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Advanced glycation end products (AGEs) are a complex and heterogeneous group of compounds
that have been implicated in diabetes related compli¯cations. Skin auto°uorescence was recently
introduced as an alternative tool for skin AGEs accumulation assessment in diabetes. Successful
optical diagnosis of diabetes requires a rapid and accurate classi¯cation algorithm. In order to
improve the performance of noninvasive and optical diagnosis of type 2 diabetes, support vector
machines (SVM) algorithm was implemented for the classi¯cation of skin auto°uorescence from
diabetics and control subjects. Cross-validation and grid-optimization methods were employed to
calculate the optimal parameters that maximize classi¯cation accuracy. Classi¯cation model was
set up according to the training set and then veri¯ed by the testing set. The results show that
radical basis function is the best choice in the four common kernels in SVM. Moreover, a diag-
nostic accuracy of 82.61%, a sensitivity of 69.57%, and a speci¯city of 95.65% for discriminating
diabetics from control subjects were achieved using a mixed kernel function, which is based on
liner kernel function and radical basis function. In comparison with fasting plasma glucose and
HbA1c test, the classi¯cation method of skin auto°uorescence spectrum based on SVM shows
great potential in screening of diabetes.

Keywords: Skin auto°uorescence; support vector machines algorithm; type 2 diabetes;
noninvasive screening.
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1. Introduction

Advanced glycation end products (AGEs) are bio-
chemical end-products of non-enzymatic glycation.1

The accumulation of AGEs in human skin has been
implicated in the progression of diabetes mellitus
and the related complications. Several studies,
including the diabetes control and complications
trial (DCCT) and epidemiology of diabetes inter-
ventions and complications study (EDIC), have
demonstrated that elevated skin AGEs are bio-
markers of diabetes, are highly correlated with the
complications of diabetes, and are predictive of
future diabetic retinopathy and nephropathy.2

AGEs have °uorescent properties, light with
wavelength between 300 and 420 nm can be
employed as excitation source, and the emission
spectrum distributes in the 420 � 600 nm. Thus, the
level of AGEs in human skin can be assessed
through measuring skin auto°uorescence, and then
the risk of diabetes mellitus and related compli-
cations evaluated.

Support vector machine (SVM) is a machine-
learning method, based on the principle of struc-
tural risk minimization, which performs well when
applied to data outside the training set, and devel-
oped by Vapnik3 and Burges.4 During the past two
decades, SVM has attracted great attention due to
its capability of representing nonlinear relationships
and producing models that generalize well in clas-
sifying the unseen data. The SVM algorithm has
now emerged as an e±cient approach to the classi-
¯cation of spectral data for tissue diagnosis. For
instance, Lin et al.5 used linear and nonlinear SVM
to classify auto°uorescence spectrum of nasophar-
yngeal carcinoma (NPC) from normal tissue and
demonstrated that SVM has higher diagnostic ac-
curacy than using PCA-LDA. Widjaja et al.6 com-
bined near-infrared (NIR) Raman spectroscopy
with SVM for improving multi-class classi¯cation
between di®erent histopathological groups in tis-
sues, and compared the performances when using
di®erent kernel functions and di®erent types SVM.

In this paper, skin auto°uorescence of 63 patients
with type 2 diabetes and 140 control subjects were
collected using a self-designed optical system.7 SVM
algorithm was implemented for classi¯cation of the
skin auto°uorescence. Based on the training set,
cross-validation and grid-optimization methods
were employed to calculate the optimal parameters
in the four common kernel functions respectively,

and corresponding model was set up and then ver-
i¯ed with the testing set. In addition, to further
improve the classi¯cation performance, a new mixed
kernel function based on liner kernel function and
radical basis function was established.

2. Materials and Methods

2.1. Support vector machine

Support vector machine is a relatively new type of
learning algorithm. It has many unique advantages
in solving small sample, nonlinear and high dimen-
sional pattern recognition.8 The main mechanism of
SVM is to hunt an optimal separating hyperplane
that meets the classi¯cation requirements. The
plane should ensures the required classi¯cation
accuracy, as well as makes the classi¯cation interval
maximum. In theory, SVM can achieve the optimal
classi¯cation for linearly separable problems. For
nonlinear separable problems, they were ¯rst map-
ped into a high-dimensional linearly separable space
through a nonlinear mapping, and then be traded as
linearly separable problems. The nonlinear mapping
is de¯ned by an inner product function called kernel
function. The most used kernel functions are as
follow:

(a) Linear kernel:

Kðx;xiÞ ¼ ðx �xiÞ ð1Þ
(b) Polynomial kernel:

Kðx; xiÞ ¼ ð� � ðx �xiÞ þmÞd ð2Þ
(c) Gaussian radical basis function (RBF):

Kðx;xiÞ ¼ expð�� � jjx� xijj2Þ ð3Þ
(d) Sigmoid tanh:

Kðx; xiÞ ¼ tanhð� � ðx �xiÞ þmÞ ð4Þ
When using SVM, two problems should be con-

sidered: how to choose the optimal input feature
subset for SVM, and how to set the best kernel
parameters. These two problems are crucial,
because the feature subset choice in°uences the
appropriate kernel parameters and vice versa.
Therefore, obtaining the optimal feature subset and
SVM parameters must occur simultaneously.9 In
this paper, skin auto°uorescence was chosen as
input features. The parameters that should be
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optimized include penalty parameter C and the
kernel function parameters such as parameter � for
the RBF kernel. To design an SVM, one must
choose a kernel function, set the kernel parameters
and determine the penalty parameter C. Penalty
parameter represents the compromise on training
error and generalization ability. Cross-validation
and grid-optimization methods are alternative to
determine the kernel function and the optimal
parameters.

2.2. Data preprocessing

Skin auto°uorescence was assessed using the self-
designed AGEs °uorescence spectroscopy detection
device. The method has been described in detail
elsewhere.7 In short, the device illuminates ap-
proximately 0.1 cm2 of skin, guarding against sur-
rounding light, using an excitation light source with
peak intensity at 370 nm. Emission light from the
skin is measured with a spectrometer in 420–600 nm
range through a ¯ber probe. Typical skin auto-
°uorescence spectra of the diabetes and control
subjects were show in Fig. 1. For emission light, the
average sampling interval is 0.25 nm and 718 fea-
ture points are collected. It means that each spec-
trum is treated as a vector with 718 dimensions and
labeled according to the clinical examination.

We recruited 245 subjects in total, some of which
are newly admitted patients and the rest is the
patient's family or hospital sta®. After excluding
the cases which received anti-diabetic treatment, we
noninvasively measured skin auto°uorescence from

203 subjects (age, 61� 9 years; body mass index,
26:6� 5:5 kg/m2; male/female ratio 95/108; smo-
kers/nonsmoker ratio, 0/203; 63 patients with
type 2 diabetes and 140 control subjects (the
examination results show they are in good health).
Here, diabetes was de¯ned as a fasting glucose level
of �7:0mmol/L or a glucose level of >11:0mmol/L
at 2 h in the OGGT. Control was de¯ned as a
fasting glucose level of <7:0 and a glucose level of
�11.0 mmol/L at 2 h in the OGGT). Both the
diabetic patients and the control subjects were
randomly recruited from Anhui Provincial Hospital.
Measurements were performed at the volar side of
the arm and avoid the location of the blood vessels,
scars, licheni¯cation, sclerosis plaques as well as
deformity skin.

Analysis of all the data are performed in
MATLAB environment using the Libsvm tool
package10 which was developed by Prof Lin.

The classi¯cation process of SVM is shown in
Fig. 2. The selection of training set and testing set
includes the following step: First, list all subjects
in consecutive numerical order. Second, generate
a group of random numbers between 1 and the
number of subjects as the order of training set.
Finally, select the training set according to the
serial number and the rest is testing set. In this
paper, 40 diabetics (age, 64� 7 years; body mass
index, 27:6� 4:5 kg/m2; male/female ratio 19/21)
and 117 control subjects (age, 60� 6 years; body
mass index, 25:9� 4:4 kg/m2; male/female ratio
55/62) were selected as training set, the remaining
23 diabetics (age, 62� 8 years; body mass index,
27:9� 4:8 kg/m2; male/female ratio 11/12) and 23
control subjects (age, 60� 7 years; body mass
index, 26:2� 4:6 kg/m2; male/female ratio 10/13)
as testing set. To avoid the singular sample data,

Fig. 1. Typical skin auto°uorescence spectra of the diabetes
and control subjects.

Fig. 2. The °ow chart of SVM. Classi¯cation process includes
training and testing set selection, data preprocessing, par-
ameter optimization, SVM modeling, classi¯cation judgment
and solving of classi¯cation accuracy.
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speed up the process convergence rate and reduce
the dimensionality of the data so as to simpli¯ed
SVM operation, the skin auto°uorescence were ¯l-
tered using nine points Savitzky–Golay smoothing,
normalized by dividing the mean intensity, and
through principal component analysis, the ¯rst two
principal components (representing more than 99%
of the total variability) were chose as SVM input
features.

3. Results

In this paper, we investigated four commonly used
kernel functions. Figure 3 shows how the classi-
¯cation accuracy of a linear kernel SVM algori-
thm depends on the parameter C in a wide range
search for optimal C. The algorithm was opti-
mized by choosing the value of C that maximized
classi¯cation accuracy for the cross-validation and
grid-optimization.

In the development of nonlinear SVM algorithm
using an RBF function, an optimal C that maxi-
mizes classi¯cation accuracy can be determined for
each selected value of parameter �. In a wide range
of values for C and �, many sets of C and � could be
found to yield the same classi¯cation accuracy.
Figure 4 shows the optimal sets of C and � that
yield the maximal classi¯cation accuracy in the
training set.

For the polynomial SVM algorithms, the maxi-
mum diagnostic accuracy was not very sensitive to
the parameter d and m, and the calculation would

be more time-consuming with the increase of d and
m.6 Therefore, in the development of polynomial
SVM algorithms, the values of d andm were set as 3
and 1, respectively. Similarly, the value ofm was set
as 1 in the development of sigmoid SVM algorithms.
Figures 5 and 6 show the optimal sets of C and �
that yield the maximal classi¯cation accuracy in
polynomial SVM algorithms and sigmoid SVM
algorithms.

When it does not matter in the classi¯cation
accuracy, the penalty parameter C should be as
small as possible, since higher value of C would lead

Fig. 3. Dependence of classi¯cation accuracy on parameter C
using a linear SVM. The base of log C is 2.

Fig. 4. Dependence of classi¯cation accuracy on parameters
C and � for a RBF SVM. The base of log C is 2 and the base of
log � is 2.

Fig. 5. Dependence of classi¯cation accuracy on parameters C
and � for a polynomial kernel SVM. The base of log C is 2 and
the base of log � is 2.
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to over ¯tting and then reduce SVM's generaliz-
ation ability. According to the cross-validation and
grid-optimization, the optimal classi¯cation par-
ameters and cross-validation average accuracy were
achieved, and shown in Table 1.

Combining training set and the optimal par-
ameters of each kernel function, we can build the
classi¯cation model and evaluate the results of each
model with testing set. Results of classi¯cation with
four di®erent kernels were shown in Table 2. It
indicated that linear kernel and RBF kernel have
better performances for the classi¯cation in this
paper.

Models were set up with the training set and
di®erent kernels. The training set classi¯cation ac-
curacy represent the classi¯cation result that model
for the training set. The testing set classi¯cation
accuracy represent the classi¯cation result that
model for the training set.

In addition to the above four commonly used kernel
function, we can also customize the kernel function
or make linear combination with two kernel func-
tions to generate a mixed kernel function. In this
paper, a new classi¯cation model employing a linear
combination of linear kernel and RBF kernel was
proposed. The mixed kernel function is as follows:

Kmix ¼ � �Kline þ ð1� �Þ �KRBF: ð5Þ
The parameter � varies from � ¼ 1, when the

mixed kernel function degenerate to linear kernel, to
� ¼ 0 for the mixed kernel function degenerate to
kernel RBF kernel. In practice, the value of �
depends on the characteristics of data. In this paper,
we choose � ¼ 0:8, parameter � ¼ 1, penalty par-
ameter C ¼ 2. Classi¯cation model was established
with training set. In comparison with the RBF
kernel, the performance of mixed kernel show as
following:

As shown in Table 3, the classi¯cation accuracy,
sensitivity and speci¯city of mixture kernel are
82.61%, 69.57% and 95.65% (The PPV and NPV
are 80% and 84.6%). For the fasting plasma glucose
(FPG), at the impaired fasting glucose threshold
(FPG¼ 100mg/dl), the FPG testing sensitivity is

Fig. 6. Dependence of classi¯cation accuracy on parameters
C and � for a sigmoid SVM. The base of log C is 2 and the base
of log � is 2.

Table 1. Optimal parameters of four di®erent kernels.

Linear
kernel

Polynomial
kernel RBF

Sigmoid
tanh

Parameter C ¼ 0:125 C ¼ 0:0625 C ¼ 4 C ¼ 0:125
� ¼ 2 � ¼ 0:03125 � ¼ 0:125

Classi¯cation
accuracy
(%)

85.99 84.08 83.44 76.43

Note: Classi¯cation accuracy values in the training set data
represent leave-one-out cross-validation values.

Table 2. Results of classi¯cation with four di®erent kernels.

Linear
kernel

Polynomial
kernel RBF

Sigmoid
tanh

The training set
classi¯cation
accuracy (%)

86.62 92.99 85.99 75.80

Sensitivity (%) 65 75 60 15
Speci¯city (%) 94.02 99.15 94.87 96.58

The testing set
classi¯cation
accuracy (%)

76.09 67.39 78.26 52.17

Sensitivity (%) 60.87 69.57 60.87 4.35
Speci¯city (%) 91.3 65.22 95.96 100

Table 3. Results of classi¯cation with RBF kernel and mix-
ture kernel.

Classi¯cation
accuracy (%)

Sensitivity
(%)

Speci¯city
(%)

RBF function 78.26 60.87 95.96
Mixture kernel 82.61 69.57 95.65

Note: The classi¯cation accuracy, sensitivity and speci¯city
were calculated under the optimal parameters.
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58% and the speci¯city is 77.4%. At that same
speci¯city, the sensitivity for HbA1C testing was
63.8% (The cut-o® point is 6.8%).2 Obviously,
based on SVMs, skin auto°uorescence classi¯cation
method is more e®ective than traditional methods
for diabetes screening.

4. Discussion

In this paper, there are several factors a®ecting the
classi¯cation results:

(i) The auto°uorescence that used in classi¯cation
are distorted by the scattering and absorbing
of human skin. It can be predicted that the
development of the spectral correction tech-
nique11 will promote the classi¯cation
accuracy.

(ii) The data preprocessing of skin auto-
°uorescence have the ability to reduce the
interference of singular sample data and
increase the speed of convergence, but at the
same time it would inevitably lose some
information.

(iii) In order to ensure a large enough optimization
range during cross-validation and grid-
optimization, we set the optimization stepping
as 1, resulting in that the amount of the tested
values of parameter C and � is ¯nite.

With the development of the attenuation
correction techniques for tissue °uorescence,
optimization of the normalized function and
re¯nement of the optimization process, the above
e®ects can be reduced or even eliminated, so the
classi¯cation of skin auto°uorescence based on SVM
has a bright future.

Under the existing technical conditions, we can
use RBF SVM algorithm to classify skin auto-
°uorescence. If the classi¯cation result is not satis-
factory, we can also consider linear combinations
with linear andRBFkernels to construct anewkernel
function. Cross-validation and grid-optimization
methods are commonly used during the selection of
the kernel function parameters and the penalty
parameter. In order to ensure a large enough range
of optimization, we are generally looking for the
relationship between the logarithm of relevant
parameters and classi¯cation rate. However, this
will cause missing test of some parameters, and then
the parameters we get may be not the best. At this

time, we can ¯rst conduct wide range optimization,
then pick up the parameters with higher classi¯-
cation accuracy from the results, and then reduce
the step of optimization parameters to perform
accurate optimization.

In this paper, skin auto°uorescence of 63 patients
with type 2 diabetes and 140 control subjects was
obtained using a self-designed optical system.
According to the four commonly used kernel func-
tions in SVM, cross-validation and grid-optimization
methods were employed to calculate the optimal
parameters that maximize classi¯cation accuracy.
Based on training set, model was set up and then
veri¯ed by testing set. The test result indicated that
the best choice for classi¯cation is radical basis
function. Otherwise based on liner kernel function
and radical basis function, a kind of mixed kernel
function was built. Its accuracy, sensitivity and
speci¯city were 82.61%, 69.57% and 95.65%,
respectively, which show a better classi¯cation per-
formance than radical basis function. In a compari-
sonwithFPGandHbA1c test, at the impaired fasting
glucose threshold (FPG¼ 100mg/dl), the FPG
testing sensitivity is 58% and the speci¯city is 77.4%.
At that same speci¯city, the sensitivity for HbA1c

testing was 63.8% (The cut-o® point is 6.8%).
Obvious, the SVM algorithm produced better diag-
nostic accuracy in all instances.

SVM algorithm was successfully implemented
for the classi¯cation of skin auto°uorescence from
patients with type 2 diabetes and control subjects.
The results demonstrate that skin auto°uorescence
spectroscopy classi¯ed by an SVM algorithm can
achieve high diagnostic accuracy in di®erentiating
diabetics from control subjects.
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