the L-mode plasma just
before the transitions is about 0.5 and then up to 0.7 ± 0.1.

4. Access to H-mode

To assess the operating parameters needed to access the
H-mode regime, the toroidal field and plasma density were
scanned during a sequence of deuterium discharges that had
the same plasma shape and a plasma current of 500 kA. All of
the discharges had a lithium coated first-wall and a double null
plasma configuration. Figure 6 shows the H-mode operational
window in plots of injected ICRF power versus plasma density
and toroidal magnetic field. For the plasma density scan,
the magnetic field was fixed at 1.95 T at a constant target
plasma current of 500 kA for on-axis heating. The density
was scanned from shot-to-shot from low densities up to a level
where a H-mode was no longer achievable with the ICRF power
available (∼1.8 MW). Figure 6(a) shows that it was possible
to access the H-mode regime when the plasma density was less
than 2.35 × 1019 m−3. Figure 6(b) shows that it was possible
to access the H-mode regime when the axial toroidal field
was between 1.85 and 1.95 T. It is clear from this parameter
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Figure 2. The 2D image of the temperature change measured by the ECEI diagnostic (here, we define �Te = (Te − Te0)/Te0) during the
ICRF heating pulse; the white dashed ellipses in figure 2 represent the q = 1 surface.

Figure 3. Time traces of plasma parameters for typical H-mode discharges with ICRH only: (a) plasma current; (b) the line-averaged
density; (c) the loop voltage; (d) the stored energy; (e) the neutron rate; (f ) XUV radiations at ρ = 0, 0.9 and 1; (g) ICRF injection power.
The plasma is in the H-mode starting at 3.4 s and is sustained in H-mode up to 6.85 s.

scan that much higher ICRF power needs to be coupled into
the plasma in order to generate H-mode discharges that are
resilient to significant changes in plasma density and toroidal
magnetic field.

5. Power threshold

In the 2010 autumn campaign of EAST [19], a H-mode with
type-III ELMs at a H factor of H98IPB(y, 2) = 0.8 ± 0.2 was
produced by LHW as the only auxiliary power source with
strongly off-axis power deposition at a power level close to

1 MW. A threshold in density for H-mode access was identified,
n̄e > 1.9 × 1019 m−3. It is widely known that the transition
from L-mode to H-mode is obtained when the input power
exceeds a threshold (Pthresh), which depends on the plasma
density and the magnetic field. It also depends on other
parameters such as the plasma shape, the neutral density or the
vacuum vessel conditioning. The power threshold for H-mode
access has been studied on several machines including DIIID
[20], JET [21], Alcator C-Mod [22], ASDEX Upgrade [23] and
JT-60U [24]. The threshold power for ITER are also discussed
[25].The H-mode discharges generated by ICRF heating alone
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Figure 4. An expanded time scale near ICRF power: (a) Dα emission, (b) ELM repetition time and, (c) H98yIPB(y2) and τE , (d) ICRF
heating power versus time during the ELMy ICRF-heated H-mode discharge type-III ELMs with frequencies between 200 and 500 Hz were
observed.

Figure 5. The data at the plasma centre were measured by XCS for the same shot as in figure 3: (a) the electron temperature, (b) the ion
temperature, (c) the toroidal rotation, (d) ICRH injected power.

in EAST extend the density range down to 1.83 × 1019 m−3,
as shown in figure 7(b).

The duration of the first ICRF H-mode discharge
generated in EAST was about 500 ms because the coupled
ICRF power was marginal compared to Pthresh, multiple
L–H–L transitions were observed during a single shot as the
plasma current was increased from 400 to 600 kA. H–L back
transitions were attributed to increased power loss by radiation
(Prad). But the ICRF power coupled to the plasma stayed
constant during the L–H transitions and H-mode phases.
Figure 7(a) shows that Ploss at the L–H transitions is similar to

the Pthresh predicted by the international tokomak scaling [13],
showing that it follows the scaling. Ploss is calculated as the
sum of the absorbed ICRF power and the ohmic power (Poh)
minus Prad and the time variation of the stored energy dWdia/dt .
In the present analysis, fast ion loss is ignored. Note that Prad

is subtracted to estimate Ploss even though Prad is not especially
taken into account for the evaluation of Ploss in the threshold
power scaling study [13]. In figure 7(b), Ploss is plotted as a
function of n̄e. A threshold in density for H-mode access was
identified, n̄e > 1.83 × 1019 m−3. Interestingly we can see the
two routes of the density dependence of the threshold power,
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Figure 6. ICRF heated H-mode with the ICRF power available (up to 1.8 MW) in EAST: (a) total injected power versus the line-averaged
density taken just before the first L–H transition; (b) total injected power versus toroidal field.

Figure 7. Loss powers (Ploss) through the separatrix at L–H and H–L transitions versus the threshold powers (Pthresh) predicted by the
international tokamak scaling. The threshold power is expressed as Pthresh = 0.0488 × n0.72

e20 × B0.80
0 × S0.94

A , where B0 is in T, and SA are in
units of m2.

one is Ploss increases with n̄e and the other is Ploss increased
with the decrease of n̄e.

6. Summary

In summary, a sustained H-mode was demonstrated in
EAST using ICRF heating alone for the first time. The
discharges were characterized by 200–500 Hz type-III ELMs

and a sustained enhanced confinement factor, H98IPB(y, 2) ∼
0.7. The threshold power for H-mode access follows the
international tokamak scaling, even in the low density regime
studied here. To access the H-mode regime with the available
ICRF power (up to 1.8 MW) it was found necessary to use
lithium wall conditioning to reduce the hydrogen concentration
and improve the ICRF power absorption. Arcing in the
transmission lines between the RF sources and the antennas
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was one of the main issues limiting the RF power that could be
coupled into the plasma during the 2012 EAST experimental
campaign. More coupled power will be required to achieve
H-mode access with ICRF power alone at even lower plasma
density. In future, effects of Prad on the threshold power will
be studied precisely, which would contribute to the further
study whether the two routes of the density dependence of the
threshold power are of the transition physics problem or of the
plasma conditioning problem.
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