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Analysis of Liquid and Structural 
Transients in Piping by the 
Method of Characteristics 
Since liquid-filled piping systems are composed of slender elements, their transient 
behavior can be described as one-dimensional wave phenomena. Seven wave com­
ponents are identified: coupled axial compression of liquid and pipe material; 
coupled transverse shear and bending of the pipe elements in two principal direc­
tions; and torsion of the pipe wall. Utilizing the method of characteristics, the com­
bined system of difference equations for pipe elements and the pipe junction boun­
dary conditions comprise a general mathematical tool for predicting the liquid 
pressure and pipe stress responses to transient excitation of either liquid or piping. 
The complexity of fluid-structure interaction that can take place is demonstrated. 

Introduction 
The analytical procedures usually employed for design of 

piping systems are approximate, in part since they neglect the 
effects of structural mass, stiffness and damping on transient 
pressures in the contained liquid. Although a number of 
studies addressing this issue have appeared in the recent 
literature, and although significant gains have been realized, 
there remains a need to rigorously investigate all of the 
mechanisms by which properties of the pipe structure in­
fluence liquid transients and vice versa. 

In their attempts to more accurately couple fluid-structure 
interaction in piping systems, investigators have utilized 
several different methodologies. The conventional and most 
common means to represent the structural motion of the pip­
ing has been to employ finite element techniques, and the 
coupled liquid motion has been modeled either by finite 
elements or by the method of characteristics. Complete model­
ing has not yet been achieved from the viewpoint of correctly 
coupling the significant motions in both the piping and the li­
quid. This paper presents wave equations which account for 
the coupled motion of piping and contained liquid. A tech­
nique based on acoustic wave analysis allows explicit solution 
ol the system of equations. 

Wave Equations for Fluid-Structure Interaction 

1 he primary coupling mechanisms for fluid-structure in­
teraction in liquid-filled piping are: Poisson coupling, by 
which dynamic pressure and the resulting circumferential 
strain induce axial strain in the pipe wall; and junction coupl-
"|B. by which dynamic pressure exerts an axial resultant on 
Piping and, conversely, pipe motion generates changes in 
dynamic pressure. The former mechanism occurs throughout 
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the length of a pipe and the latter is associated with junctions 
where flow area or direction changes. 

A number of investigators [1-5] have identified axial stress 
waves in the pipe wall which are generated by the Poisson ef­
fect. In addition, a few others [6-8] have introduced shear, 
bending and torsion waves in the structural elements. Most 
notably, Wilkinson [6, 7] clearly shows the interaction be­
tween liquid and structure at pipe fittings and the manner in 
which the various waves are generated. His analytical tech­
niques were based on a frequency-domain formulation [6] or 
on a simplified wave approach [7], which impose limitations 
on the excitation function and complexity of the piping 
system. 

Fundamental Equations. Since liquid-filled piping systems 
are composed of slender components, their transient behavior 
can be described as one-dimensional wave phenomena. Con­
sider the prismatic liquid-filled pipe element shown in Fig. 1. 
It can transmit torsional waves in the pipe wall, transverse 
shear and bending waves in the pipe wall, and axial compres­
sion waves in both the pipe wall and the liquid. The equations 
to describe such motion are given below. 
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Fig. 1 Pipe element 
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1) Torsion in the pipe wall: 

M*-PpJRf = 0 

M]-GJRz
z=0 

2) Shear and bending in the y-z plane [9]: 

M*z~(PpIp+pfIf)Rl-Fy = 0 

M[-EIpR
x
z=0 

Fy-(PpAp+PfAf)U]=0 

Fy-GAp(Ul + Rx) = 0 

3) Shear and bending in the x-z plane [9]: 

My.-(ppip+Pfif)Ryt+p: = Q 

Ml-EIpR? = 0 

Fi-(ppAp+PfAf)U*=0 

Fx-GAp(U
x
z-R>') = 0 

4) Axial stress, pressure and velocities [1]: 

Pz+PfV, = 0 

K 
P,+K*Vz-2vK*Uz

z = 0; K*=-

1 + ^ ( 1 - ^ ) 

F*-ApEU\-

eE 

ApPpU* = 0 

rvA 
?-Pt = 0 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

The formulations are based on assumptions of linear 
elasticity, no buckling, cylindrical pipes, negligible radial iner­
tia, and low Mach number, i.e., small liquid velocity relative 
to acoustic velocity. Furthermore, it is understood that instan­
taneous pressures will remain above vapor pressure, so that no 
cavitation will occur, and that high-frequency lobar modes of 
the pipe are not excited by the dynamic interaction of the fluid 
and structure. 

Numerical Model 

Characteristic Equations. Equations (1)—(14) are hyper­
bolic partial differential equations and can be converted to or­
dinary differential equations by the method of characteristics 
transformation [10]. The method has been applied to 
Timoshenko beam theory by Leonard and Budiansky [11], 
and to axial coupled behavior for liquid-filled pipe by Otwell, 
Wiggert and Hatfield [1]. The complete set of characteristic 
and compatibility equations corresponding to equations 
(1)-(14) is given below. Equations 20 and 21 have been 
simplified by assuming that 

dMz dRz 

aPnJ = 0 
dt " dt 

dz 

dt 
= a= ±^G/pp 

dM* dRx ^ „ 

dt - = a= ± 
EI„ 

dF? 
-^—a(ppAp+PfAf) 

dlP 

dt GA»RX = ° 

dz 
-a= ± 

GAn 

PpAp + PfAf 

dM> dRy 

-r-a{ppIp+pfIf)— + aF* = Q 

dt 
- = «= ±J——-* 

^ PJ„ + 

dF* dU* 
— - a(PpAp + PSAS)— + GApRy = 0 

Pplp+Pflf 

It 

dz 
It - = a= ± 

GAn 

PpAp+pfAf 

dt 

dV a dP 
- + —. ^ + -

dP A dU* A dP 
--appAp—r 2vAf-^— = 0 dt dt 

dt' 
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(15a) 
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(166) 
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(196) 
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dt 

dF* 

dz 

dt 
= 0 

Pf 

dt 
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(21a) 

(2lb) 

N o m e n c l a t u r e 

A = 
a = 
B = 
E = 
e = 
F = 
G = 
H = 

I = 
J = 

cross-sectional area 
wave speed 
coefficients for equation (22) 
modulus of elasticity 
thickness of pipe wall 
force 
shear modulus of rigidity 
constant terms for equation 
(22) 
moment of inertia 
polar moment of inertia 

K 
M 
n 

P 
R 
r 
T 
U 
V 
P 
V 

bulk modulus of elasticity 
moment 
number of pipes meeting at 
junction 
pressure 
rotational velocity 
radius of pipe cross-section 
direction cosines 
velocity of pipe 
velocity of liquid 
mass density 
Poisson's ratio 

Superscripts 
x,y,z = principal directions 

T = matrix transposition 

Subscripts 
/ = fluid 
j = junction quantities in global 

coordinates 
p = pipe 
t = partial derivative with 

respect to time 
z = partial derivative with 

respect to axial direction. 
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M ire that distributed coupling takes place between shear and 
•̂ Milling parameters in the compatibility relations equations 
Mfitf) and (17a), and equations (18a) and (19a). An additional 
• milling occurs between the axial pipe stress and velocity and 
\\\c liquid pressure in Equations (20a) and (21a). 

Iloundary Conditions and Solution of System Equa­
tions. At the end of a given pipe element only one com­
patibility equation for a companion pair of variables is 
available for each adjoining pipe element. An additional equa­
tion in the form of a boundary condition is required. For ex­
ample, in Fig. 2, equation (15) is available along the positive 
characteristic for computation of the torque MP and the rota­
tional velocity Rz. If the end of the element is fixed against 
iwM. the boundary condition will be Rz = 0. 

A junction is a point where several pipe ends are connected 
so that flow, forces and moments can be transmitted from 
pine to pipe; the junction has no length or mass. At the junc­
tion of n prismatic pipes, 7(2n+ 1) equations can be formed 
which relate the continuity and equilibrium of the various 
displacements, pressures, forces and moments in the connect­
ing pipes at the junction. These relations are combined with 
the finite difference approximations derived from equations 
(I5)-(21), and by successive substitution a matrix equation 
wiili seven unknowns is developed: 

= £ ± m r [ f l ] [ n 

j 

it/;) 

^Rj>y 

+ '£±mTiH} 

(22) 

applied at every junction and boundary location. The five 
characteristic lines identified with each pipe reach are pro­
jected back in time to an opposite junction, and time-line in­
terpolations are utilized to obtain numerical values of the re­
quired parameters. With this scheme, two sources of error 
have been identified: numerical attenuation and phase changes 
due to the time-line interpolations [12], and inexact integra­
tion of the nondifferential shear and bending terms in the 
compatibility relations, Equations (16)-(19). 

Application 
The formulation is demonstrated for a system of three pipes 

directed orthogonally and connected in series as shown in Fig. 
3. The piping is made of copper with mitered bends and an in­
side diameter of 25 mm; each reach is 2 m long. The conveyed 
liquid is water, and damping is neglected in the fluid as well as 
in the pipe structure. The upstream end of the piping (location 
A) is restrained from motion and connects to a reservoir with 
static pressure. The piping is constrained at the downstream 
end (location D) by connection to a valve. The system is ex­
cited by closure of the valve; initially the velocity is 1.0 m/s 
and subsequently the velocity decreases linearly to zero in ap­
proximately 2.2 ms. It is assumed that the static pressure is of 
sufficient magnitude that dynamic pressures will not reach 
vapor pressure. 

Figures 4 through 6 are calculated responses to the valve 
closure excitation. In the figures, only the dynamic com­
ponents are shown; total pressures, forces and moments may 
be computed as the sum of steady-state - that is, static-and 
dynamic components. The maximum permissible time incre-

The vector [H] contains known quantities, including forces, 
moments, pressures and velocities for previous times. The 
contents of [B] are material properties and geometrical infor­
mation that are time invariant. At a junction, either velocity 
Vj or pressure Pj will be known and the other quantity 
unknown. Similarly, unknown external forces F, and 
moments MJt that is reactions, will correspond to known 
translation and rotational velocities. Equation (22) may be 
partitioned and solved by inverting a portion of t[T\T[B][T]. 
Inversion is performed only once for each junction, and is not 
required at each time step. 

The method of characteristics formulation provides three 
useful features: 1) the Poisson coupling (of equations (20) and 
(21)) is represented; 2) nonlinearities such as fluid friction and 
material damping can be represented by additional terms in 
the compatibility equations; and 3) nonlinear boundary condi­
tions such as pump trip, column separation, and external 
viscous or viscoelastic damping of pipe supports can be 
incorporated. 

In the developed numerical scheme, pipe segments may be 
subdivided into smaller reaches if necessary. Equation (22) is 
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Fig. 2 Boundary condition with characteristics grid 
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Fig. 3 Example piping 
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Fig. 4 Fluid pressures at bend (location C) and valve (location D) 
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Experimental 
Time Increment = 0.208 ms 

-0.2 
20. 40. 6 

Time (ms) 

Fig. 5 Pipe velocities in x and z directions at bend (location C) 

Time (ms) 

Fig. 6 Forces in x and z directions in pipe 3 at bend (location C) 

ment is computed as the pipe element length divided by the 
largest wave speed, i.e., 0.55 ms. 

The effects of Poisson and junction coupling are apparent 
in Figs. 4 and 5. When the valve begins to close, the pressure at 
D increases causing the pipe to dilate. Because of the Poisson 
effect, the dilation generates an axial force. This force prop­
agates through the pipe wall and reaches the bend at location 
C at the end of the first time interval, causing the bend to ac­
celerate in the positive x-direction. Because of junction cou­
pling, this motion causes as pressure rise at C, as well as mo­
tion in the positive z-direction. Pressure waves travel 2 m in 
three time intervals. In response to the primary pressure pulse, 
the motion of C in the ^-direction reverses at the end of the 
third time interval. At the end of the fourth interval, the 
secondary pressure induced by the motion of bend C reaches 
location D, causing the pressure there to continue to rise after 
the valve is completely closed. Figure 6 illustrates the axial 
force and transverse shear force in the z-direction for the end 
of pipe 3 at junction C. 

A second configuration of the piping shown in Fig. 3 is used 
to simulate the laboratory experiment described in Wiggert et 
al. [1]. Elbow B is constrained from motion and elbow C is 
free to move in the x-z plane. Pipe segments 1, 2 and 3 are 
respectively 28.0 m, 7.6 m, and 12.3 m in length. Significant 
structural motion is to be expected in segments 2 and 3. 
Predicted pressure at location D and predicted structural 
velocity in the x-direction at location C are presented along 
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Fig. 7 Predicted and experimental fluid pressure at valve (location D) 
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Fig. 8 Predicted and experimental structural velocity at bend (location 
C) 

with experimental data in Figs. 7 and 8, respectively. For the 
computation, the piping was divided into seven links: five for 
segment 1, one each for segments 2 and 3. A time increment of 
0.2081 ms was employed. 

The numerical model can be seen to predict the motion and 
pressure in an acceptable fashion. However, no significant 
shear and bending moments were developed in the experiment, 
so that the numerical model is not severely taxed with regard 
to accurately predicting those parameters. 

Summary and Conclusions 
Because piping systems are composed primarily of slender 

components, transient responses may be represented by one-
dimensional wave phenomena. Seven wave components must 
be considered: pressure in the liquid; and in the pipe material, 
axial compression, torsional shear, transverse shear in two or­
thogonal directions, and bending about the two transverse 
axes. For linearly elastic pipe material, torsion and transverse 
shear are not coupled, nor are bending and axial compression. 
The phenomenon of axial compression of liquid and pipe 
material consists of two distinct but coupled waves. 
Timoshenko beam theory [9] describes the interaction of 
transverse shear and bending of the pipe elements. The various 
independent wave mechanisms are coupled at pipe junctions. 

Propagation of the waves along a straight pipe may t>e 

described by finite difference equations derived from the 
method of characteristics. The combined system of difference 
equations for pipe elements and the junction boundary condi­
tions comprise a general mathematical tool for predicting the 
liquid pressure and pipe stress responses to transient excitation 
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of either liquid or piping. Two possible sources of error in the 
numerical solution scheme have been identified; additional 
development is necessary before the model can be used for ap­
plication to practical piping systems. Numerical examples are 
presented which do not predict significant shear and bending, 
and hence pose no problem numerically, but otherwise 
demonstrate relevant structural motion along with transient 
pressures and velocities in the contained liquid. Experimental 
data is used to partially verify the wave model. 
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