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Abstract: High-throughput experimental technologies continue to alter the study of current system biology. Investigators 

are understandably eager to harness the power of these new technologies. Protein-protein interactions on these platforms, 

however, present numerous production and bioinformatics challenges. Some issues like feature extraction, feature 

representation, prediction algorithm and results analysis have become increasingly problematic in the prediction of 

protein-protein interaction sites. The development of powerful, efficient prediction methods for inferring protein interface 

residues based on protein primary sequence or/and 3D structure is critical for the research community to accelerate 

research and publications. Currently, machine learning-based approaches are drawing the most attention in predicting 

protein interaction sites. This review aims to describe the state of the whole pipeline when machine learning strategies are 

applied to infer protein interaction sites. 
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1. INTRODUCTION 

 Protein-protein interactions play a pivotal role in live 
biological cells by controlling the functions that proteins 
perform, which occur through the formation of complexes, 
either transient or more long lasting, as a result of a balance 
between different molecular properties: sequence, shape, 
charge distribution, entropy and dynamics [1, 2]. 
Understanding the characteristics of interfacial sites between 
two interaction proteins is a necessary step to decipher the 
molecular recognition process and to elucidate protein 
function and the structure of protein complexes. Only over 
the past few years, do a vast amount of protein data and the 
associated data, benefited from rapid development of high-
throughput biotechnology, making it possible to investigate 
the interactions between proteins. However, the residues 
involved in these interactions are generally not known and 
the vast majority of the interactions remain to be 
characterized structurally. 

 In recent years, some large-scale experimental methods 
were well-established to analyze protein-protein interactions 
in a structural view, including mainly the X-ray crystallo-
graphy, NMR, and site-directed mutagenesis [3]. But, such 
techniques are tedious, time-consuming and labor-intensive 
[4], and suffer from high rates of both false positive and false 
negative predictions [5, 6]. Mrowke et al. even estimated 
that there are 90% protein interactions obtained by Ito and 
Uetz [7, 8] are not correct [9]. On other hand, current 
proteomics research generated tremendous protein inter-
action data which need to be confirmed and annotated by 
structural information. Therefore, it is becoming more and  
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more important for researchers to seek some good 
computational approaches, which are much faster and less 
expensive than most experimental analyses, to predict 
protein interaction sites. 

 As a result, many computational techniques have been 
suggested for predicting potential protein interaction sites. 
The first try, predicting the individual residues which 
overlap with interface, was presented by Jones and Thornton 
in 1997 [10]. After that, many works were reported for 
inferring protein binding sites in which the investigators 
attempted to address the problem of predicting protein-
protein interactions based on different biological background 
knowledge, such as detecting the presence of ‘proline 
brackets’ [11], solvent-accessible surface area buried upon 
association [12], free energy changes upon alanine-scanning 
mutations [13], sequence hydrophobicity distribution [14], 
evolutionary relationships [15, 16], three-dimensional 
features [17], sequence properties [18], electrostatic 
desolvation profiles [19], and so on. These works had 
achieved many sound scientific results, and benefited the 
study of protein interaction a lot. 

 Among the computational technologies which were 
applied into the protein interaction sites prediction, machine 
learning-based methods are becoming the most efficient 
ways [15, 20-36]. Several machine learning approaches, such 
as Bayesian network [22, 30], neural networks [24, 27, 31-
34, 36, 37], support vector machines [20, 21, 23, 25, 26, 28, 
35], and conditional random field [29], have been proposed 
to address the problem of protein interaction site prediction. 
Typically, these methods classify each target residue into 
either the interface or non-interface residues group based on 
a sliding window strategy by which some sequence or spatial 
neighborhood residues can be involved in classifiers as 
input. Clearly, the performance of prediction is heavily 
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dependent on the feature selection or extraction. If the 
features are distinguishing between protein non-interface and 
interface, the residues present in protein interfaces should be 
easier to identify. Because none of the individual property is 
sufficient to describe protein interface, a combination of 
some of them may be a good way to improve the prediction 
results. The second factor is the design of the classifier, for 
none of machine learning method can work very well in all 
situations, and the performance of each of them will be 
varied on different data sets and different algorithm 
architectures. 

 Recently, three comprehensive reviews have been 
published for providing insight into the prediction of protein-
protein interaction sites [38-40]. While these works reviewed 
the fundamentals of protein binding and docking, and gave a 
whole picture of the prediction of interface residue, our 
review mainly focuses on machine learning-based methods 
and their application in the prediction of protein interaction 
sites. In this review, some important components in the 
entire pipeline will be described when machine learning 
approaches are adopted to address the problem of inferring 
interaction sites, from protein feature extraction, feature 
representation, algorithm design to performance evaluation. 

2. DEFINITIONS 

2.1. Protein Complexes 

 Protein interactions are the basis of the formation of 
protein complexes, which are groups of two or more 
associated polypeptide chains. According to the interaction 
strength, protein complexes can be divided into obligatory 
and transient complexes. Obligatory interactions occur 
between the proteins which have high shape 
complementarity, and are characterized by the presence of 
hydrophobic residues [41]. Protein docking, therefore, is a 
good alternative of the prediction of obligatory interaction 
which model two or more known structures mainly based on 
protein surface complementarity and electrostatics [42]. 
Transient complexes are weakly associated between protein 
interfaces which have lower geometrical complementarily. 
Generally, the interface areas between proteins in transient 
complexes are relative small, and tend to be formed by polar 
residues. 

 Protein complexes can also be divided into homo-
complexes and hetero-complexes based on sequence identity. 
Interaction sites in homo-complexes are characterized by 
hydrophobic, and can be distinguished by a relatively large 
interface of non-polar residues [43]. Many studies, therefore, 
focus on inferring the interaction sites in hetero-complexes, 
because some of them are transient complexes which are 
more difficult to be identified by experimental methods [15, 
16, 18, 24, 29, 34, 35, 37]. 

 The previous studies showed that there are different 
amino acid compositions among homo-obligomer, hetero-
obligomer, homo-transient and hetero-transient complexes, 
which indicated that different types of protein interface can 
be differentiated based on the suitable features [41]. When 
machine learning methods are adopted for the prediction of 
protein interaction sites, the interface type is important and 
should be taken into account because the same features have 

different capabilities in distinguishing the interface from 
non-interface residue in different interaction types. Homo- 
and hetero- complexes can be easily differentiated based on 
sequence identity. However, sometimes some interactions 
can not be clearly assigned into a definite type of transient 
and permanent complex, which causes the prediction task to 
be more difficult. 

2.2. Surface and Interface Residues 

 Proteins interact with each other through interfaces which 
are composed of some surface residues. Therefore, the 
prediction qualities of all machine learning-based predictors 
are to a large extent dependent on how the surface residues 
are defined. Usually, a residue is considered to be a surface 
residue if its relative accessible surface area (RSA) is higher 
than a ratio cut-off of its nominal maximum area, whose 
value was defined by Rost and Sander [44]. The accessible 
surface area (ASA) can be calculated for each residue in 
each protein chain using the DSSP program [45]. Different 
studies set up different cutoff values, which may be 5%, 
10%, 16% or 25% [15, 18, 24, 34, 46]. 

 There is no consistent definition for interface residues in 
the protein interaction community. In some studies, the 
interface residues are defined if calculated ASA in the 
complex (CASA) of this residue is less than that in the 
monomer (MASA) by a threshold, i.e., 1 2 [18]. In this 
case, the corresponding unbound monomers should be 
provided in the database because the conformation will be 
changed when this protein chain forms a complex with the 
other protein chain(s). However, the available set of bound 
and unbound structure of the same protein chain is very 
small, which limit the application of this definition of the 
interface residue. Therefore, many works adopted a 
relatively simple strategy by which a residues can be seen as 
the interface residue if the spatial distance between its -
carbon (CA) atom and random CA atoms in the other protein 
chains in the complex is less than 1.2 nm [15, 27]. Also, 
there is a similar definition of interface residue if any of the 
heavy atoms within a cut-off distance, such as 6 , or any 
atoms in its interaction partner chain [47]. 

 For the definitions of surface and interface residues, the 
selection of different cut-offs is very important because they 
decide the datasets on which machine learning-based 
predictor will be trained. The main advantage of machine 
learning-based methods in the prediction of interaction sites 
is to learn some interaction-related information from known 
data, and then apply the learned information as experience to 
analyze the unknown data. Apparently, more strictly the cut-
offs are selected, more confident the dataset will be, but it 
will also increase the false negative rate of the surface and 
interface residues. 

3. PROTEIN FEATURES 

3.1. Feature Extraction 

 The successes of machine learning application in 
prediction of protein interaction sites depend on the protein 
features which can differentiate interface from other surface 
residues. Protein interaction surfaces are composed of 
interface residues and nearby residues. Each interface has its 
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own spatial structure, amino acid composition, local 
chemical and physical environment. Therefore, as a result of 
a combinational influence of different factors, protein 
interfaces can be represented by different protein features. 
The features with distinct expression levels between 
interface and non-interface will be good choices for 
prediction of protein interaction site. Currently, the 
following features have been used for protein interaction 
sites researches. 

 Amino Acid Composition: As basic information, amino 
acid composition had been used in many researches to 
predict the protein interaction sites. Jones and Thornton [10, 
43] firstly used this features and found that ratios of amino 
acids between protein interfaces and non-interfaces are 
different. Hydrophobic residues and arginine are present in a 
relatively high frequency in protein interfaces, and can be 
used to predict interface residues in some studies, while 
other studies show that the amino acid composition is not 
enough to identify interfaces [30, 36, 48, 49]. 

 Sequence Entropy: Protein sequence entropy is a 
conservation score which can estimate sequence variability 
[50, 51]. This score ranks the frequencies of the occurrence 
of 20 type’s amino acid in protein families, usually 
normalized over the range of 0-100 by which the lowest 
values are corresponding to the most conserved positions. 
Some studies group 20 amino acids into different subgroups 
based on their physical and chemical properties by 
considering different mutation tendencies from one amino 
acid to another [15]. The HSSP database is a good resource 
to extract sequence entropy [52]. 

 Solvent Accessible Area: Interface residues are likely to 
be accessible to solvent in the unbound state. Non-interface 
residues tend to maximize intra-molecular interaction, and 
therefore reduce their solvent accessibilities. The difference 
between predicted and actual solvent accessibilities are 
already used as a discriminative feature in some predictors 
[24, 34, 53]. 

 Secondary Structure: The most common proteins 
secondary structures are alpha helices and beta sheets, where 
the latter one is the favorite of interfaces. Ofran and Rost 
found that the prediction result of secondary structure could 
improve the performance of protein interaction site 
predictors [32]. 

 Evolutionary Conservation: Many methods for protein 
interaction sites prediction use evolutionary conservation as 
a primary indicator of the location of interface residues 
because it reflects evolutionary selection at the interaction 
sites to maintain the functions of protein families [30, 36, 54-
57]. Residue conservation at the interfaces is observed to be 
higher than those of general surface residues, and therefore 
has discriminatory power for protein interaction sites [58, 
59]. 

 There are also some other protein features that have been 
used in current studies, such as the position-specific scoring 
matrices (PSSMs) from multiple sequence alignment (MSA) 
[50], 3D-motifs [60, 61], interface propensities [26, 62], and 
so on. Because none of the single feature carries sufficient 
information of protein interactions, and the relation among 
those features is not clear for investigators yet, a 
combination of some of them is found to be an effective way 

to improve the prediction performance in machine learning 
methods-based predictors [15, 63]. 

3.2. Feature Representation 

 Currently, the methods of the predicting protein interaction 
sites can be divided into to subgroups: patch-based or residue-
based predictors [39]. Patch-based methods define and analyze 
a series of residue patches on the surface of protein structures to 
predict interaction patches using a combined score based on 
some characters [10, 22, 43]. Machine learning-based methods 
mainly adopt residue-based strategy by which a consistent 
feature vector can be easily represented. A sliding window 
technique is mostly used in order to involve the association 
among neighboring residues. The length of the sliding window 
is an important parameter which can affect the prediction 
results. Most studies use a random setup of window length. 
Recently, Sikic et al. [2] proposed an entropy-based method to 
determinate the window length as follows: 

pi log2 pi
i=1

L

log2 L             (1) 

where L is the length of a window, and pi  is the frequency 

appearance of ith interacting residues in a window of L 

residues. The maximum difference can be obtained when the 

length of the window is set up to 9 in their work. Another 

study revealed that the contributions of the residues inside 

the window are different, and a corresponding coefficient for 

each residue has been assigned based on a assumption of 

normal distribution  

ri = e
0.5(i (L+1)/2)2 / 2

            (2) 

where standard deviation 
2

 is a parameter of normal 

distribution which can also be calculated by i and L [18]. 

These two methods will be very helpful to decide a 

reasonable length of the sliding window and the contribution 

of each residue inside window. 

4. PREDICTION METHODS 

 Machine learning methods have been applied in 
predicting the protein-protein interaction sites for decades. 
Based on the protein feature mentioned above, machine 
learning approaches, such as Bayesian network, artificial 
neural networks, and support vector machines, treat the 
protein interaction sites prediction as a classification task, 
i.e., interface and non-interface residues. These methods 
have been reviewed by Zhou and Qin [38]. We will mainly 
focus on some novelty methods in this part. 

 Chen and Jeong [64] divided some selected features into 
three groups based on their sources, i.e., physicochemical 
features and evolutionary conservation score, amino acid 
distance, and PSSMs. Then, an integrative random forest 
model had been constructed on each group of feature, and 
the final classification results will be obtained by a majority 
vote strategy. This method can avoid the imbalanced data 
problem, which is common in prediction of interaction sites 
because non-interface residues are much more than interface 
residues. 
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 Another work [50] also handled the imbalanced problem by 
bootstrap resampling technique, and used SVM-based fusion 
classifiers to increase the accuracy of prediction perfor-mance 
of protein interaction sites. They presented one compo-nent 
ensemble classifier based on the SVM method for each of the 
eight different feature spaces firstly, and then combined them 
with a weighted voting to make the final decision. 

 Chen and Li [18] applied a SVM ensemble strategy to 
identify protein interface residues based on an integrative profile 
by combining hydrophobic and evolutionary information. In 
their work, a novelty method of residue sequence profile 
construction had been developed, in which the contribution of 
every residue in sequence window is different. They also used 
self-organizing map (SOM) technique to investigate the 
interacting relationship of the residues, and achieved a relatively 
high prediction performance, i.e., a precision of 81.96% and a 
specificity of 96.35%. 

 There are also some other prediction approaches to 
improve the performance, such as using genetic algorithm 
[65], ensemble predictor of radial basis function neural 
network [37], and so on. It can be found that a combination 
of some protein features or/and predictor ensemble is an 
effective way to improve the accuracy of prediction of 
protein interaction sites. The reason is that the machine 
learning-based predictors always have a functional tendency 
in some extent to the features by which the predictors were 
trained. Predictor’s ensemble can take into account the 
complementarities of different protein features. 

5. PERFORMANCE EVALUATION 

 As discussed in many literatures, prediction accuracy, 
which is the ratio of the number of correctly predicted 
protein interface residues to the total number of predicted 
interface residues, is not enough to evaluate prediction 
performance due to the imbalance of interface and non-
interface data sets. For example, there are over 70,000 
protein structures collected in PDB [66], however only 
23,759 entries can be found interaction information in the 
current DIP database [67]. That means most protein 
interactions cannot be available now. Also, there is a big 
imbalance between interface and non-interface residues 
because only a small part of the surface is seen as interface 
in almost every dataset used in the protein interface 
prediction. Usually, there are other three measures have been 
used: 

Re call =
TP

TP + FN

Pr ecision =
TP

TP + FP

MCC =
TP TN FP FN

(TP + FN )(TP + FP)(TN + FP)(TN + FN )

         (3) 

where TP (True Positive) is the number of true positives, i.e., 
residues predicted to be interface residues that actually are 
interface residues; FP (False Positive) is the number of false 
positives, i.e., residues predicted to be interface residues that 
are in fact not interface residues; TN (True Negative) is the 
number of true non-interface residues; and FN (False 
Negative) is the number of false non-interface residues. The 

MCC is a measure of how well the predicted class labels 
correlate with the actual class labels. The range of MCC 
value is from -1 to 1, where a correlation coefficient of 1 
corresponds to perfect predictions, while a correlation 
coefficient of 0 corresponds to random guessing. 

6. CONCLUSIONS 

 The rise of powerful high-throughput experimental 
technologies has fundamentally changed the study of current 
system biology, which already benefited the study of protein 
interactions a lot. However, it also presents some serious 
challenges for prediction of protein interaction sites, such as 
protein feature extraction and representation, prediction 
methods, results analysis and performance evaluation. 
Machine learning, as a branch of artificial intelligence, had 
been adopted for addressing these problems and 
demonstrated good performance in prediction. It should be 
noted that there is still room to improve the prediction 
performance of all the studies, such as more interaction-
related protein feature mining, integration of other biological 
resource like genome and transcriptome information, and 
ensemble different classifiers. Some new computational 
techniques are also helpful if they can be employed into the 
protein interaction field [68], It is clear that machine learning 
algorithms hold incredible promise for protein interaction 
research; their capabilities in the hands of investigators will 
undoubtedly accelerate our understanding of the mechanism 
of cell to perform their functions. 
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