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We present solutions to the linear transport equation valid for 
monoenergetic particles interacting with a multiple scattering and 
absorbing layered medium possessing a general anisotropic internal 
source term. A new exponential-linear approximation to the internal 
source as a function of scattering depth is introduced and compared to 
approximations that vary linearly and quadratically in scattering depth. 
The prime merit of this new approximation is to provide a very efficient 
yet accurate solution to the linear transport equation by substantially 
reducing the spatial mesh size. Numerical results pertaining to (1 ) an 
embedded thermal source and (2) a rapidly varying beam pseudo- 
source demonstrate that the exponential-linear approximation is vastly 
superior both in speed and accuracy to a linear or quadratic approxima- 
tion. Potential applications include neutral (photon, neutron) or 
charged (electron, ion) particle transport as well as linearized gas 
dynamics. 0 1992 Academic Press. Inc 

1. INTRODUCTION 

Problems involving neutral or charged particle transport 
in a background medium and rarefied gas dynamics 
frequently require solutions of a linear transport equation 
derivable from the Boltzmann equation. Efficient techniques 
for solving the homogeneous version of this equation in 
slab geometry are discussed elsewhere. Here we focus on 
obtaining a reliable, efficient, and accurate particular 
solution in the presence of a general internal source term. In 
a variety of particle transport problems the particle distribu- 
tion functionf(r, p, t) varies with location (r), momentum 
(p) and time (t). For sufficiently dilute gases the temporal 
and spatial evolution of the particle distribution function is 
described by the Boltzmann equation: 

af ,+VAfv)+V,(fF)= &r, P, t), (1) 

where V, and V, are the gradient operators in configuration 
and momentum space, respectively. The particles may 
be subject to an external force F(r, p, t) and &r, p, t) 

represents the net source due to collisions and “true” 
production. The Boltzmann equation is generally non- 
linear; however, a large class of problems exists for which a 
linear transport equation derivable from (1) provides an 
adequate physical description. Such problems include 
neutral (photon, neutron) or charged (electron, ion) par- 
ticle interaction with a background medium (the “test- 
particle problem”) as well as linearized gas dynamics, cf., 
e.g., [l-9]. 

Depending on the physical problem of interest, different 
assumptions and approximations are invoked to derive a 
linear version of (1) and subsequently cast it into a form 
amenable to solution. Numerous numerical methods exist 
for solving the resulting integro-differential equation. Such 
methods usually invoke some discretization of space, 
momentum, and time. This discretization will give the 
source term an artificial step-function behavior that may 
introduce errors in the computed particle distribution func- 
tion if the variation in the source term within one space, 
momentum, or time-step is not properly accounted for. 

The accuracy of a purely numerical solution to the linear 
transport equation is generally expected to improve with the 
number of mesh points used to represent the independent 
variables while the computer time will generally increase. 
However, a “brute force” discretization of the transport 
equation may lead to a very large system of equations, 
which makes a solution impractical even on modern com- 
puters. For example, in the one-dimensional slab problem, 
a mesh size of 100 space points, 100 energy points, and 10 
angle points may be required to achieve the desired 
accuracy, but then a set of 10’ simultaneous algebraic equa- 
tions would have to be solved for each time step. Thus 
although it is usually desirable to achieve both high 
accuracy and high computational speed these two goals 
may seem to be mutually exclusive or incompatible. In view 
of this we may state that the general aim of this paper is to 
use a combination of analytical and numerical techniques to 
arrive at a solution to the linear transport equation in the 
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presence of embedded sources that requires a minimum of 
spatial mesh points and is both accurate and computa- 
tionally efIicient. 

In the following we consider the steady state, linear trans- 
port equation valid for a general anisotropic source of par- 
ticles embedded in a plane parallel medium represented by 
a horizontal slab so that spatial variation occurs only in the 
vertical direction. To account for the vertical inhomogeneity 
of the medium as well as the spatial variation of the internal 
source it is common to divide the slab into a number of 
layers. This number should be large enough that each of 
these layers is homogeneous in the sense that the scat- 
tering/absorption coefftcients may be regarded as constant 
within the layer. Then the accuracy of the solution depends 
mainly on how well the spatial variation of the internal 
source across each layer is approximated. 

To quantify the errors incurred by invoking different 
schemes of approximation, we present numerical results 
pertaining to radiation transport for thermal emission of 
radiation in a scattering and absorbing layered medium. 
This choice is motivated by the following observations: 

1. The source is given by the Planck function which has 
an analytical form that is easy to work with, and the 
spatial variation is determined by simply specifying the 
temperature gradient across the slab. 

2. Evaluation of the Planck function in different spectral 
regions provides a source term that varies both slowly and 
rapidly in space. Thus for hv < kT (Rayleigh-Jeans limit) 
the Planck function becomes 

2v’kT 
B,,(T) = 7, 

while for hv 4 kT (Wien limit), we have 

j B,(T) dv = $ s v3ephvikT dv c 7 kTeeh’lkT + const, 

(3) 

and integrated over the whole spectrum, we have the 
Stefan-Boltzmann law 

B(T) = aT4. (4) 

Here 0 is the Stefan-Boltzmann constant, k is the 
Boltzmann constant, h is the Planck constant, and c is the 
speed of light. Furthermore, T is the temperature and v the 
frequency. Assuming that the temperature T varies linearly 
with r we thus have an internal source that, depending on 
the spectral region in question, exhibit very different 
behavior, e.g., linear with z in the Rayleigh-Jeans limit, as a 
fourth-order polynomial in t for the Stefan-Boltzmann law, 
and exponential-linear in r in the Wien limit. 

3. We expect the numerical examples to provide a good 
indication of the general validity and performance of the 
various approximation methods to be tested. 

The Planck function yields an isotropic internal source. 
To investigate how the different approximations work for 
anisotropic sources we present results for a rapidly varying 
beam pseudo-source in a scattering and absorbing medium. 

An efficient and common way of solving energy or 
velocity dependent linear transport problems is based on 
the so-called multi-group procedure in which the integra- 
tion over energy (or momentum) is reduced to solving a 
series of monoenergetic (or one group) problems [S]. The 
form of the equation is identical for the various energies; the 
difference lies essentially in the source term representing the 
action of collisions and “true” embedded sources. Thus it 
suffices to focus on the monoenergetic equation below. 

2. LINEAR TRANSPORT IN MULTIPLE SCATTERING 
AND ABSORBING MEDIA WITH EMBEDDED SOURCES 

In a steady-state situation with no external forces the 
transport equation for monoenergetic particles in a plane 
parallel medium can be written in the form, e.g. [S, 191, 

where completely incoherent scattering is assumed. Here 
u(r, p, 4) is the intensity of particles at scattering depth r 
moving in the direction 4 (azimuthal angle) and p, where p 
is the cosine of the polar angle (p = cos 0); w(z) is the single 
scattering albedo, P(r, p, $; p’, 4’) is the phase function, and 
Q(r, p, 4) is the gain due to collisions resulting in an energy 
change and “true” production, hereafter referred to simply 
as the source term. The first term on the right side is due to 
particle extinction while the second integral term is due to 
multiple angular scattering (no change in energy). The 
azimuthal dependence is usually forced upon us by an inci- 
dent monodirectional beam. It can be dealt with efficiently 
by expanding the intensity in a Fourier cosine series as 
explained in Refs. [3, 101. This leads to a series of inde- 
pendent equations, one for each Fourier component, but all 
of a form identical to the azimuthally averaged version of 
Eq. (5). Thus, below we will consider only the azimuthally 
averaged equation. 

Using the discrete-ordinate method as outlined in [lo], 
the azimuthally averaged version of the integro-differential 
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equation (5), is approximated by a system of 2N coupled 
ordinary differential equations, 

-Q(7,~i), - ,- i = +l +2, . . . . +_N, (6) 

where w, is the quadrature weight and the coefficient 
D(7, pi, pj) depends on the phase function and the single 
scattering albedo. The solution of the homogeneous version 
of Eq. (6) has been presented and discussed in detail else- 
where [lo] and needs no further elaboration. Here we focus 
on finding an accurate, reliable, and efficient particular 
solution. 

To allow for a source term that may exhibit both rapid 
and slow variation with z (exemplified by the Planck func- 
tion as discussed in the introduction) we approximate the 
source term by an exponential-polynomial function 

Q(r, p) = eear 2 X,(p) 7’. 

I=0 
(7) 

Insertion of (7) into (6) yields 

du(7, Pi) 
Pip dz 

=“(7, Pi)- 2 w,jD(7, Pi3 Pj) u(7, Pj) 
/= -N 

j#O 

K 

(8) 

We proceed by seeking a particular solution to (8) of the 
form 

UpC7, Pi) = e-“’ f y,(Pi) 7’~ (9) 
I=0 

where the Y,(pi)‘s are coefficients 
Substitution of (9) into (8) gives 

N 

to be determined. 

C {~ij(l+~Pi)-WjD(~, Pi, P-j)} yK(~ji)=xK(~;) (10) 
j= -N 

I++0 

F {6i,(1 + crPt)P wjD(r9 PJ2 Pj)} yI(Pj) 
j= -N 

j#O 

=Pi(l+ I) yI+1(Pz)+x,(P;)3 

l=K-1, K-2 ,..., 0, (11) 

which is a system of linear algebraic equations determining 
the Y,(pi)‘s. 

The general solution to Eq. (8) may then be written as 

47, pi) = 2 CjGj(pi) e’Q’ + e-“’ i: yI(Pi) 7’, (12) 
j= -N /=O 

i#O 

where the first sum on the right side is the solution 
homogeneous equation (see Ref. [lo] for details). 

2.1. Determination of the Coefficient a and X,(p) 

of the 

Different methods may be used to calculate c( and the 
XI(p) coefficients in Eq. (7) for a given source. In the 
colocation approach the approximated source is required to 
equal the known source at certain points in the layer. 
Another approach is to enforce particle conservation by 
requiring 

Yet another approach related to the colocation method is to 
use fitting (e.g., a non-linear least-squares fit) to find the 
values of a and X,(p), yielding an approximated source that 
most closely resembles the actual source Q(7, p). 

Both the conservation and the fitting method require 
some iteration to find the coefficients and is therefore in 
general expected to be slower than the colocation procedure 
for which analytic expression may be derived for the a and 
X,(p) coefficients, regardless of the shape of the source. 
Since we are concerned about both speed and accuracy as 
well as ease of implementation, we choose to use the coloca- 
tion procedure. From numerous applications of this proce- 
dure to solve neutral particle transport problems using a 
multi-group method, it has been verified that particle 
conservation is fulfilled [ 193. 

If external forces, F(r, p, t), or spherical geometry in 
Eq. (1 ), are important for the particular problem in ques- 
tion, then derivatives of the distribution function with 
respect to p, the cosine of the polar angle, are required. The 
derivatives can be reliably calculated by evaluating the dis- 
tribution function at two nearby angles, [ 151 and 0. 
Lie-Svendsen (private communication, 199 1). The present 
approach allows us to compute distribution functions at 
arbitrary angles and optical depths; see Appendix A. 

3. NUMERICAL RESULTS 

The accuracy of the approximation to the source term (7) 
will depend upon the choice of K and a. To examine the 
accuracy of different approximations we use thermal radia- 
tion in a scattering, absorbing, and emitting layered 
medium in local thermodynamic equilibrium, and a rapidly 
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varying beam pseudo-source in a scattering and absorbing 
medium as convenient examples. 

The discrete ordinate method [lo] was used to solve the 
radiative transfer equation for a highly absorbing medium 
(o = 0.1) and a medium with little absorption (o = 0.95). 
The phase function was taken to be the Heyney-Greenstein 
function [16] with asymmetry factor g = 0.05 (nearly 
isotropic scattering) for o =O.l and g=O.75 (forward 
scattering) for o = 0.95. All computations were done in the 
16-stream approximation (2N= 16, double Gaussian 
quadrature). Both optically thin and thick media were 
considered. The modifications to the theory given in [lo], 
necessary to accomodate the quadratic and the exponential- 
linear approximations are provided in Section 2 and in the 
appendices. 

For the Planck source the temperature was assumed to 
vary linearly across the layer and we compared the accuracy 
of fluxes and intensities incurred in different approxima- 
tions. For the monodirectional beam pseudo-source we 
computed mean diffuse intensities for a single homogeneous 
layer. Depending on the angle of incidence of the beam this 
gives rise to an internal source that varies exponentially or 
less rapidly across the layer. The benchmark results used for 
checking the accuracy of the single layer results produced by 
subdividing this single layer into a large number of sub- 
layers (50-100) to ensure convergence. The results of these 
comparisons are summarized below. 

3.1. Thermal Radiation as an Internal Source 

In previous works, [3, 11, 12, 133, the radiative transfer 
equation (5) has been solved with a linear-in-depth 
approximation of the Planck function, i.e., u = 0 and K= 1 
in (7). A linear approximation to the total source including 
the multiple scattering term in Eq. (5) has been considered 
in the neutron-transport context [ 141. The errors incurred 
by approximating B[T(T)] as a linear function in T 

have been studied in Refs. [12, 131. In the following we 
demonstrate the improvements obtained by invoking the 
quadratic (K= 2, a = 0 in (15)) and, in particular, the 
exponential-linear-in-depth (K = 1, c1# 0) approximations. 
The different approximations are compared for a 
homogeneous slab represented by a single layer with a 
specified temperature gradient. For simplicity we will 
assume that the temperature varies linearly across the layer 
in all examples to be considered below. This is a reasonable 
assumption for a medium in thermodynamic equilibrium 
[ 123. Furthermore, it allows the Planck function to be 
evaluated at layer boundaries as well as arbitrary interior 
points as needed in the comparisons. A multilayer isother- 
mal (K= 0, cc = 0 in (15)) calculation in which the tem- 
perature was allowed to vary from layer to layer, serves as 
a benchmark since this solution will converge to the correct 
result if a sufficiently large number of layers is utilized. 

\ 
300 \ 

0 10 20 30 40 50 60 70 80 

Planck function B[T(7)] (W/m’) 

FIG. 1. The Planck function integrated over the spectral range 
3OfHOO cm-‘, giving approximately a T“ dependence (solid line) and the 
different approximations to it: isothermal (dotted line), and linear (dashed 
line). Both the quadratic and the exponential-linear approximations are 
indistinguishable from the Planck function itself. 

Three different spectral regions giving rise to the Stefan- 
Boltzmann law, the Rayleigh-Jeans limit and the Wien limit 
are considered. In Fig. 1 we show the Planck function 
integrated over the entire spectrum and in Fig. 2 it is 
integrated over a small wavelength region in the Wien limit 
(hv B kT). The different approximations to the source are 
also shown. In the Rayleigh-Jeans limit (hv+kT), the 
source varies linearly with temperature and therefore with 
depth, Eq. (2). 

For photon transport the source term for a medium in 
local thermodynamic equilibrium is [ 31 

Q(T, 14 4) = Q(T) = cl -W(T)] B[T(T)I. (14) 

200 i ““““I ” ” ” ” I ” ” ” \ \ \ \ 

Planck function B[T(T)] (W/m’) 

FIG. 2. The Planck function integrated over a narrow frequency range 
in the Wien limit (2702.99-2703.01 cm-‘). The solid line represents the 
Planck function, and the different approximations to it are the isothermal 
(dotted line), linear (&shed line), the quadratic (dash-dotted line), and the 
exponential-linear (dash-dashed line). 
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The Planck source 
approximated by 

term B[T] is isotropic and may be 

K 

B[T(z)] = ec” C b,r’, 
I=0 

(15) 

according to (7). We thus seek a particular solution of the 
form 

up(z, pi) = (1 - W(t)) epar ,go YM d (16) 

implying that the Y,(p) coefficients are determined by 
solvingEqs. (lOk(ll)withX,(~~)=(l-~)b!. 

Integrating the Planck function over the entire spectral 
range we obtain the Stefan-Boltzmann law equation (4) 
which is applicable to gray media. We actually integrated 
over the wavenumber region 300-800 cm-’ which covers 
the major part of the Planck function for terrestrial 
temperatures. The quadratic and exponential-linear 

approximations both agree very well with the Planck func- 
tion for this case, as illustrated in Fig. 1. In Table I we com- 
pare fluxes in the Stefan-Boltzmann limit resulting from 
the isothermal, linear, quadratic, and exponential-linear 
approximations for a temperature difference AT = 100 K 
across a single layer slab, with “correct” results obtained by 
subdividing the slab into 100 layers. As shown previously 
[ 121, the linear approximation is adequate for small 
temperature gradients, whereas for large temperature 
gradients, Table I, the quadratic and the exponential-linear 
approximation give the best results, as expected. 

The energy deposition rate is proportional to the 
divergence of the net flux and plays an important role in a 
variety of problems. We calculate the net flux divergence by 
taking the difference between the mean intensity and the 
Planck function 

rw= (1 -o(r))(l(z)-B[T(z)]}. 
47c dr (17) 

TABLE I 

Sensitivity and Accuracy Comparison of Flux Computation for Thermal Emission in the Wavenumber Region 30&800 cm-’ with 
Various r for w  = 0.1 and g = 0.05 (in Parentheses for w  = 0.75 and g = 0.95) in a Layer with Temperature 200 K at the Top and 300 K 
at the Bottom 

(a) Flux divergence in layer (Net flux top - Net flux bottom) ( W/m2) 

Exponential-linear Quadratic Linear Isothermal 

r 1 layer 100 layers 

- 39.834 0.0% -39.837 0.0% -42.493 6.7% - 38.490 -3.4% -39.839 
0.1 ( - 2.574) 0.0% (-2.562) 0.1% ( - 2.746) 6.6 % ( - 2.488) -3.4% (-2.575) 

- 195.320 0.0 % - 195.335 0.0 % - 207.497 6.2 % - 187.947 -3.8% - 195.348 
1.0 (-24.133) 0.0% (-24.134) 0.0 % (-25.747) 6.7% (-23.321) -3.4% (-24.135) 

- 265.766 0.0% -265.785 0.0 % -271.814 2.3 % - 246.205 -7.4% -265.788 
10.0 (- 136.613) 0.0% (- 136.623) 0.0% (- 145.074) 6.2 % (-131.406) -3.8% (- 136.632) 

-271.111 0.1% -271.114 0.1% -271.817 0.3 % - 246.207 -9.1 % -270.983 
100.0 (-172.104) 0.0 % (- 172.114) 0.0 % (-175.041) 1.7% ( - 158.550) -7.9% (-172.113) 

5 

0.1 

Exponential-linear 

19.274 0.0% 
(1.264) 0.0% 

(b) Upward flux at the top (W/m’) 

Quadratic Linear 

1 layer 

19.272 0.0% 20.600 6.9 % 
(1.262) -0.2% (1.351) 6.9 % 

19.245 
(1.244) 

Isothermal 

100 layers 

-0.1% 19.271 
-1.5% (1.264) 

80.298 0.2% 80.212 0.1% 86.294 7.7 % 93.974 17.2% 80.164 
1.0 (11.322) 0.0 % (11.319) 0.0% (12.125) 7.1 % (11.661) 3.0% (11.317) 

64.001 0.4% 63.817 0.1% 66.832 4.9% 123.103 93.2 % 63.725 
10.0 (53.122) 0.2 % (53.045) 0.1% (57.271) 8.1% (65.703) 24.0% (53.001) 

56.444 -0.2% 56.415 -0.2% 56.767 0.4 % 123.104 117.7% 56.541 
100.0 (39.569) 0.4% (39.470) 0.1% (40.933) 3.8 % (79.275) 101.1% (39.423) 
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Figure 3 shows the relative error in the right-hand side of 
(17) that results from the isothermal, linear, quadratic, and 
exponential-linear approximations to the Planck-function 
in the Stefan-Boltzmann limit. Again a lOO-layer calcula- 
tion served as the benchmark. Clearly the quadratic and the 
exponential-linear approximations work very well, whereas 
the errors for the isothermal and linear approximations are 
substantial. 

The exponential-linear behavior of the Planck function in 
the Wien limit, cf. Eq. (3) is fitted nicely by the exponential- 
linear approximation, whereas the isothermal, linear, and 
quadratic approximations all fail (see Fig. 2). In Table II 
we give the upward (p = 1) and downward (p = -1) 
intensities for the Planck function integrated over the 
wavenumber interval 2702.99-2703.01 cm Pi ( z 3.7pm, the 
bandpass center of one of the channels on the AVHRR 
(advanced very high resolution radiometer) instrument 

3oot ,I,,’ ,.., I .,,, I .,,1 I .,,, I !  ,,I, 
Ii ,:’ 

I 

-50 -40 -30 -20 -10 0 10 20 30 40 50 
Relative error in flux divergence (X) 

Fig. 3. The relative errors in the flux divergence for the Stefan- 
Boltzmann case for a temperature gradient of A = 100 K across the layer 
for g = 0.75 and w = 0.95. 

TABLE II 

Upward and Downward Intensities for the Wavenumber Region 2702.99-2703.01 cn-’ (Wien limit) for a Layer with 
Temperature 200 K at the Top and 300 K at the Bottom. 

(a) Upward intensity (p = 1) at top (lo-‘W/m*ster) 

Exponential-linear Quadratic Linear Isothermal 

7 1 layer 50 layers 

1.802 -4.1% 1.990 6.0% 4.703 150.0% 0.714 -62.0% 1.878 
0.1 (0.111) -4.0% (0.121) 5.2% (2.844) 2400.0 % (0.042) -63.1% (0.115) 

9.266 -3.8% 9.410 -2.3% 28.04 200.0% 4.971 -48.4% 9.631 
1.0 (1.264) -4.1% ( 1.402) 6.4 % (3.330) 150.0% (0.502) -61.9% (1.318) 

0.817 13.1% -3.820 -630.0% 11.27 1460.0% 8.081 100.0% 0.723 
10.0 (6.131) -3.3% (5.292) - 16.6% (23.39) 270.0 % (4.699) -25.9% (6.343) 

0.194 2.3% -0.581 -400.0% 28.04 14700.0 % 8.082 4160.0% 0.190 
100.0 (0.282) 18.5% (-2.264) - 1050.0 % (4.631) 1850.0% (5.933) 2400.0% (0.238) 

(b) Downward intensity (p = -1) at bottom ( 10-6W/m2ster) 

Exponential-linear Quadratic Linear Isothermal 

7 1 layer 50 layers 

0.192 -1.4% 0.215 7.4% 0.486 143.0% 0.071 -64.3% 0.200 
0.1 (0.011) -4.1% (0.013) 13.3% (0.028) 146.8 % (0.004) -63.1 % (0.012) 

1.707 -4.2% 1.987 11.6% 
1.0 (0.131) -4.1% (0.146) 7.0 % 

7.151 -3.2% 8.182 10.8% 

10.0 (1.779) -4.5 % (2.141) 15.0% 

10.28 0.1% 10.50 2.2% 
100.0 (6.166) -2.6% (6.790) 7.3 % 

Note. Single scattering albe.do and asymmetry factor as in Table I. 

3.850 116.2% 0.497 -72.1 % 1.781 
(0.339) 148.4% (0.050) -632% (0.136) 

9.691 31.2% 0.808 -89.1% 7.388 
(3.951) 110.0 % (0.470) - 74.8 % (1.862) 

3.850 -62.5% 0.808 -92.1% 10.27 
(7.480) 18.2% (0.593) -90.6% (6.329) 
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flown on the NOAA TIROS satellite), as calculated by the 
different approximations. As expected from Fig. 2, only 
the exponential-linear approximation comes close to the 
“correct” multilayer result. The quadratic approximation 
even gives negative (unphysical) upward intensities for a 
highly absorbing atmosphere, see Table II. This is readily 
understood by examining Fig. 2. 

Finally, in the Rayleigh-Jeans limit, cf. Eq. (2), the 
Planck function exhibits a linear in T(t) dependence. All 
approximations work well in this limit, except the isother- 
mal one which may be off by as much as 20% for optical 
thicknesses greater than 10. 

3.2. The Monodirectional Beam Pseudo-Source 

To demonstrate how the exponential-linear approxima- 
tion works for anisotropic sources we consider the example 
of a direct beam incident on a scattering and absorbing 
medium. To handle a monodirectional incident beam it is 
common to use the diffuse-direct radiation splitting proce- 
dure [3]. In slab geometry this leaves us with an equation 
for the diffuse radiation of the form identical to Eq. (6) with 

(18) 

where I, is the intensity of the incoming beam, P(p, p,,) is 
the azimuthally averaged phase function, and pLg is the 
cosine of the angle of incidence. This source term has an 
exact exponential behavior and may be solved analytically 
[lo]. (We have verified that our exponential-linear 
approximation yields results that are identical to the 
analytic solution as required when Eq. (18) is used.) In 
spherical geometry the argument of the exponential in 
Eq. (18) is replaced by a more slowly varying function, 
generically referred to as the Chapman function ch(r, pO) 
II1512 

Q(t, p) =T P(p, p,,) ZOe-ch(‘,po). 

b 

(19) 

As long as p0 > 0, solution of the multiple scattering 
problem in slab geometry yields sufficient accuracy for 
many applications, provided the primary scattering driving 
term, Eq. (19) is computed correctly using spherical 
geometry [ 151. 

Previous attempts [ 151 to approximate the pseudo- 
source term given by Eq. (19) with a sum of exponential 
functions (one for each layer in a multi-layered medium) 
did not yield satisfactory results. A purely exponential 
approximation reproduces the actual source at one point in 
the layer and will be very sensitive to the chosen point. A 
linear-in-optical depth approximation reproduces the 
source at layer boundaries and yields adequate results if the 
scattering depth of any layer is not too large [ 153. For layers 
with a large scattering depth, a linear function is a rather 
poor approximation to a very rapidly varying function. The 
exponential-linear approximation resembles the actual 
source term much better as illustrated in Figs. 4 and 5. 

Figures 4 and 5 also give the diffuse radiation as governed 
by Eqs. (6) and (19) for beam angles of 70” (Fig. 4), and 85” 
(Fig. 5). At 70” the curvature effects are small and the beam 
pseudo-source has essentially an exponential behavior 
which is nicely fitted with the exponential-linear approxima- 
tion. The linear approximation gives unacceptably large 
errors, even for a medium with moderate scattering depth, 
z = 1.0. For 85”, curvature effects come into play and the 
beam pseudo-source falls off more slowly with optical depth 
than in a plane parallel medium. In this case the exponen- 
tial-linear approximation overestimates the diffuse radia- 
tion by about 15 %. But this is still much better than the 
linear approximation which overestimates the diffuse 
radiation by several hundred percent. We also investigated 
similar examples for a scattering depth of t = 10.0. The 
exponential-linear approximation behaves well for angles 
where curvature effects are negligible, but was off by 
50-100% for large angles of incidence. The linear 
approximation overestimated the diffuse radiation by 
several orders of magnitude for large scattering depths. 

0.0 0.2 0.4 0.6 0.8 1 .o 0.0 0.2 0.4 0.6 0.8 1 .o 0 102030405060706090100 
The beam pseudo-source Diffuse meon intensity Relotive error (Z) 

Fig. 4. (a) The beam pseudo-source for B = arc cos p,, = 70” (solid line) and the linear (dashed line) and the exponential-linear (dash-dashed 
approximations to it. (b) The mean diffuse intensity, arbitrary units. (c) The relative error for the different approximations. 
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0.0 0.2 0.4 0.6 0.0 1 .o 0.0 0.2 0.4 0.6 0.8 1 .o 
The beam pseudo-source Diffuse meon intensity 

Fig. 5. Same as Fig. 4, but for 0 = arc cos p,, = 85”. Note that in (c) the error for the linear 

0 102030405060708090100 
Relotive error (%) 

approximation is so large that it is off the graph. 

3.3. Summary of Results 

For thermal radiation we find that in the case of the 
Stefan-Boltzmann law the quadratic and the exponential- 
linear approximations give the smallest errors in boundary 
fluxes and intensities as well as energy deposition rates, for 
both small and large temperature gradients. The improve- 
ment from an isothermal to a linear approximation is 
already substantial in this case for as small a temperature 
difference as 10 K. There is little to gain with the quadratic 
or the exponential-linear approximation for small tempera- 
ture gradients. However, for large temperature gradients the 
quadratic and the exponential-linear approximations both 
give good results, whereas the linear approximation tends to 
overestimate the boundary fluxes and intensities and under- 
estimate energy deposition rates. The Rayleigh-Jeans limit 
is nicely approximated by all but the isothermal method, 
whereas only the exponential-linear approximation works 
well in the Wien limit. 

As expected, the monodirectional beam pseudo-source is 
nicely fitted by the exponential-linear approximation for 
beam angles where curvature effects are small or can be 
neglected. When curvature effects become large the 
exponential-linear approximation gives increasingly larger 
errors with increasing scattering depths. The errors may be 
removed by increasing the number of layers. The linear 
approximation gives unacceptably large errors for any angle 
and even for moderate scattering depths. 

All the computations were done in single precision on a 
32-bit computer (VAX 8800). The increase in run time of 
the quadratic and the exponential-linear over the linear 
approximation is negligible. In fact, the run time will in 
general decrease substantially as fewer layers will be 
necessary to obtain the same level of accuracy. 

4. DISCUSSION 

In many circumstances the internal source will be known 
only at the computational mesh points chosen to obtain a 

numerical solution to Eq. (5). Thus, in most practical 
applications we are likely to know the term Q(r,, ,u~) in 
Eq. (5) only for a set of discrete values rk with k = 1,2, . . . . L 
and pi with i = tl, -&2, . . . . +_N. The functional behavior of 
Q(r, p) between any of these grid points may not in general 
be available. Focusing on how to obtain an optimal 
approximation of the spatial variation of the source term Q, 
we see that the linear approximation may be the best we can 
do if nothing is known about the behavior of Q in the inter- 
val z k- 1 <z < tk, k = 1, 2, . . . . L. 

The computational examples given in Section 3 illustrate 
however, that if we know the source term at one additional 
point (say mid-point) in each layer rk-, < r < rk, then the 
quadratic and exponential-linear approximations offer 
distinct advantages. If a general-purpose particle transport 
code such as that described in [lo] is used to provide solu- 
tions, there will be no problem in generating the internal 
source term at depths other than the computational mesh 
points (as needed in the exponential-linear approximation), 
because that code allows for the distribution function to be 
computed at arbitrary depths. 

To investigate the different approximations, we have used 
the Planck function in our numerical demonstrations 
mainly because its analytical form allows us to compute the 
source term at arbitrary interior points for a given tem- 
perature variation. Applications of the Planck function in 
different spectral ranges also allows us to explore the perfor- 
mance of the various approximations for sources that vary 
both rapidly (Stefan-Boltzmann law and Wien limit) and 
slowly (Rayleigh-Jeans limit) with depth. Thus, while the 
Planck function was chosen merely as a convenient analytic 
tool for testing the accuracy of the various approximations 
and the beam pseudo-source was chosen to demonstrate 
that the exponential-linear approximation works well also 
for anisotropic sources, we expect the numerical examples 
given in this paper to provide a good indication of the per- 
formance of these approximations in general, at least for 
sources that vary monotonically in each layer of the slab. 
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For particle transport driven by boundary sources, the 
internal source term may be due to internal production of 
secondary or energy degraded particles. In this case the 
internal source is expected to have a rapid, near-exponential 
variation with depth, and we anticipate the exponential- 
linear approximation to work well. Furthermore, large 
(essentially semi-infinite) scattering depths are a common 
occurrence in many particle transport problems. Under 
such circumstances the exponential-linear approximation 
becomes extremely valuable. In fact, a linear approximation 
may become impractical due to the large mesh size required 
to obtain reasonable accuracy. 

The exponential-linear approximation is routinely used 
by the authors in a variety of radiative transfer calculations 
including twilight conditions and has proven to be more 
accurate than the linear approximation [ 15). The method 
is also used in neutral particle transport calculations [19] 
and has been found to be both more accurate and computa- 
tionally more efficient than the linear approximation. This 
is a matter of some practical importance because iterations 
are frequently used to solve particle transport problems 
when “upscattering” occurs, i.e., test particle thermalization 
problems and problems where forces are present [S, 191. 
Such iterations typically require repeated solutions of the 
transport equation, implying that an efficient solution is 
indeed very desirable [19]. Finally, improved energy 
conservation has been achieved by using the exponential- 
linear instead of the linear approximation in electron 
transport calculations (D. Lummerzheim 1991, private 
communication). 

5. CONCLUSION 

The transport equation for monoenergetic particles has 
been solved for a general anisotropic, spatially varying 
source term in slab geometry. Numerical examples pertinent 
for thermal radiation in a scattering, absorbing, and 
emitting medium as well as for a monodirectional beam 
pseudo-source in a scattering and absorbing medium, are 
used to illustrate the errors incurred by invoking different 
approximations to the source term in the transport equa- 
tion. A new exponential-linear in-depth approximation to 
the internal source is found to provide both high accuracy 
and computational efficiency for a variety of circumstances 
likely to be encountered in practice, including steep 
gradients in the source and large scattering depths for which 
a linear approximation becomes impractical due to the large 
spatial mesh size required to obtain adequate accuracy. 

Specific examples including internal sources that vary 
slowly as well as rapidly with depth indicate that this 
approximation will, in general, provide adequate accuracy 
for most practical applications. In particular, the exponen- 
tial-linear approximation yields very accurate intensities, 

581/102/2-4 

fluxes, and energy deposition rates in the presence of large 
gradients in the source term which may be imposed by the 
physics of the problem or else by our desire to use large 
increments in spatial step size to save computer time. 

The numerical code is stable, computationally efficient, 
and lends itself readily to the solution of a variety of physical 
problems including neutral and charged particle transport 
as well as linearized gas dynamics. A computer code for 
solving the thermal radiation problem (with the Planck 
function as an internal source) using the exponential-linear 
approximation is available to interested users [ 10, 171. 

APPENDIX A: ANGULAR DISTRIBUTIONS AND 

THE b, COEFFICIENTS 

To calculate the intensities given in Tables I and II and 
Figs. 335 the theory outlined in [lo] had to be modified. 
The changes necessary for the quadratic and the exponen- 
tial-linear approximations are given below. 

A.l. The Polynomial In-depth Approximation 

Approximating the source by a polynomial, c( = 0 in 
Eq. (15), gives K linear equations to solve for the b, coef- 
ficients. Analytic solutions to these equations are preferred 
as we then can easily calculate intensities at any depth and 
angle, using the interpolating scheme outlined in [ 10). The 
extensions necessary to the theory outlined in [lo] are 
given for the quadratic-in-depth approximation below. 

A.l.l. The b, coefficients for K= 2, c1= 0. To evaluate 
the b, coefficients in (15), three equations are needed for the 
three coefficients b,, b, , and b, for each layer. Knowing the 
temperature at layer interfaces (T(7,) and T(t,)) we may 
write 

B,=B[T(z,)]=b,+b,r,+b,t; (20) 

B,=B[T(t,)]=b,+b,q+b,r; (21) 
2 B,=B[T(t,)]=b,+b,z,+b,r,, (22) 

where rO, ti, and rz are the optical depths at the top, center, 
and bottom of the layer, respectively. Assuming that 
T(T,)=(T(T,)+ T(z,))/2 and r1 =(r,+r,)/2, we readily 
solve (20)-(22) to yield 

b, = 
;B,-B,+fB, 

$ (72-%J2 

&--Bo b,=------ bdT2 + 70) 
T2-To 

2 b,=B,-b,z,-b,z,. 

(23) 

(24) 

(25) 
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A. 1.2. Angular distributions. The radiative transfer 
equation is solved for K= 2 following [lo]. By using the 
interpolation technique discussed in [ 1 S] the intensities 
may be calculated at any angle and depth. For the quadratic 
approximation the upward intensity is given by (see 
Eq. (25) in [lo]) 

~~(7, -P) = 40, -14) ewC -~/PI + 
Go,( -P) 

1 - P/PO 
&A7, -PI 

where 

E+jn(T, -PI = expC - (kjn AT, + 87/p] 

-expC-(7-7n-IY,4 (34) 

F,,(7,-~)=exp(-67/~L-expC-(7-7,-,)/~1 (35) 

Fd7, -PL) = (7, - PL) ew( - WPL) 

-(7,-,-~L)expC-(7-7,~,)/~1 (36) 

F2J7, -PI = (7: - 3.47, + 2~‘) exp( -67/p) 

+-,--w-,+&~) 

xexp[-(7-7,-,)/~1 (37) 

with 67=7-z, for n<p and 67=0 for n=p, AT,= 

7,--z,-I forn<pandAr,=t-rz,-,forn=p, 

E~J,(7,-~)=exp[-(7-z,)/~l 

-exp{ - Ckjn(Trz-7n-1) 

+(7-7nPIYPlI (38) 

for n < p and 

where 

+ V,A +P) Fh(7, +P) + VhFh(7, +p)l > 

(26) 

E-jn(T, +,u) =exp[ - (ki, AZ, - 67/p] 

-ewt-(~,,-7)/~1 (27) 

F,,(7,+~L)=exp(-67/~1)-expC-(7,-7)/~1 (28) 

F’ln(7r +PL) = (tnpl + PL) exp( -67/p) 

- (7, + P) ewC - (tn - 7)hl (29) 

Fd7, +P) = (75-, + 2~7,~ 1 + 2p*) exp( -67/p) 

-(7~+2~7,+2~2)expC-(7,-7)l~l (30) 

with cS7=7,,_,-7 for n>p and 67=0 for n=p, AZ,= 
7, - t,_ r for n > p and AT, = 7p - 7 for n = p, 

E+jn(r, +P)=~w-(T, - l-7)/~] 

- exp{ - [Ik,,(T, - 7,- I) - (7 - 7Jl~l> 

(31) 

for n > p and 

E+,(T, +p)=exP[-kj,(r-r,- 111 

- exP{ - [I&& - 7p- 1) + (7p-7)/Pi>. 

(32) 

E~,(7,-~)=expC-k,,(7,-7)1 

-exp{-Ckj~(7,-7,~,)+(7-7,~,)ICLl} 

(39) 

V,(P)= c WiD(P, Pi) YI(P~) + (1-m) b,, 
I= --N 
i#O 

1=2, 1,o. (40) 

A.2. The Exponential-Polynomial Approximation 

For a # 0, Eq. (7) is a set of non-linear equations deter- 
mining a and the X,(p) coeffkients. This set of equations 
may not be readily solved for any value of K by analytical 
methods. However, for K d 3 analytic solutions exist. For 

For the downward intensity (Eq. (26) in [lo]), we find K = 1 we have the exponential-linear approximation. 
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A.3. The hl Coefficients for K = 1, c( # 0 

Knowing the internal source Qi for each layer at the top, 
center, and bottom we obtain three equations to solve for 
the three unknown coefficients, 

QobL) = e~“‘YXo(lo + X,(P) TO) (41) 

QI(~)=e~ar’(Xo(~)+X,(~L)?l) (42) 

Q2hL) = e-YXo(pL) +X,(P) ~2). (43) 

For each layer the temperature is known at the top and 
bottom of the layer (T(r,) and T(t,)). Assuming T(r,)= 
(T(z,) + T(z,)/2 and r1 = (7o + r2)/2 we can calculate the 
Planck function at the top, center, and bottom of the layer. 
Solving (41)-(43) with Qi= B[T(r,)] = Bi the coeflicients 
in Eq. (15) are 

2 

{ 
B, cc=-In gkJ(B,iB2)2- B,lB, 

I 
(44) 

72-70 

6, = 
B, e”” - Boearo 

(45) 
72-50 

ho= B,e”‘“-b,ro. (46) 

We force the CI coeflicient to be angle independent by 
solving Eqs. (41)-(43) for one specific pi. All the angle 
dependence is in the X,(p) coefficients. Assuming r, = 
(r. + t,)/2 the equations for c( and X,(pi) become 

ln Ql(pl) 2 c1- 
52 -To 1 QZ(PI) 

~~(Q,(P,)!Q~(P,))~-Qo~~,)/Q~(~I~)} (47) 

x,(pi) = Q2(clj) ear* - Q&J eara 
(48) 

72-70 

i= +l +2 - ,- +N. 9 ..., - (49) 

To calculate c1 from Eq. (47) we must have Q: - QoQz > 0. 
It is shown in Appendix B that this is always the case when 
the internal source is the Planck function. For sources 
where Qz > Q, > Qo, we use the ( + ) solution for c( and the 
( - ) solution when Q2 < Q, < Qo. For source functions that 
decrease very rapidly with scattering depth, Q2 (the source 
at the bottom) may be equal to zero. In this case we obtain 
for the coefficients 

ln Qoh) 2 
tl- 

72 - 70 i 1 QI(P,) (50) 

xI(Pi) = O (51) 

Xoh) = Qob,) eara. (52) 

If both Q2 = 0 and Q, = 0, we set XI(pi) = 0, Xo(p,) = 

Qo(p,), and CI = max/r, where max is the largest number 
available on the computer. 

When the absolute value of c( becomes large, numerical 
overflow problems may occur in either Eqs. (48)-(49) or 
Eq. (7). The value of c( is most likely to blow up because 
r2 - 7. becomes small. For optically thin layers, however, 
the linear approximation gives adequate results. Thus when 
the absolute value of tl is large enough to cause overflow, we 
set c( = 0 and use the linear approximation. 

For completeness we note that values of c1 equal to any of 
the eigenvalues require special consideration because the 
particular solution due to an internal source proportional to 
exp( - kr) is proportional to 7 exp( - kz). Numerically this 
case may, however, be efficiently handled by so-called 
“dithering,” by which any value of c( deviating from an 
eigenvalue by less than a prescribed amount is changed to 
make the deviation slightly bigger. The actual amount of 
dithering depends on machine architecture. We have found 
that keeping CI 1% away from an eigenvalue yields 
satisfactory results on a 32-bit machine in single precision. 

A.3.1. Angular distribution. For the exponential-linear 
approximation, the different factors in (26) and (33) become 

FOH(7, +p() = & {exP(-C,) exp( -6rjp) 

-exp(-a,7,)expC-(7,-7)/~1) (53) 

x exp( - Cl ) exp( - WP) 

( 
P - 7,+- 

%P+ 1 > 

xexp(-cr,7,,)expC-(7,-7)/~1 

Fh(7, +P) = 0 (55) 

with C, = ant,-, for n > p and C, = c1,7 for n = p, 

Fo,(7, -PI = ~ c( n ipl {exp(-C,)expC-(7-7,~,)/~1 

-exp(-C2)ew(-WpL)} (56) 

x exp( - C, 1 exp[T - (T - ~~ I )/PI 

- t,+---- 
i 

P 
@,,P - 1 > 

exp( - C2) exp( -67/p) 
I 

(57) 

F*,,(r% -PL) = 0 (58) 

withC,=cr,t,-,forn<pandC,=Oforn=pandC,= 
a,,~,, for n < p and C, = cx,t for n = p. 



276 KYLLING AND STAMNES 

APPENDIX B: THE EXISTENCE OF THE GI For T2 > T, > To 9 1 we may ignore the terms given by (64) 
COEFFICIENT FOR THERMAL RADIATION while (65) is always positive. For T2 < T, G 1 we may ignore 

The CI coefficient will always exist if BfIBi - B,/B, > 0 or, 
(65) and (64) is then always positive. A similar argument 

since B, > 0 for the Planck function, BT - B,B, > 0. The 
may be used for the case T,, > T, > T, b 1 and T, < T, 4 1, 
b y rewriting Eqs. (64)-(65) (set m = n - 1 in (64) and m = 

Planck function integrated over an arbitrary frequency n + 1 in (65)). 
interval is given by For typical terrestrial and stellar temperatures 

( Ti > 100 K) we thus have that Eq. (62) is always positive, 

B’=B(Ti)=~v2~exp(hv~~T,)- 1’ (59) 
implying that the condition B: - B, B, > 0 is always fulfilled 

VI I for the Planck function integrated over an arbitrary 
frequency interval. Thus the a coefficient exists for most 

Using Eq. (59) we find that the inequelity BT - B, B2 > 0 is realistic applications. 
fulfilled if 

(ew(&)-l)(exp(-j$-)-I) 

-(exp(~)-l)(exp(~)--1)>0, 
since ehvlkT > 1 for v > 0 and T > 0. Using the relation 

e”--1= f 5, 
n=l 

the left-hand side of Eq. (60) may be written as 

co (hv/kT,)” O” (hv’/kT,,)” 
c c 

II=1 ?l! WI=1 m! 

_ f (hv/fT ,,z, (hv’lJ$Y” 

n=l 

--_- 
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1. 

2. 

3. 

4. 

5. 

6. 

(62) 7. 

8. 

In general, TJ Tr is not less than T;+m = ((T, + T,)/2)“+“‘. 
However, for terms with n = m, 

9, 

10. 

+j+=(&)“-($J>o~ 12, (63) 11. 

since Tf = ((T,+ T,)/2)2 = a (T,- T2)‘+ TOT2 > T,,T,. 13, 
For terms with n > m, we set n = m + I, 1~ 0, and obtain 14. 

1 1 --- L=$ (+$ (+$ (64) ;;: T; T; T;‘” 

17. 
and, for terms with n < m, we set n = m - I, 1> 0 to obtain 

18. 
1 1 --- L= T; (+ T; (&),. 

T; TT T;‘” 
(65) l9 
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