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Abstract: In this article, an analytical theory to describe the nonlin-
ear dynamic response characteristics of a typical SPP waveguide-cavity
structure formed by a Kerr-type standing-wave cavity side-coupling to a
metal-insulator-metal (MIM) waveguide is proposed by combining the
temporal coupled mode theory and the Kerr nonlinearity. With the analytical
theory, the optical bistability with the hysteresis behavior is successfully
predicted, and the optical bistability evolutions and its dynamic physical
mechanism are also phenomenologically analyzed. Moreover, the influence
of the quality factors Q0 and Q1 on the first-turnning point (FTP) power of
optical bistability and the bistable region width, the approaches to decrease
the FTP power and to broaden the bistable region are also discussed in
detail with our analytical theory. This work can help us understand the
physical mechanism of the nonlinear dynamical response at nanoscale, and
may be useful to design nonlinear nanophotonic systems for applications in
ultra-compact all-optical devices and storages.
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1. Introduction

Surface plasmon polaritons (SPPs) are electromagnetic modes coupled to the collective elec-
tron oscillations propagating along the interface between metallic and dielectric materials in
visible or near-infrared optical frequency ranges [1, 2]. Previous research results have shown
that plasmonic waveguides can confine the guided mode within the subwavelength-scale for
overcoming the diffraction limit of light wave [3, 4]. To date, various SPP waveguide devices
based on linear optics principles have been demonstrated [5–7]. Among them, the SPP devices
with the resonant tunneling effect of nano-cavities have received more attention. With the sin-
gle or multiple nano-cavity resonant coupling schemes, ultra-compact SPP filters, splitters, and
WDM couplers have been proposed and designed [8–11]. In order to improve the flexibility
in tuning and controlling for such SPP devices, recently nonlinear Kerr media have been in-
troduced into the SPP waveguide-cavity coupling structures [12]. The performances of various
SPP devices based on the Kerr nonlinearity have been investigated theoretically [13–15] and
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experimentally [16, 17]. Optical bistability, which is an important third-order optical nonlinear
effect, has also been observed in different SPP waveguide-cavity structures [18, 19], and even
used for the design of all-optical bistable SPP switches [20,21]. However, almost all investiga-
tions of the optical bistability in SPP waveguide-cavity structure so far are based on numerical
simulation methods, mainly the finite-difference time-domain (FDTD) technique, which makes
it difficult to get insight to the fundamental physical mechanism of such an optical bistability
phenomenon. In this article, by combining the temporal coupled mode theory (TCMT) and the
Kerr nonlinearity, an analytical theory for describing the dynamic response characteristics of
an SPP waveguide-cavity structure formed by a nonlinear standing-wave cavity side-coupling
to a MIM waveguide is presented. The optical bistability and its dynamic physical process is
predicted and discussed with the analytical theory.

2. Analytical theory
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Fig. 1. Typical plasmonic structure with a Kerr nonlinear cavity side-coupling to a MIM
waveguide.

Figure 1 shows a typical plasmonic structure with a Kerr nonlinear cavity side-coupling
to a linear dielectric waveguide. The waveguide (white region) and the Kerr nonlinear cavity
(orange region) are buried in a metal substrate (gray region). Assuming that both the cavity and
the waveguide support only one mode in the frequency range of interest, thus, if the amplitudes
of the incident, refractive, and transmitted lights in the waveguide are respectively denoted by
S+1, S-1 and S-1

′, then, according to the TCMT, the time evolution for the amplitude of resonant
cavity mode, A, may be described as [22, 23]

dA
dt

= ( jωc − ωc

Q0
− ωc

2Q1
)A+

√
ωc

2Q1
e jθ S+1, (1)

with

S-1
′ = S+1 −

√
ωc

2Q1
e− jθ A

S-1 =−
√

ωc

2Q1
e− jθ A

where ωc is the resonant frequency of the cavity, Q0 is the quality factor due to the intrinsic
cavity loss, Q1 is the quality factor that is related to the decay rate into the waveguide, and θ
stands for the phase change of the coupling between the guided SPP and the cavity resonator
mode.

If S+1 has a time dependence of e jωt , the steady-state transmission of the plasmonic structure
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can be expressed as

T =

∣∣∣∣S-1
′

S+1

∣∣∣∣
2

=
( ω

ωc
−1)2 +( 1

Q0
)
2

( ω
ωc

−1)2 +( 1
Q0

+ 1
2Q1

)
2 . (2)

And, the total energy in the cavity |A|2 and the incident power |S+1|2 (or Pin) satisfies:

|A|2 =
1

2ωcQ1

( ω
ωc

−1)2 +( 1
Q0

+ 1
2Q1

)
2 |S+1|2. (3)

From Eq. (3) it can be clearly seen that the energy in the cavity increases with the incident
power, which results in the changes of nonlinear refractive index. Strictly, the resonant fre-
quency ωc and the quality factors Q0 and Q1 may change with the nonlinear refractive index
variation of the cavity. However, if only weak Kerr nonlinearity, i.e., the nonlinear refractive
index Δn < 5%, is considered, the tiny changes of Q0 and Q1 due to the Kerr nonlinearity can
be ignored. Thus, in the TCMT treatment for the plasmonic structure shown in Fig. 1, only
the variation of the resonant frequency caused by the Kerr nonlinearity may be taken into ac-
counted.

On the other hand, an arbitrary standing-wave cavity side-coupling to a MIM waveguide may
be regarded as a Fabry-Perot cavity [24, 25], whose resonant wavelength can be described as
2(neffLeff+2Lpen)=Nλc(N = 1,2,3, · · ·), with Lpen, neff and Leff respectively being the penetra-
tion depths at two ends, the effective refractive index and the effective length of the F-P cavity.
For the weak Kerr nonlinearity cavity with only single resonant mode, the resonant wavelength
of the cavity can be written as:

λc = λc0 +2n2

〈
|Eb|2

〉
Leff = λc0 +

2n2Leff|A|2
εS

(4)

where λc0 is the linear resonant wavelength, n2 is the Kerr nonlinear-index coefficient, and
〈|Eb|2〉 = |A|2/(εS) is the average electric field intensity in the cavity with S and ε being the
area and the permittivity of the cavity, respectively.

Substituting Eq. (3) into Eq. (4), using λc = 2πc/ωc and |S+1|2 = Pin, we can get a cubic
equation with λc after eliminating the term of |A|2:

λc
3 +Bλc

2 +(C1 −C2Pin)λc +D = 0, (5)

where B = −(2λ + λc0), C1 = λ 2
[
1+(1/Q0 +1/(2Q1))

2
]

+ 2λλc0, C2 =

n2Leffλ 2/(2πcQ1εS), and D = −λc0λ 2
[
1+(1/Q0 +1/(2Q1))

2
]
. From Eq. (5), we can

see that, for a given structure of the standing-wave cavity side-coupling to a MIM waveguide,
λc exhibits strong nonlinear relationship with the wavelength λ and the power Pin of the
incident light.

In order to further explore the nonlinear relationship of λc with λ and Pin, we may find the
derivative of Pin with respect to λc from Eq. (5), and let dPin/dλc = 0, then we have

λc
3 +

B
2

λc
2 − D

2
= 0. (6)

Note that B and D are just functions of the incident light wavelength λ for a given waveguide-
cavity structure. In general, Eq. (6) may have three distinct real roots if its discriminant is less
than zero, i.e., Δ< 0. If assuming λc1, λc2 and λc3 are respectively the three distinct real roots of
Eq. (6), then, they must spontaneously satisfy: (1) λc1 +λc2+λc3 =−B/2, which is constantly
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larger than zero, and (2) λc1λc2λc3 = D/2, which is always less than zero. This indicates that
there must be two positive and a negative real numbers among λc1, λc2, and λc3 when Δ < 0 for
Eq. (6). In fact, the existence of the two positive real roots for Eq. (6) means that there are two
knee points for the Pin ∼ λc curve, and thus, implies that there may exist some optical bistability
phenomenon when λ is suitably chosen to ensure Δ < 0.

To determine the range of λ for the optical bistability, according to the critical condition
Δ = 0, we have

x3 − 27ζ 2 +15
8

x2 +
3
4

x+
1
8
= 0 (7)

where x = λ/λc0 and ζ = 1/Q0 + 1/(2Q1). We can then get the two positive real roots by
solving Eq. (7) [26]

x1,2 =−B′

3
+ e±i 2π

3
3

√
−q′

2
+
√

Δ′+ e∓i 2π
3

3

√
−q′

2
−
√

Δ′

where B′ = (27ζ 2 + 15)/8, q′ = (27− 459ζ 2)/256, and Δ′ = −(27ζ/64)2. Since ζ is in the
order of 10−2, the higher order terms of ζ may be ignorable. Then, we have

x1,2 = 1±
√

3ζ

or

λ −λc0 =±
√

3λc0

(
1

Q0
+

1
2Q1

)
=±

√
3Δλ
2

(8)

where Δλ = 2λc0 (1/Q0 +1/(2Q1)) is the FWHM of the linear transmission spectrum, which
can be easily obtained from Eq. (2).

Based on the discussion as the above, if the critical wavelength λM is defined as λM = λc0 +√
3Δλ/2 (or λM = λc0 −

√
3Δλ/2) for the positive (or negative) nonlinearity, it can be found

that, when λ > λM (or λ < λM) , the discriminant of Eq. (6) is less than zero, and thus two
different λc truly exist for a specific given Pin, leading to the occurrence of optical bistability
phenomenon.

3. Results and discussions

Firstly, we consider a Kerr nonlinear cavity side-coupling to a MIM waveguide (see Fig. 1) with
specifications of Q0 = 235, Q1 = 65, λc0 = 1556.9 nm, S = 3.6×104 nm2, Leff = 360 nm, and
n2 = 1×10−8 cm2/W [27], respectively. These parameters correspond to a plasmonic structure
of an Ag-SiO2-Ag waveguide with a side-coupling nonlinear polystyrene rectangular cavity
shown in Fig. 1, whose structure parameters are wt = 50 nm, w= 100 nm, L= 360 nm, and g=
15 nm. According to our theory described in the above, when the incident light wavelength is
larger than λM = 1589.1 nm, the optical bistability phenomenon may occur. To test the validity
of our prediction, the transmission as a function of Pin is calculated for different given λ by
using Eqs. (2) and (5), and the results are shown in Fig. 2(a). Note that the calculation results
with our analytical model and the finite-difference time-domain (FDTD) technique [19] for
1610 nm are also given in Fig. 2(b), which shows they are in good agreement with respect to
each other, indicating the validation of our analytical model. Figure 2(a) clearly shows that the
optical bistability with the hysteresis behavior occurs only when λ is larger than 1589.1 nm.
Otherwise, no bistability phenomenon is exhibited. However, when the incident wavelength is
smaller than 1589.1 nm, the transmission can be continuously adjusted in a large range by only
slightly changing the incident power near the transmission dip, such a property may be used to
design all-optical switches.
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Fig. 2. (a) Transmissions as a function of incident power for different incident light wave-
lengths; (b) The comparisons of the bistable curves obtained by our analytical theory (solid
line) and the FDTD numerical simulations (red circles).

The transmission variations shown in Fig. 2(a) may be explained with our analytical theory.
According to Eq. (3), the energy coupled into the cavity is increased with the increasing of
Pin. However, the increasing speed of the cavity energy with Pin depends on the incident light
wavelength. When λ is less than λM, the difference between λ and λc0 is small, making λ to
be within the cavity resonance band in the beginning [see Fig. 3(a)]. Thus, even if the initial
incident power is low, the proportion of the power coupled into the cavity is still high, which
makes an obvious red-shift of λc. For instance, when the incident light wavelength is fixed at
1580 nm, as shown in Fig. 3(b), a red-shift about 5 nm for λc respect with to λc0 has been made
if the incident power is increased to 0.25 W from zero. This red-shift of λc can further strengthen
the resonant coupling effect between the cavity and the waveguide, which in turn speeds up the
red-shifted of λc to be close to λ [see Fig. 3(b)], forming a positive feedback mechanism.
This positive feedback mechanism makes the transmissions decreases monotonously with the
increase of Pin and reaches to their minimum rapidly at which λc = λ . Such a property of the
transmissions decreasing monotonously to their minimum by slightly changing Pin may be used
for the design of all-optical switches, as mentioned before. If then Pin is further increased, λc

may be gradually larger than λ because of the red-shift effect caused by the Kerr nonlinearity.
This results in the weakened resonant coupling between the cavity and the waveguide which
retards the red-shifted λc to be away from λ , forming a negative feedback mechanism. This
negative feedback mechanism can help λ to stay in the cavity resonance band with the center
wavelength of λc, finally resulting that the transmissions increases slowly with the increase of
Pin from their minimal values. As the incident power decreases from a high level, a reverse
process is exhibited, and no hysteresis behavior occurs due to the monotonous changes of λc.

When λ is larger than λM, as shown in Fig. 3(a), λ is far away from the linear cavity reso-
nance band near λc0 in the beginning, and the proportion of the power coupled into the cavity
is very low. This causes that the energy in the cavity increases very slowly with the increase
of Pin from zero, and thus, the Kerr nonlinearity gives an ignorable red-shift for λc. For an ex-
ample, when the incident wavelength is 1610 nm, as shown in Fig. 3(c), a 5 nm red-shift of
λc cannot be obtained until the incident power is increased to 1.0 W. Such a red-shift of λc is
not large enough to make λc being close to λ . Because of this reason, the transmissions for
λ > λM keep staying in high levels until Pin has been increased to high enough to trigger the
positive feedback mechanism described in the above, which results that the transmissions jump
down to the low branches shown in Fig. 2. This specific Pin is so-called the first turning point
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Fig. 3. (a) Schematic diagram for the linear transmission properties when the incident wave-
length is larger or less than λM respectively; (b) and (c) Transmissions (black line) and non-
linear resonant wavelengths (red line) as a function of incident light power for the incident
light wavelength of 1580 and 1610 nm, respectively. The linear resonant wavelength and
the incident light wavelengths are displayed with blue dot lines in (b) and (c).

(FTP) power, where a sudden red-shift of λc takes place [28]. Note that λc is larger than λ
once the transmission has jumped down to the low branch, just as shown in Fig. 3(c) in which
λc jumps from 1578 nm to 1620 nm at the FTP for λ = 1610 nm. After then, like the case of
λ < λM, the negative feedback mechanism also helps λ stay in the cavity resonance band near
λc, and the transmission increases slowly with the increase of Pin. However, if Pin is decreased
from a high level, since λ is located in the cavity resonance band near λc in the beginning, the
resonant energy in the cavity can keep in a high level with the negative feedback mechanism
even if Pin has been decreased to a level less than the FTP. This negative feedback mechanism
can be maintained until λc = λ , where the minimal transmission is reached. If Pin decreases
furtherly, λc will continue to blue-shift and a positive feedback happen. When Pin decreases to
a level called as the second turning point (STP), the positive feedback mechanism will result
in a sudden blue-shift of λc [from 1606 nm to 1564 nm in Fig. 3(c)] with a tiny increase of
Pin, which makes the transmission jumps up to the up-branch. After this jump, the transmission
is increased slowly again with the decrease of Pin due to the tiny blue-shift of λc. Finally the
optical bistability with the hysteresis behavior occurs for the case of λ > λM.

Obviously, the cavity energy storage capability, determined by Q0 and Q1, may affect the
above hysteresis bistability behavior. Figures 4(a) and 4(b) show the critical wavelength λM as
a function of Q0 and Q1, respectively. As seen, for a given Q1 of 65, λM decreases from 1605 nm
to 1582 nm when Q0 increases from 100 to 400. When Q1 increases from 40 to 100, the same
change for λM can be obtained for a given Q0 of 235. The decrease of λM is originated from the
less energy attenuation in the cavity with larger Q0 or Q1. Figure 4(c) shows the transmission at
1610 nm as a function of the incident power for different Q0 when Q1 is fixed at 65. Here, we
can see that, with the increase of Q0, i. e., the decrease of the intrinsic cavity loss, both the FTP
and the STP powers are decreased, with STP being decreased more, making that the bistalbe
regions become wider. When Q0 increases from 100 to 400, the FTP and the STP powers reduce
from 3 W to 2 W, and from 2.78 W to 0.9 W, respectively. The corresponding bistalbe region
is increased from 0.22 W to 1.1 W. However, for a given Q0, the FTP and the STP power may
respectively be increased and decreased with the increase of Q1 because the weakend coupling
strength between the waveguide and the cavity causes the decreases of both the incoming and
outcoming energies for the cavity, thus giving wider bistable regions. Figure 4(d) shows such
situations. From this figure it can be seen that when Q1 increases from 40 to 100, the FTP power
increases from 1.6 W to 2.6 W, and the STP power reduces from 1.55 W to 1.25 W, resulting
that the bistable region is broadened from 0.05 W to 1.35 W. Therefore, in order to reduce the
FTP power of optical bistability, larger Q0 and smaller Q1 are preferred. Considering that the
width of the bistable region may be narrowed by decreasing Q1, an optimized way for reducing
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Fig. 4. The critical wavelength of optical bistability as a function of (a) Q0 and (b) Q1 for
a fixed Q1 and Q0, respectively. Bistable properties at 1610 nm for (c) different Q0 and (d)
different Q1 when Q1 and Q0 are fixed, respectively.

FTP power is to increase the value of Q0 as much as possible, which may be achievable by
using optical gain in the cavity to compensate its intrinsic loss [29].

4. Conclusions

By combining the TCMT and the Kerr nonlinearity, an analytical theory for describing the
dynamic response characteristics of an SPP waveguide-cavity structure formed by a nonlinear
standing-wave cavity side-coupling to a MIM waveguide has been presented. The criterion that
λ > λc0+

√
3Δλ/2 (n2 > 0) or λ < λc0−

√
3Δλ/2 (n2 < 0) given in the analytical theory can be

used to predict whether the optical bistability with the hysteresis behavior takes place. The opti-
cal bistability evolutions and its dynamic physical mechanism can also be phenomenologically
analyzed with the analytical theory. Moreover, by using our analytical theory, the influence of
Q0 and Q1 on the FTP power and the bistable region width is clarified, and the approaches
to decrease the FTP power and to broaden the bistable region are also obtained. Our results
may be helpful to get deep insight into the fundamental physics of the nonlinear dynamic re-
sponse in nanoscale plasmonic waveguide devices and may be beneficial in their designs and
optimizations.
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