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The second-order velocity distribution function was calculated from the second-order rf kinetic

theory [Jaeger et al., Phys. Plasmas 7, 641 (2000)]. However, the nonresonant ponderomotive force

in the radial direction derived from the theory is inconsistent with that from the fluid theory.

The inconsistency arises from that the multiple-timescale-separation assumption fails when the

second-order Vlasov equation is directly integrated along unperturbed particle orbits. A slowly

ramped wave field including an adiabatic turn-on process is applied in the modified kinetic

theory in this paper. Since this modification leads only to additional reactive/nonresonant

response relevant with the secular resonant response from the previous kinetic theory, the correct

nonresonant ponderomotive force can be obtained while all the resonant moments remain

unchanged. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817812]

I. INTRODUCTION

The direct force exerted by rf waves on magnetized

plasmas is undoubtedly a basic quantity for rf current/flow

drive.1 The wave deposits the momentum on resonant

particles through collisionless damping and then provides

resonant forces. In addition, the bulk plasma can experi-

ence the nonresonant ponderomotive force in an inhomoge-

neous rf field. Therefore, a rf kinetic theory might be

required to calculate the resonant and the nonresonant

interactions in a unified framework. Several kinetic theories

based on the Vlasov equation (or collisionless Boltzmann

equation) were developed to formulate these forces2–4 and

used to analyze the flows observed in experiments or

simulations.5–7

A second-order rf kinetic theory developed by Jaeger,

Berry, and Batchelor (JBB) is quite useful to calculate all the

forces because the slowly varying part of the second-order

velocity distribution function was explicitly solved.2 From

this theory, the poloidal and toroidal components of the force

(i.e., those in the flux surface) were successively obtained.8,9

The obtained poloidal resonant force has been used to inter-

pret experimental results5 and been applied in simulation

works;6 while the local parallel force was found to be com-

pletely resonant, which was used successfully to clear up a

long-standing dispute on the matter of current drive by

nonresonant force.10 However, the radial force was not given

correctly from the JBB solution. For example, in the cold-

fluid limit, the force from their solution reduces to a nonreso-

nant ponderomotive force as

Fnr ¼ �
n0q2

4mx2

@

@x
jEzj2; (1)

while the force from the fluid theory11,12 is

Fcf ¼�
n0q2

4m

1

x2

@jE2
z j

@x
þ 1

2ðx�XÞ2
@jE2

þj
@x
þ 1

2ðxþXÞ2
@jE2

�j
@x

 !
;

(2)

where E6 ¼ Ex 6 iEy, X is the Larmor cyclotron frequency,

and the z-axis is parallel to the uniform, static equilibrium

magnetic field. Then two questions are concerned in this

paper. One is how to upgrade the theory to resolve this dis-

agreement, and the other is whether the modification affects

previous conclusions of resonant forces in the flux surface or

other resonant moments.

In principle, the JBB theory is an approach of integrat-

ing the slowly varying (in time) part of the second-order

Vlasov equation along unperturbed particle orbits. It is well

known that the linear dispersion relation can be obtained by

integrating the first-order Vlasov equation along unperturbed

particle orbits. However, when one solves the second-order

Vlasov equation as an initial value problem with the initial

condition f2jt�0 ¼ 0, the incident wave field applied in the

JBB work is actually equivalent to

E1ðr; tÞ ¼ E
_

ðrÞexpð�ixtÞ t > 0

0 t � 0
;

(
(3)

whose Fourier transform is

ð1
�1

E1ðr; tÞexpðix_ tÞdt ¼ E
_

ðrÞ i

ðx_ � xÞ
þ pdðx_ � xÞ

" #
:

(4)

On the one hand, this setup gives a non-monochromatic

spectrum. The spectrum has no influence on the linear dis-

persion relation, but may induce some nonphysical modes

(e.g., local upper-hybrid modes described in Appendix A of

Ref. 13). When the Vlasov equations are solved as initiala)Electronic mail: chen@ipp.ac.cn
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value problems in theoretical analysis or particle simulations,

these spurious modes could produce nonphysical response

through the nonlinear self-coupling. On the other hand, the

setup invalidates the multiple-timescale-separation assump-

tion as follows. Equation (3) indicates that the evolution

timescale Tenv for the envelop evolution is much smaller than

the oscillation period 2p=x at the initial time t ¼ 0. Then

the time-averaging over the oscillation period diminishes the

turn-on process of the envelop as well as the fast oscillation.

The adiabatic turn-on of the wave field should be retained to

obtain the nonresonant ponderomotive effect.12 Thus, it is

expected that the direct orbit integration will lead to the

wrong ponderomotive force.

In this paper, we will apply a slowly ramp-up rf field as

the driving field for the rf kinetic equation, which is

E1ðr; tÞ ¼ E
_

ðrÞ expðixtÞð1� e�btÞ; t > 0

0; t � 0;

(
(5)

where the timescale for the envelop evolution satisfies

Tenv � 1=b� 2p=x. This applied field make the timescale

separation feasible (i.e., xt� bt� 1), and gives a roughly

monochromatic spectrum. The specified form in Eq. (5) is

not exclusive. For example, the ramp-up factor can be

ð1� e�btÞ2 as that in Ref. 13 for particle-in-cell simulation,

which can also separate the timescale and lead to the correct

nonresonant response. After the modification, additional

nonsecular reactive/nonresonant components of the second-

order distribution function are obtained, which are closely

related to the secular resonant component in the original

solution by JBB. Furthermore, a correct nonresonant force

consistent with the fluid theory is obtained. Meanwhile the

resonant forces in the flux surface and other resonant

moments are still the same as that from original JBB theory,

since the resonant components do not change at all.

Another kinetic theory based on guiding-center formu-

lation was developed by Myra and D’Ippolito (MD).12 Due

to the clear timescale separation of the second-order distri-

bution into the gyro-averaged and the gyro-angle depend-

ent components, the forces and the energy absorption rate

were obtained even without the explicit solution of the

second-order distribution function. Their work indicates

that the secular response only exists in the guiding-center

distribution function which may be affected by our modifi-

cation of the wave field. Using a multiple-timescale analy-

sis for the gyro-averaged Vlasov equation, the evolution

equation for the diagonal terms of the pressure tensor was

obtained, and then the nonresonant ponderomotive forces

in the electrostatic (ES) limit and in the cold-fluid limit

could be calculated (see Appendix B in Ref. 12). The

explicit solution of f2 given in this paper is consistent with

their theory.

The rest of the paper is organized as follows. To avoid

complexity, a simple case of ES wave in unmagnetized plas-

mas is introduced in Sec. II. The rf forces are derived from

the fluid theory, the original JBB kinetic theory and the

modified second-order kinetic theory, respectively. In

Sec. III, the general case for electromagnetic (EM) wave in

magnetized plasmas and the discussion with guiding-center

formulation by MD are presented. Finally, a discussion and

summary is given in Sec. IV.

II. ELECTROSTATIC WAVE IN UNMAGNETIZED
PLASMAS

A. Kinetic formulation of rf force for electrostatic wave

Ignoring collisions on the rf timescale, the velocity dis-

tribution function can be obtained from the Vlasov equation

@f

@t
þ v � rf þ q

m
½E1 þ v� ðB0 þ B1Þ� � rvf ¼ 0: (6)

The distribution function is expanded in powers of the

perturbed electric fields as f ¼ f0 þ f1 þ f2, where f0 is the

equilibrium distribution function, f1 is the linear response to

the perturbed field, and f2 is the slowly varying (in time) part

of the second-order response. Following the JBB work

we assume that the wave amplitude varies slowly along the

x-axis. Then the rf force can be defined as the sum of quasi-

linear electromagnetic force and nonlinear stress force, i.e.,

Fx 	 FEM;x �rx � Pxx; (7)

where FEM 	
Ð

qh½E1ðr; tÞ þ v� B1ðr; tÞ�f1ðr; v; tÞitd3v is

the quasi-linear kinetic electromagnetic force and P

	 m
Ð

f2ðr; v; tÞvvd3v is the nonlinear kinetic stress. The time

average for any nonlinear product AB, expressing in terms of

their Fourier representations, is frequently abbreviated as

hABit ¼
X
k;k0

1

4
eiðk�k0Þ�rA
k0Bk þ c:c: (8)

For the sake of simplicity, we consider a problem of an

ES wave propagating in unmagnetized plasmas (i.e., B0 ¼ B1

¼ 0) in this section. Here the wave vector is also oriented

along the x-axis, i.e., E1ðr; tÞ / EðxÞ expðikx� ixtÞ. With

null magnetic field, the kinetic electromagnetic force

reduces to quasi-linear electrostatic force, i.e., FES

	
Ð

qhE1ðr; tÞ f1ðr; v; tÞitd3v, and the complete nonlinear

stress still requires the solution of the second-order distribu-

tion function.

B. Fluid theory

We first calculate the rf force in the cold-fluid limit from

the fluid theory. In the cold-fluid limit, the quasi-linear electro-

static force becomes FES ¼ hqn1E1it while the nonlinear stress

reduces to the well-known Reynolds stress P ¼ hn0mv1v1it.
Using the momentum equation,

�ixmv1 ¼ qE; (9)

and the continuity equation,

�ixn1 ¼ �n0ðr þ ikÞv1; (10)

we can obtain the quasi-linear electrostatic force as

FES ¼
n0q2

4mx2
rjEj2; (11)

and the nonlinear stress force as
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�rxPxx ¼ �
n0q2

2mx2
rjEj2: (12)

Thus, in the cold-fluid limit, the rf force due to an inhomoge-

neous ES wave is

Fcf ;ES ¼ �
n0q2

4mx2
rjEj2: (13)

C. Original second-order kinetic theory

Now, we calculate the rf force induced by the ES wave

through the kinetic approach of integrating along unper-

turbed particle orbits with the same initial wave field applied

as in the original JBB kinetic theory. Although the ES case

has never been considered in Ref. 2, for simplicity, we may

refer to this analysis as the original JBB result in the ES

limit. The perturbed electric field of the wave is assumed as

E1ðx; tÞ / Eðx=LÞexpðikx� ixtÞ, where Eðx=LÞ represents

the slowly varying amplitude in real space and hereafter L is

the wave-envelope scale length. For the perturbation calcula-

tion, we use the slowly varying approximation, i.e.,

vtrEðx=LÞ=Eðx=LÞ � 1. The force will be calculated to first

order in vt=L.

The first-order Vlasov equation is solved for f1 by inte-

grating along unperturbed particle orbits

f1ðx;v;tÞ¼�
q

m

ðt

0

dt0E1ðx0;t0Þ@vf0ðx0;v0Þ þ f1ðx�vt;v;0Þ: (14)

It yields directly

f1¼�
q

m
eikx�ixt i

�x
ð1�ei�xtÞEþ1�ei�xtþi�xt

�x2
vrE

� �
@vf0

þ f1ðx�vt;v;0Þ; (15)

where �x 	 x� kv. As customary the initial terms of (15)

[i.e., terms like expð�ikvtÞ] can be dropped by appealing to

phase-mixing arguments14 for t� ðk�vÞ�1
. Therefore, in the

JBB work, only the forced oscillation is retained as that in

Stix’s textbook,15 i.e.,

f1 ¼ �
q

m
eikx�ixt i

�x
Eþ ð1þ i�xtÞv

�x2
rE

� �
@vf0: (16)

Using Eq. (16) [instead of Eq. (15)], we obtain the quasi-

linear electrostatic force as

FES ¼ �
q2

2m
Re

ð
dv

i

�x
jE2j þ ð1þ i�xtÞv

2�x2
rjE2j

� �
@vf0: (17)

With the argument of causality, we use the Sokhotski–Plemelj

theorem

lima!0

1

�x þ ia
¼ P

1

�x

� �
� ipdð�xÞ; (18)

to divide the force into two parts as

FES ¼�
q2

2m

ð
dvpdð�xÞ jE2j þ tv

2
rjE2j

� �
@vf0

� q2

4m

ð
dvP

1

�x2

� �
vrjE2j@vf0: (19)

The first part, proportional to dð�xÞ, is the resonant force

with the Landau damping while the other part is nonreso-

nant. In the cold-fluid limit, �x � x and the nonresonant

part becomes q2=ð4mx2ÞrjE2j, which is consistent with

Eq. (11), the quasi-linear electrostatic force from the fluid

theory.

The second-order distribution function is required to

zero order in ðvt=LÞ�1
to obtain the nonlinear stress force to

first order. The second-order Vlasov equation is

@tf2 þ v@xf2 ¼ �
q

m
hE1ðr; tÞ@vf1it; (20)

where f1 is given in Eq. (16). Then Eq. (20) is solved by

again integrating along unperturbed particle orbits with the

initial condition f2jt�0 ¼ 0. The initial condition implies that

the perturbed field before the initial time vanishes even with-

out any explicit statement; and the multiple-timescale sepa-

ration becomes unavailable while the equivalent wave field

is not monochromatic. The linear response f1 from Eq. (16)

is still monochromatic because the initial information was

dropped according to phase-mixing arguments. Therefore, in

essence, the first-order Vlasov equation was solved as an

eigenvalue problem. It is more natural to solve the first- and

the second-order Vlasov equations as the same kind problem.

These equations will both be solved as initial value problems

in Subsection II D.

Returning to the orbit integral of Eq. (20), it yields

f2;0 ¼
q2

2m2
RejE2j@v

it

�x
@vf0

� �

¼ tpq2

2m2
jE2j@v½dð�xÞ@vf0�; (21)

where the subscript 0 in f2;0 means f2 is retained to zero order

in ðvt=LÞ�1
, and the Sokhotski–Plemelj theorem is used at

the second equal sign. Then the nonlinear stress force is

obtained as

�rx � Pxx ¼
pq2

m
trjE2j

ð
dvvdð�xÞ@vf0; (22)

which contains only the resonant force and is inconsistent

with Eq. (12) in the cold-fluid limit. As a result, the incom-

pleteness of nonresonant response leads to a wrong descrip-

tion of the whole radial ponderomotive force from the

original JBB kinetic theory.

D. Upgraded second-order kinetic theory

We now calculate the radial force from the upgraded

second-order kinetic theory by replacing the applied rf field

with that of Eq. (5). As mentioned previously, this modifica-

tion make the time-separation available and will lead to the

correct reactive response as shown below. However, it is not
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clear whether the resonant response would change while the

perturbed field changes. If we use the Sokhotski–Plemelj

theorem again to expand terms like 1=ð�x � ibÞ, it yields

lima!0

1

�x þ ia� ib
¼ P

1

�x � ib

� �
� 2ipdð�x � ibÞ: (23)

The first part on the right-hand side is a complex function

instead of a pure real one as that in Eq. (18), and the resonant

factor dð�xÞ does not appear explicitly. So it is hard to com-

pare the modified result with that from the original JBB

theory. Instead of using the Sokhotski-Plemelj theorem, we

retain the initial terms in both f1 and f2, and then obtain the

resonant factor by using the identity, limt!0 sinð�xtÞ=�x
¼ pdð�xÞ. This method is the same as that used in

Friedberg’s textbook for discussions on collisionless damp-

ing from particle motions.16

Only the nonlinear stress force needs to be modified, so

henceforth the distribution function is retained to zero order

in ðvt=LÞ�1
. With some direct calculations, we obtain the lin-

ear response as

f1;0 ¼ g1ð0Þ � g1ðbÞ; (24)

with

g1ðsÞ 	 �
q

m
eikx�ixt�stð1� ei�xtþstÞ i

�x � is
E

� �
@vf0: (25)

Substituting Eqs. (24) and (25) into Eq. (20) and integrating

again along unperturbed particle orbits, the modified second-

order distribution function is obtained as

f2;0 ¼ f c
2;0 þ f init

2;0 ; (26)

with

f c
2;0 	 gc

2ð0; 0Þ � gc
2ðb; 0Þ � gc

2ð0; bÞ þ gc
2ðb; bÞ (27)

and

f init
2;0 	 �

q2

2m2
RejEj2@vðCK@vf0Þ; (28)

where

gc
2ðr; sÞ 	

q2

2m2
Re

1� e�rt�st

r þ s
jEj2@v

i

�x � is
@vf0

� �
; (29)

C 	 ei�xt � 1

�x
� ei�xt�bt � 1

�x þ ib
; (30)

K 	 1

�x
� 1

�x � ib
; (31)

and

1� e�rt�st

r þ s

����
rþs¼0

	 t: (32)

Using the identity, limt!0 sin �xt=�x ¼ pdð�xÞ, as well as

cos �xt� 1

�x2
¼ � @

@ �x
cos �xt� 1

�x
� t sin �xt

�x
; (33)

f2;0 can be expressed as

f2;0 ¼
q2

2m2
RejE2j@vf½tpdð�xÞ � Knr;0�@vf0g; (34)

where the additional nonresonant component is obtained as

Knr;0 	 Re
i

2bð�x � ibÞ �
b2

�x2ð�x2 þ b2Þ
: (35)

Considering the multiple-timescale assumption (xt� bt� 1)

and expanding to the first order in b, the nonresonant compo-

nent becomes

Knr;0 ¼ �
1

2�x2
: (36)

After comparing Eq. (34) with Eq. (21) we can conclude that

the modification of the applied wave field only leads to an

additional reactive/nonresonant term, i.e., the second term in

the bracket of Eq. (34). Furthermore, this reactive component

in the distribution function only results in additional reactive

components of the moments, e.g., density, particle flux,

energy, and so on. This additional component is nonsecular

so that the time derivatives of those moments and the

moment equations remain unchanged. Since the resonant

response stays unchanged, the resonant moments (including

the resonant force) from the previous kinetic theory are cor-

rect even without the modification of the applied wave field.

Now, we consider the nonresonant force in the cold-

fluid limit, i.e., jkvj � x, by which the resonant component

can be neglected. In consideration of b=x� 1, Eq. (36) can

be used. With these approximations, the nonlinear stress

force becomes

�rx � Pxx ¼ �
n0q2

2mx2
rjE2j: (37)

This stress force is as same as that from the fluid theory,

Eq. (12). The quasi-linear electrostatic force can also be

obtained and is the same as the previous kinetic result in

Eq. (19), which is consistent with the fluid force in the cold-

fluid limit. Therefore, the total radial nonresonant forces

from the kinetic and the fluid theories become consistent

with each other.

III. ELECTROMAGNETIC WAVES IN MAGNETIZED
PLASMAS

A. Modified JBB theory

In this section, we present a general modification to the

JBB theory in the case of EM waves in magnetized plasmas.

The process is quite similar to the ES wave case shown in

the last section. Generally, the tokamak plasma is modeled

as a perpendicularly stratified, one-dimensional slab plasma

where x, y, and z refer to radial, poloidal, and toroidal
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coordinates, respectively; and the wave amplitude varies

slowly along the radial direction.2

We now consider the modified second-order kinetic

theory. Replacing the wave field by that defined in Eq. (5)

and solving the first-order Vlasov equation as an initial value

problem with f1jt�0 ¼ 0, we obtain the linear response as

f1 ¼�
2qfM

ma2

ð
dkxeik�x�ixteiksinðu�hÞ

X
l

eilðh�uÞHl � E

� 1

i

1

�xl
ð1� ei�x l tÞ � 1

�xl � ib
ðe�bt � ei�x l tÞ

� �
; (38)

where �xl 	 x� lX� kzvth and the other notations are the

same as those in Ref. 2. Compared with that in the JBB

work, f1 here contains extra terms with b and the initial

response expði�xltÞ. Substituting Eqs. (5) and (38) into the

second-order Vlasov equation and following the tedious cal-

culation similar to the JBB method, we can obtain the modi-

fied second-order distribution. We omit the lengthy details

and directly discuss the difference due to the modification.

Compared with the solution in the JBB work, only the inte-

gration Km in f2 changes here. In the original JBB work,

Km=�xl defined at Eq. (32) in Ref. 2 was evaluated as

1

�xl
Km 	

1

�xl
lim
c!0

ð0

�t

dsecseiðl�l0þmÞXs

¼
P

t

�xl

� �
� iptdð�xlÞ; l� l0 þ m ¼ 0

P
1

iðl� l0 þ mÞX
1

�xl

� �
� pdð�xlÞ
ðl� l0 þ mÞX ; l� l0 þ m 6¼ 0:

8>>><
>>>:

(39)

In this work, Km=�xl becomes

1

�xl
Km

� �
b

¼
P

t

�xl

� �
� itpdð�xlÞ þ iPðKnr;lÞ; l� l0 þ m ¼ 0

P
1

iðl� l0 þ mÞX�xl

� �
� pdð�xlÞ
ðl� l0 þ mÞX ; l� l0 þ m 6¼ 0

;

8>>><
>>>:

(40)

where

Knr;l 	 Re
i

2b
1

�xl � ib
� b2

�xl
2ð�xl

2 þ b2Þ
; (41)

and expanding to the first order in b

Knr;l ¼ �
1

2�xl
2
: (42)

It should be noted that fast damping terms like expð�btÞ and

fast oscillation terms like expðiXtÞ are neglected. In view of

Eqs. (40)–(42), the modification only leads to an additional

reactive component in the second-order distribution function

as same as that for the ES case in the last section. It also

means that all the resonant moments stay unchanged.

Then the modified forces can be obtained just after con-

sidering the modification to the secular terms from the JBB

work. In the Appendix, the secular components of f2 is found

to be resonant, i.e., Pðt=�xlÞ vanishes in the final form of f2.

Thus, for calculations only to the first order in b, we can

replace �itpdð�xlÞ in the JBB work with �itpdð�xlÞ
�i=ð2�xl

2Þ to obtain the modified forces. Then the nonreso-

nant radial force in the cold-fluid limit becomes

Fnr ¼ �
n0q2

4m

1

x2

@

@x
jEzj2 þ ðFaÞT!0; (43)

where the additional force after the modification is

ðFaÞT!0¼�
n0q2

8m

1

ðx�XÞ2
@jE2

þj
@x
þ 1

ðxþXÞ2
@jE2

�j
@x

 !
: (44)

The nonresonant force is now consistent with Eq. (2) from

the fluid theory. Furthermore, the radial momentum equation

can be obtained as

@

@t
ðmnUxÞ � XmnUy ¼ Fx; (45)

where nUx and nUy represent the radial and the poloidal flux,

respectively. Here the whole radial rf force is

Fx ¼
1

2
Re
X

l

E �
�kx

x
Wl � t@x

lX
x

Wl

� �� �
� Eþ Fnr; (46)

where Wl is the W matrix (defined in Refs. 3 and 8) related

to the local energy absorption rate due to resonant interaction

and Fnr represents the nonresonant force. The first term in

the brackets, ð�kx=xÞWl, represents the resonant momentum

absorption, while the second term t@xðWllX=xÞ represents

approximately the gradient of the increasing perpendicular

pressure by resonant heating.
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As mentioned above, only the secular terms in the origi-

nal JBB work change through the modification. Since the

secular terms are cancelled naturally for the calculation for

the poloidal and the parallel forces,8,9 those forces are still

valid even without the modification. It is also expected from

the derivation from the guiding-center formulation in Ref. 3

or from their physical picture described in Ref. 9.

B. Comparison with the guiding-center formulation

The guiding-center formulation of the rf kinetic theory

developed by Myra et al. can produce all the moments

needed. In the MD theory, the second order distribution

function is separated into the gyro-averaged and the gyro-

angle-dependent components, i.e., f2 ¼ hf ð2Þi/ þ ~f
ð2Þ

. The

index (2) is lifted to follow the MD’s notation and to empha-

size that those function are defined in guiding-center

coordinate ðR; v?; vjj;/Þ not the lab coordinate ðr; vÞ. The

evolutionary equation for the gyro-angle-dependent compo-

nent is

�X
@~f
ð2Þ

@/
¼ �ha1 � rvf1it þ ha1 � rvf1i/;t; (47)

and that gyro-averaged kinetic equation is

@

@t
þ vjjrjj

� �
hf ð2Þi/;t ¼ �ha1 � rvf1i/;t; (48)

where a1 	 ðq=mÞðE1 þ v� B1Þ. In Ref. 3, the resonant

force in flux surface to the first order in q=L was given

through an ingenious technology without the explicit solu-

tion for these equations while the correct nonresonant force

in ES limit was given in Appendix B in Ref. 12.

It is apparent that only the guiding-center distribution

function hf ð2Þi/;t contains the secular response. If the explicit

expression of f2 is required (e.g., for benchmark with PIC

simulation,7 Vlasov simulation,17 and drift kinetic simula-

tion18), Eq. (48) would be integrated and then the same prob-

lem like that in JBB theory may be encountered. To compare

the solution with the modified JBB result, the parallel con-

vective term will be neglected below. The same correction

method presented in Sec. II can be applied here to obtained

hf ð2Þi/;t, which equals to the corresponding components in

the modified JBB solution. The obtained hf ð2Þi/;t is presented

in the Appendix.

In the MD theory, the resonant forces in flux surface

were calculated only with f1 and ~f
ð2Þ

. Noting the timescale-

separation assumption, i.e., @=@t� X and vjjrjj � X,

Eq. (47) is enough for evaluating ~f
ð2Þ

. The assumption is

consistent with the complete evolution equation for ~f
ð2Þ

solved with the modified wave field of Eq. (5). Thus, those

resonant forces from the MD theory stay unchanged even by

using a slowly ramped field.

Now, we consider the method used in MD theory to

obtain the reactive part of hf ð2Þi/;t or the relevant reactive

part of stress tensor.12 In brief, the right hand side of the

gyro-kinetic equation should be expressed as time derivatives

of reactive quantities considering “an adiabatic turn-on pro-

cess in the past” (see Appendix B in Ref. 12). The slowing

varying field can also be thought as a damping or growing

wave with a complex frequency xc ¼ xþ ic equivalently. In

conventional quasilinear theory,15 the resonant factor 1=�xl is

expanded as follows:

1

xc � lX� kzvz
� P

1

�xl

� �
� ipdð�xlÞ þ ic

@

@x
P

1

�xl

� �
; (49)

where the third term at the right hand side represents the

reactive response. Noting that damping/growing rate can be

replaced by a time derivative, i.e., c ¼ ð@=@tÞ=2, then the

reactive response can be re-expressed as �iPð1=2�xl
2Þ@t.

The time derivative is now applied on second-order quanti-

ties, e.g., the square of field amplitude. After this replace-

ment of the resonant factor in the right hand side of Eq. (48),

one can directly get the reactive response related to the pre-

vious secular resonant response. The result is the same as

that from the orbit integration with the modified applied

field, which results in a secular response and an additional

reactive component Re½PðKnr;lÞ� � �1=ð2�xl
2Þ. In retrospect,

the reactive response related to the secular response can be

obtained, if the adiabatic turn-on process of the wave is

included in the derivation either by using an explicitly form

of slowly ramped wave field or by just assuming a time-

varying wave amplitude as same as that in the conventional

quasilinear theory or in the MD theory.

IV. DISCUSSION AND SUMMARY

There are some other kinetic theories on ponderomo-

tive forces, e.g., the Lie transform approach by Cary and

Kaufman,19 in which the definition of ponderomotive force

was equivalent to the single particle ponderomotive force

excluding the Reynolds stress and the polarization stress.

The difference between the fluid ponderomotive force and

the single particle ponderomotive force was discussed in

Ref. 11. For calculations of fluxes driven by rf waves, the

nonlinear stress should be included.1,2

Although the nonresonant ponderomotive force cannot

directly drive the poloidal or the toroidal flows, it can mod-

ify the radial electric field through the radial momentum

balance.1 It can also balance the Lorentz force due to the

poloidal flow. Recently, a particle-in-cell simulation

showed that nonlinear parametric decay of rf waves near a

lower-hybrid-resonant layer could induce a large nonreso-

nant ponderomotive force.7 That force would lead to a

strong poloidal diamagnetic flow which could not be effec-

tively damped by classical or neoclassical viscosity. Correct

nonresonant and resonant forces from a unified kinetic

framework might be required to deal with these highly non-

linear phenomena. When the wave amplitude is strong

enough, bulk particles are subject to orbit instability and

then diffuse in position space.20 More advanced tools, such

as renormalization, are required to calculate the nonlinear

forces near cyclotron resonance, however, beyond the scope

of the present analysis.
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In summary, we have revisited the nonlinear rf kinetic

theory and resolved the incongruity between the nonresonant

ponderomotive force from the second-order rf kinetic theory

and the conventional fluid ponderomotive force. When the

second-order Vlasov equation is treated as an initial value

problem, the preset wave field should slowly ramp up with a

rate smaller than the oscillation frequency to make the

multiple-timescale separation feasible; otherwise, it leads to

a wrong nonresonant force. This modification only leads to

an additional reactive/nonresonant component of the second-

order distribution function. Then the correct nonresonant

ponderomotive force is obtained, while the resonant

moments of the distribution function are the same as that

from previous kinetic theory. In hindsight, when using the

approach of integrating along unperturbed particle orbits to

solve high order Vlasov equations, the applied EM field

should be carefully selected to reproduce the rising process

of the wave and the correct reactive response.
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APPENDIX: SECOND-ORDER DISTRIBUTION
ON GUIDING-CENTER POSITION

Using the wave field of Eq. (3) and integrating the gyro-

averaged kinetic equation (48) along unperturbed guiding-

center orbits, the secular response of guiding-center distribu-

tion is obtained as

hf ð2;sÞi/;t¼�
q2

m2a2

X
kR

x ;k
L
x

eiðkR
x�kL

x ÞRx

X
l

eilðhR�hLÞ

�
�

1

2

1

v?
þ @

@v?

� �
ðA
þeihL Ĵ l�1þA
�e�ihL Ĵ lþ1Þ

þkzv?
2x

@

@vz
ðE
þeihL Ĵ l�1þE
�e�ihL Ĵ lþ1Þ

þ @

@vz
E
z 1� lX

x

� �
Ĵ l

þ idkx

2X
½iðA
þ �A
�ÞĴ l�B
ðeihL Ĵ l�1þe�ihL Ĵ lþ1Þ�

�
;

(A1)

where Ĵm ¼ ifMJmðkLÞH � ERt=�xl, A6 ¼ E6ð1� kzvz=xÞ
þEzvzk6=x, B ¼ ðEykx � ExkyÞv?=2x, and

H � ER 	
1

2
Eþv?Jl�1ðkRÞe�ihR þ 1

2
E�v?Jlþ1ðkRÞeihR

þEzvzJlðkRÞ: (A2)

Equation (A1) just equals to the secular part of the original

JBB result.2 Then two conclusions can be drawn here. The

first is that only the applied field of gyro-averaged kinetic

equation needs modification to obtained the correct reactive

component related to the secular component. The second is

that the possible secular flux in the perpendicular plane is

due to diamagnetic effect but not the drift of guiding-centers.

The secular component of diamagnetic poloidal drift can be

obtained as follows:ð
d3vvy 1þ vy

X
@x

� �
hf ð2Þi/;t ¼

ð
d3v

v2
?

2X
@xhf ð2Þi/;t; (A3)

where the gradient comes from the transformation between

the lab coordinate and the guiding-center coordinate.

Furthermore, hf ð2;sÞi/;t can be proved to be resonant to

the first order in q=L. The process of proof includes adding

or subtracting nX to cancel the resonant denominator and

then using Graf’s formula21 to prove that the nonresonant

terms are higher order small. Therefore, the secular resonant

factor t=�xl in Eq. (A1) can be replaced by �itpdð�xlÞ. The

reactive components of hf ð2Þi/;t can be obtained just by

replacing the secular resonant factor by �i=ð2�x2
l Þ as that in

the correction for the JBB result.
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