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Abstract: When objects undergo large pose change, illumination variation or partial occlusion, most existed visual tracking
algorithms tend to drift away from targets and even fail in tracking them. To address this issue, in this study, the authors
propose an online algorithm by combining multiple instance learning (MIL) and local sparse representation for tracking an
object in a video system. The key idea in our method is to model the appearance of an object by local sparse codes that can
be formed as training data for the MIL framework. First, local image patches of a target object are represented as sparse
codes with an overcomplete dictionary, where the adaptive representation can be helpful in overcoming partial occlusion in
object tracking. Then MIL learns the sparse codes by a classifier to discriminate the target from the background. Finally,
results from the trained classifier are input into a particle filter framework to sequentially estimate the target state over time in
visual tracking. In addition, to decrease the visual drift because of the accumulative errors when updating the dictionary and
classifier, a two-step object tracking method combining a static MIL classifier with a dynamical MIL classifier is proposed.
Experiments on some publicly available benchmarks of video sequences show that our proposed tracker is more robust and
effective than others.
1 Introduction

Object tracking is a well-studied issue in computer vision and
plays a crucial role in many practical applications, such as
video surveillance, human motion understanding and
interactive video processing and so on. Although existing
trackers have made some success under various scenarios,
objects tracking is still challenging because the appearance
of an object can be changed drastically while it undergoes
significant pose change, illumination variation and/or partial
occlusion. Such a thorough review can be found in [1],
which presented a typical tracking system that can be
decomposed into three components: an appearance model,
which evaluates the similarity of the object of interest being
at different particular locations; a motion model, which
locates the target over time; and a search strategy for
finding out the most likely location for the target in the
current frame. In this paper, we focus on the design of a
robust appearance model and a two-step tracking strategy
integrating online multiple instance learning (MIL) with
local sparse representation.
In [2], the tracking problem was formulated to find a sparse

approximation using template subspace, and experiments
were also found to be efficient and adaptive to address the
aforementioned challenges, especially in the case of partial
occlusion. However, besides the high computational cost of
the tracking process, another drawback is the limitation of
the appearance method to model holistic object appearance
within a generative framework. The results have shown that
training an adaptive model to separate object from the
background by a discriminative classifier can often obtain
good tracking results. However, a major challenge of the
discriminative method is how to choose positive and
negative samples when updating the adaptive appearance
model. Moreover, most discriminative trackers took the
current object location as one positive sample, and sampled
its neighbourhoods for negatives. If the current object
location is imprecise, however, this could degrade the
appearance model and cause drift. On the other hand, it is
very difficult to discriminate the object when updating
classifier by the use of multiple positive samples.
To overcome those challenges, we turn to adopt a

discriminative learning paradigm called MIL. The pioneer
work of MIL was reported in [3], in which labels of
training data were naturally represented by a bag of
instances instead of individual one. In the framework
of MIL, a bag is labelled as positive if it contains at least
one positive instance, otherwise the bag is negative.
Actually, a positive bag may contain a few possible
bounding boxes around the current object location, whereas
the MIL can effectively eliminate the ambiguity (the
unwanted instances) and figure out which instance in each
positive bag is the most important one (the most correct
instance). Subsequently, Babenko et al. [4, 5] developed an
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online MIL algorithm for visual tracking. Although their
results showed that the MIL can help reduce drifts for
object tracking, the instances in bags cannot be selected
effectively because of the noise caused by frequently
updating the MIL appearance model with new input targets
to be tracked. To decrease the visual drift, Matthews et al.
[6] proposed a two-step approach to model appearance for
robust tracking target, whose first step was to estimate
tracking result by applying online template from the most
recent frame and then the final target location was
determined by using the template from the first frame.
However, it also suffered from drift problem when an
object undergoes partial occlusion. Wang et al. [7]
proposed a two-stage algorithm to exploit both the ground
truth information of the first frame and observations
obtained online. However, it modelled target as a single
instance, trained a liner classifier by sparse codes and thus
faced the same challenge similar to that mentioned above,
in that it was difficult to precisely choose positive and
negative samples when updating the liner classifier.
Inspired by the works mentioned above, we propose an

efficient tracking algorithm containing online MIL based on
local sparse representation. On the one hand, the unwanted
instances can be removed by the MIL trainer, which can
strengthen the MIL classifier with true positive instances. On
the other hand, local sparse representation has been shown
to be more robust than other representations when objects
undergo pose change, illumination and/or partial occlusion.
Therefore different from traditional discriminative tracking
methods that use multiple image features, this paper
proposes a more robust appearance model by making full
use of the advantages of the MIL and local sparse
representation. First, an overcomplete dictionary is learned
Fig. 1 A discriminative MIL classifier based on local sparse representa

To initialise the MIL classifier in the first frame, positive and negative patches around
these patches around the target and those from the background are, respectively, com
sparse codes of the positive and the negative bags, where A+

i and A−
i correspond to

respectively, while a−i M− and a+i M+ are the corresponding sparse codes of image pa
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directly from raw image patches. Then, objects are
represented with local sparse codes by minimising the
reconstruction error and maximising the sparsity of each
image patch at the same time. Finally, the MIL classifier is
trained by the local sparse codes of the positive and negative
image patches shown in Fig. 1 and the tracking task is
formulated as a classification problem.
Here the proposed two-step tracking strategy adopts a

dynamic and a static MIL classifier based on local sparse
representation, which can effectively select the wanted
instances and eliminate the unwanted instances in bags to
train MIL classifier for robust tracking. In the first step,
sparse codes of each candidate are computed using the
online updated dictionary, and then a dynamical classifier is
applied to discriminate the target and estimates its candidate
locations. In the second step, a static MIL classifier is
trained by using the sparse codes of image patches
consisting of positive and negative ones from the first video
frame, and then it is used to select the best accurate target
position resulted from the first step. The flowchart of the
proposed method is shown in Fig. 2.
In summary, the first contribution of this paper is the

proposed adaptive appearance model combining online MIL
and local sparse representation, which makes full use of the
advantages of MIL and local sparse representation. On the
one hand, local sparse representation has more robust
appearance model, especially in the case of partial
occlusion. The objects can be effectively represented by
sparse codes of the corresponding image patches. On the
other hand, the MIL classifier can handle ambiguous binary
data obtained online. Therefore different from [5] whose
training data for the MIL classifier are composed of sparse
codes instead of a pool of features directly from raw image
tion

the labelled target are first drawn, and then the corresponding sparse codes of
puted using a dictionary. Lastly, the MIL classifier is obtained by training the
the mapped features of a positive and a negative bag based on sparse codes,
tches and computed by (5), respectively.
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Fig. 2 Flowchart of the proposed tracking method
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patches, our MIL classifier provides a more flexible
mechanism to deal with the problem mentioned above in
object tracking. The second contribution is the proposal of a
two-step tracking strategy involving the collaboration
between the dynamic and static MIL classifiers based on
local sparse representation to reduce the drift during
tracking process. Different from recent two-step tracking
methods which used multiple image features or linear
classifier [6, 7], our algorithm incorporates local sparse
codes into the framework of the MIL classifier. So the
dynamic and static MIL classifier have the desired property
that described above and can effectively separate the object
322
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from the background in the first step and the second step
tracking process.
The remainder of this paper is organised as follows: the

related works in appearance models are reviewed in Section
2; Section 3 shows the proposed appearance model based
on local sparse representation within the framework of
MIL; Section 4 presents a two-step object tracking system
with a static and a dynamical MIL classifiers; Section 5
shows our tracking algorithm with particle filter; in Section
6 qualitative and quantitative results of our tracker on six
challenging video clips are reported; Some conclusions are
made in Section 7.
IET Comput. Vis., 2013, Vol. 7, Iss. 5, pp. 320–334
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2 Related works

Many works have focused on object representation which is a
key part of object tracking. A good object representation
should have strong description or discrimination power to
distinguish targets from background. In general, most
algorithms modelled the object appearance by extracting
features from global object region [8–11]. Colour histogram
was one of the most widely used features [12] and has been
implemented in different tracking algorithms [13–17].
However, those trackers didn’t work well when objects
undergo illumination change or scale change. To address
these issues, object representations based on scale-invariant
feature transform (SIFT) [18], histogram of oriented
gradient (HOG) [19], local binary pattern (LBP) [20]
descriptors were designed and recently, a class of
appearance modelling techniques named sparse
representation [21–23] have been successfully proposed.
These works indicated a novel path for solving the
problems in the case of object occlusion, and have been
successfully applied in robust face recognition [24].
Motivated by the work, more and more work was adopted
sparse representation model for tracking objects [2, 7,
25–27]. In [2], each target candidate was represented as a
linear combination of a set of online updated templates
consisting of target templates and the trivial templates. The
candidate with the smallest error for target template
reconstruction was obtained as the tracking result.
Moreover, Han et al. [26] explored an alternative
formulation of appearance model with sparse representation,
which casted the tracking to find a sparse representation of
sub-image feature sets sampled around the target.
Experimental results demonstrated the robustness of these
approaches; however, the large computational cost
prohibited the further application of sparse representation in
practice. To accelerate object tracking, a two stage sparse
optimisation [28] was proposed by straightforwardly
reducing data dimension. More recently, Bai et al. [27]
presented a structured sparse appearance model for tracking,
and block orthogonal matching pursuit was adopted to
solve the structured sparse representation problem for
reducing the computational cost. But, since the templates
that are directly cropped from target image are very limited,
the above trackers [27, 28] may fail because the linear
representation of the target may not be accurate.
Many of the recent studies have shown that training a

model via a discriminative classifier can often performed
well in discriminating the object from the background
[29–33]. Avidan [29] trained a support vector machine
(SVM) classifier offline and applied its extension in an
optimal flow framework for object tracking. Furthermore,
Avidan [30, 34] developed an online boosting method for
tracking targets, which was an ensemble tracker that
constructed a strong classifier by training a set of weak
classifiers. Zhou et al. [35] trained l-norm SVMs in a
feature space for robust tracking. Grabber and Bischof [36]
utilised online AdaBoost algorithm with a proposed novel
feature selection method. Parag et al. [37] also applied
boosting method for tracking, but the form of the weak
classifier themselves was updated with the change of
background. Grabner et al. [38] proposed a semi-supervised
approach, where the labelled instances were sampled from
the first frame only and the subsequent training samples
were left unlabelled. Moreover, different from the above
discriminative tracking methods that use a pool of features
or a set of boosted classifiers, Wang et al. [7] proposed a
IET Comput. Vis., 2013, Vol. 7, Iss. 5, pp. 320–334
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new algorithm combining sparse codes and a linear
classifier directly from raw image patches for object
tracking. One important issue the above discriminative
tracking methods faced is how to effectively choose
positive and negative samples when updating classifiers
with newly input samples, since they cannot determine
whether these samples are noisy or not.
To address the issue, Babenko et al. [4, 5] used MIL

instead of traditional supervised learning to handle
ambiguous binary data obtained online. In some
applications, the MIL tracker can effectively solve the drift
problem caused by self-learning in tracking process.
Although MIL achieved good results, the selection of the
instances in bags was not effective because of existing
noisy instances. Once the noisy instances have been used to
account for ambiguities in labelling positive instances, the
MIL classifier will be degraded when updating itself.
Therefore in this paper, we propose a robust method
combining online MIL and local sparse representation to
select more effective instances for classification.

3 MIL object tracking with the local sparse
representation

3.1 Local sparse representation based appearance
model

Sparse representations have attracted a great deal of attention
in signal processing and have been widely used in many fields
including visual tracking [2, 7, 26, 27]. Consider a signal y ∈
Rn, which will be represented as a linear combination of basic
elements from a dictionary D∈ Rn × K composed of atoms
{dj}Kj=1. A representation of the signal y based on the
dictionary D is any vector x∈ RK that satisfies [23]

y = Dx+ z (1)

where the dictionary D is said to be overcomplete if n <K,
and z is a noise term with bounded energy ||z||2 < ε.
However, the solution of x is generally non-sparse with many
non-zero elements. In order to find out a linear combination
of only a few atoms to approximate the signal y, this problem
can be formally described by Wright et al. [24]

x0
^ = argmin x‖ ‖0 subject to y− Dx

∥∥ ∥∥
2, 1 (2)

where ||·||0 is the l0 norm that counts the number of non-zero
elements, ||·||2 is the l2 norm and the parameter ε demonstrates
the level of reconstruction error. Since the combinatorial
l0-norm minimisation is an non-deterministic polynomial-
time hard (NP-hard) problem, l1-norm minimisation [2] is
applied to replace l0-norm minimisation and formulated as

x1
^ = argmin x‖ ‖1 subject to y− Dx

∥∥ ∥∥
2, 1 (3)

In our algorithm, a local sparse representation is used to
model the appearance of target patches and the
corresponding sparse codes are collected to represent the
object. Given an image T in the first frame, a set of image
patches D = {di|i = 1:K} inside the target region is
obtained by sliding a fixed size window, where di∈ Rn is
the ith column for representing a vectorised image patch, n
is the dimensionality of image patches and K is the number
of image patches. Owing to having overlapped image
323
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patches, similar to Mei and Ling [2], the overcomplete
dictionary is constructed by

F = D, E[ ] (4)

where E = [I, − I ]∈ Rn × 2n represents a trivial basis set and
maintains a non-negativity constraint of the target coefficient
vector, and I = [i1, i2, ..., in]∈ Rn × n is an identity matrix.
in∈ Rn is a vector with one non-zero entry.
Let P = {pi|i = 1:M} denote the vectorised image patches

extracted from an object image, where pi∈ Rn is the ith image
patch, and M is the number of positive image patches and
negative image patches. With the dictionary Φ, each pi will
have a corresponding vector of reconstruction coefficients
αi∈ R(K + 2n), which is computed by

ai
^ = argmin ai

∥∥ ∥∥
1 subject to pi −Fai

∥∥ ∥∥
2, 1 (5)

When the sparse codes A = [α1, …, αM] of all the image
patches in an object region are computed, they are collected
to represent the object and used to train the MIL classifier
for visual tracking.

3.2 MIL

Traditionally, training a binary classifier, that estimates p(y|x),
requires a training data set with form {(x1, y1), …, (xn, yn)},
where each xi, i = 1, …, n is an instance (sparse codes
computed for an image patch in this work), and yi∈ {0, 1}
is a binary label. Different from the traditional methods,
MIL [38] was a generalisation of supervised classification,
in which training class label was associated with a set of
bags, instead of with individual patterns. Therefore in the
multiple instances, learning the training data is formed as
{(X1, y1), …, (Xn, yn)}, where Xi = {xi1, …, xim}, i = 1 ….
n is a bag of instances and yi is the bag label. The basic
idea of MIL is that a bag is assigned as positive label if it
contains at least one positive instance, otherwise the bag is
negative.

3.3 MIL based on local sparse representation

On the one hand, local sparse representation has been shown
to be more robust than others when objects undergo partial
occlusion. On the other hand, MIL can handle ambiguities
in training data more effectively than other classifiers.
Therefore different from classifiers using raw image
features, this work integrates the sparse codes from target
patches into MIL classifier and discriminates the target from
the background in a more robust way.
3.3.1 Sample set based on local sparse
representation: Consider a+ij is the jth instance in the ith
positive bag B+

i and the number of positive bags is denoted
as i + , and similarly, a−ij represents the jth instance in the
ith negative bag B−

i and the number of negative bags is
denoted as i − . Thus A+ = A+

1 , 1
( )

, . . . , A+
N , 1

( ){ }
and

A− = A−
1 , 0

( )
, . . . , A−

N , 0
( ){ }

are used to form the
training data for MIL classifier, where

A−
i = S B−

i , ak
( ) = max exp − a−i M+ − ak

∥∥ ∥∥/s2( )
and

A+
i = S B+

i , ak
( ) = max exp − a−i M+ − ak

∥∥ ∥∥/s2( )
corresponds to the mapped feature of a bag based on sparse
324
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codes, whereas B−
i = a−i 1, . . . , a−i M−

{ }
and

B+
i = a+i 1, . . . , a+i M+

{ }
are, respectively, computed by (5).

The sample construction of our proposed method is
demonstrated in Fig. 1.

3.3.2 MIL classifier with local sparse
representation: Numerous algorithms have been
proposed for solving the MIL problem [35, 39–41]. Among
them, literature [35] trained l-norm SVMs using HOG [19]
features within MIL framework for tracking targets, which
is similar to our work in this paper. However in this paper,
the MIL classifier is trained with local sparse codes from
positive and negative bags instead of using features such as
intensity, colour, texture and Haar-like features. The l-norm
SVMs can be formulated as follows

min
w, b, j,h

l
∑M
k=1

wk

∣∣ ∣∣+ C1

∑
i[B+

ji + C2

∑
j[B−

hj

s.t. (wA+
i + b)+ ji ≥ 1, ∀i [ B+,

B+ = 1, . . . , i+
{ }

, ji ≥ 0

− (wA−
i + b)+ hj ≥ 1, ∀j [ B−,

B− = 1, . . . , i−{ }, hj ≥ 0

(6)

where ξi and ηj are slack variables for positive and negative
bags, respectively, and C1 and C2 are, respectively, penalty
weights for false positives and false negatives. Let w* and
b* be the optimal solution of (6), where the magnitude of
w* determines the influence of the kth feature on the
classifier. Since most elements of the w* are zero, the index
set for non-zero entries in w* is

V = k: w∗∣∣ ∣∣ . 0
{ }

(7)

The classification of bag Bi is computed as

y = sign
∑
k[V

w∗
kS ak , Bi

( )+ b∗
( )

(8)

Equation (8) assigns a label for a bag. An instance αij in bag
Bi is assigned to the positive class, if its contribution to∑

k[V w∗
kS ak , Bi

( )
in (8) is greater than or equal to a

threshold, otherwise the negative class is assigned. The
threshold is a tradeoff between false positive and false
negative classes. Here, the threshold is set to 0.5 and its
range is 0–1. The false positive class may be assigned to an
instance if the threshold is less than 0.5 therefore the
tracking performance is affected by the threshold. To
handle ambiguous data, a minimal set of support instances
are searched out for efficient visual tracking. Thus, the
basic idea of Chen et al. [41] is adopted to classify
instances based on a bag of classifiers. To reselect the most
important instances, an index set is defined as follows

L = j ∗:j ∗ = argmax
j

exp −
aij − ak

∥∥∥ ∥∥∥2
s2

⎛
⎜⎝

⎞
⎟⎠,

⎧⎪⎨
⎪⎩
k [ V, aij [ Ai

⎫⎪⎬
⎪⎭ (9)
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In this sense, Λ defines a minimal set of instances responsible
for the classification of Bi. Hence, removing the instances
αij( j*∉Λ) from the bag Bi will not affect the value of∑

k[V w∗
kS ak , Bi

( )
in (8). Since there may have more than

one instance in the bag Bi, for each ( j*∈Λ), a smaller set
of instances are defined as follows

V j∗ = k:k [ V, j ∗ = argmax
j

exp −
aij − ak

∥∥∥ ∥∥∥2
s2

⎛
⎜⎝

⎞
⎟⎠

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭
(10)

To efficiently find out the most important support instances,
support instances are reselected by (10) and the
classification score of a support instance as is computed by

h(as) =
∑

k[V j∗

w∗
kS ak , as
( )
mk

(11)

where mk is denoted as the number of maximisers for ak.
Once the MIL classifier is initialised, the classification

score can be utilised as similarity measure for tracking
object. Therefore the larger the classification score of a new
support instance is, the more likely the instance is generated
from the target class. Subsequently, the instance with the
maximum score is considered as the tracking result in
current video frame.

4 Two-step object tracking with a static and
dynamical MIL classifier

As we know, the ground truth plays a key role in determining
whether a new tracking result is effective during tracking
process. Since there is no ground truth available in practical
applications, noise inevitably occurs in positive instances
when updating the observation model involving the
dictionary and classifier in this work. Thus, it leads to
degrade the discriminability of a classifier in separating
targets from the background. To solve the problem, the
second novel idea of our proposed algorithm is the use of a
dynamic and a static MIL classifier instead of traditional
learning to handle ambiguous binary data obtained online.
The former one is trained by sparse codes of image patches
inside the object region and is updated online for
discriminating the target from the background and
estimating its candidate locations; the latter one is trained
by sparse codes of image patches with ground truth from
the first video frame and is used to discriminate the target
again from the above same background and to determine its
final location.
In the proposed two-step tracking strategy, the first stage

captures very large appearance changes and creates a
number of candidate positions by a dynamic MIL classifier,
while the second stage selects the best candidate and
obtains the final results by a static MIL classifier. For
different tracking scenarios, the only ground truth is the
region of labelled target image in the first frame. So, we
first construct a static observation model involving static
dictionary Φ1 and static MIL classifier with parameters w∗

1
based on the ground truth. At time t, the initial tracking
result is estimated firstly using the online updated dictionary
Φt− 1 and the dynamic MIL classifier in the first stage. In
the second stage, we firstly use the static dictionary Φ1 to
IET Comput. Vis., 2013, Vol. 7, Iss. 5, pp. 320–334
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compute the sparse codes of the estimated tracking result.
With the static dictionary Φ1, each image patch pi of the
estimated tracking result will have a corresponding vector
of reconstruction coefficients ai

^
, which is computed by

ai
^ = argmin ai

∥∥ ∥∥
1 subject to pi −F1ai

∥∥ ∥∥
2, 1 (12)

where aT
i

^
= [bi, e

+, e−] [ R(K+2n) is a non-negative
coefficient vector, e + , e − ∈ Rn are called positive and
negative trivial coefficient vectors, respectively, in [2];
Φ1 = [D1, E] represents the static dictionary, a set of image
patches D1 = {di|i = 1:K} inside the target region is
obtained by sliding a fixed size window in the first frame,
and di∈ Rn is the ith column for representing a vectorised
image patch; E = [I, − I]∈ Rn × 2n represents a trivial
basis set and maintains a non-negativity constraint of the
target coefficient vector, and I = [i1, i2, …, in]∈ Rn × n is
an identity matrix; in∈ Rn is a vector and has only one
non-zero element, 1. In many visual tracking scenarios,
targets are often corrupted by noise or partially occluded
and target appearance are also changed. The occlusion and
target appearance change create unpredictable errors.
Although the tracked target appearance is changed, each
image patch pi of the estimated tracking result from the first
stage can still be approximated by pi ≃ F1 ai

^ = D1bi + e
in the second stage. Since e = [e + , e − ]∈ R2n is the error
vector and indicates the pixels in the image patch pi that
were corrupted or occluded, the reconstruction coefficients
ai
^

can represent the target features effectively even if the
feature distance of the target between two frames is too
large. Therefore the sparse codes of the initial tracking
result from the first step can be computed by (12) with the
static dictionary Φ1 and then they are collected to represent
the initial tracking result. Finally, the sparse codes ai

^
of the

initial tracking result are collected and used to compute the
classification score by the static MIL classifier with
parameters w∗

1 and, the final tracking result can be
determined after the use of particle filter technique.

5 MIL tracking with particle filter

Particle filter [42, 43] provided a convenient framework for
estimating and propagating the posterior probability density
functions of state variables. In this paper, to form a robust
tracking algorithm, the MIL classifier is embedded into the
particle filter framework based on sparse representation
appearance model. Given the observations of the target
z1:t = {z1, …, zt} up to time t, the current target state st can
be estimated by maximising a posterior that associates with
the highest likelihood

st = argmax
st

p st z1:t
∣∣( )

(13)

where p(st|z1:t) is posterior probability and is recursively
computed as

p st z1:t
∣∣( )/ p zt st

∣∣( ) ∫
st−1

p st st−1

∣∣( )
p st−1 z1:t−1

∣∣( )
dst−1 (14)

where p(zt|st) is the observation model or likelihood function
that estimates the likelihood of a state given an observation
and p(st|st− 1) is the motion model that predicts the current
state, given the previous state.
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Table 1 Tracking sequences used in our experiments

Video
name

Number of
frames

Main challenges

faceocc 887 partial occlusion
faceocc2 814 partial occlusion and in-plane pose

change
david 462 illumination variation, in-plane/

out-of-plane pose change and
partial occlusion

sylv 1344 in-plane/out-of-plane pose change,
fast motion and illumination change

girl 502 heavy occlusion, fast motion,
in-plane/out-of-plane pose change
and moving camera

lemming 1336 heavy occlusion, very fast motion
and in-plane/out-of-plane pose
change

www.ietdl.org

In this paper, similar to Mei and Ling [2], an affine image

warping is applied to model the target motion of two
consecutive frames. Let st = (μ1, μ2, μ3, μ4, t1, t2) be the
six-dimensional parameter vector for affine transformation,
where μ1, μ2, μ3 and μ4 represent the rotation angle, scale,
aspect ratio and skew direction at time t, respectively, and
t1, t2 are the two-dimensional (2D) position parameters. The
transformation of each parameter is represented
independently by a scalar Gaussian distribution around their
previous state st− 1. Then, the motion model is obtained by
a Gaussian distribution as follows

p st st−1

∣∣( ) = N st; st−1, Z
( )

(15)

where N(·) is the Gaussian distribution and Z is the covariance
matrix, whose elements are the corresponding variances of
affine parameters. The motion model can help generate the
candidate samples and save computation cost; however, it
may not have fundamental impact on the tracking
performance. For the observation model p(zt|st), it can be
defined by

p zt st
∣∣( )/ h(zt) (16)

where h(zt) is the MIL classifier defined in (13).
The proposed tracking algorithm is summarised in Fig. 3.
Fig. 3 Algorithm
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6 Experiments

In this section, we evaluate the performance of our proposed
algorithm on six publicly available video sequences involving
the challenges of partial or significant occlusion, moving
camera, pose and illumination changes, and so on. The
details of the selected video sequences are listed in Table 1,
where video name, the number of frames and the main
challenges are included. For comparison, three
state-of-the-art trackers are tested, including the incremental
visual tracking tracker (IVT) [44], L1 tracking (L1 tracker)
[2], and MIL tracking tracker [4, 5]. The former two
trackers are generative approaches and the latter MIL
IET Comput. Vis., 2013, Vol. 7, Iss. 5, pp. 320–334
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Fig. 4 Screenshots of tracking results comparison of the proposed tracker (white box) with the L1 tracker (dark grey box), the IVT tracker
(black box) and the MIL tracker (grey box), highlighting instances of partial occlusion, illumination variation, heavy occlusion, fast motion,
in-plane/out-of-plane pose change and moving camera

a faceocc
b faceocc2
c david
d sylv
e girl
f lemming
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tracker is a discriminative one. For fair comparison, all of
them use the same dynamic model and the same particles
(600 particles per frame in this work), and they use the
MATLAB or C + + codes with the same initialised target
locations in these video sequences. These trackers are
implemented in MATLAB, except the MIL tracker in C++.
The tracking videos, MATLAB or C + + codes, and data
sets in [2, 5, 44] can be found from URLs [45–48],
respectively.
For qualitative analysis, some representative frames are

selected to show the evaluation comparison of our proposed
tracker and the others. The performance evaluation can be
found in Fig. 4.
IET Comput. Vis., 2013, Vol. 7, Iss. 5, pp. 320–334
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6.1 Qualitative analysis

In the six video sequences, the size of a sampled image patch
is 16 × 20. Like other object tracking methods using particle
filters [2, 8, 26, 27, 44], the tradeoff between the values of
affine parameters should be set and decide how well the
values of affine parameters approximate the posterior. In
this work, the ranges of the initial values of affine
parameters s1 = (μ1, μ2, μ3, μ4, t1, t2) are, respectively,
1–10, 1–10, 0.005–0.05, 0.005–0.05, 0.001–0.005 and
0.001–0.005, where μ1, μ2, μ3 and μ4 represent the rotation
angle, scale, aspect ratio and skew direction, respectively,
and t1, t2 are the 2D position parameters. Therefore to make
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Fig. 4 Continued
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the parameters values suitable, the initial values of t1, t2will be
set to be larger when the target location change was very large
between two consecutive frames, such as the sequence
‘lemming’ and vice verse. The initial of μ1 will be set to a
larger value when the tracked targets encountered greater
rotation between two consecutive frames, such as the
sequence ‘lemming’, ‘david’ and ‘girl’ and vice verse. The
initial values of μ1, μ2 will be smaller when the tracked
targets underwent smaller scale and aspect ratio change
during tracking process and vice verse. Similarly, the initial
value of μ4 is smaller when the tracked targets underwent
smaller skew direction change during tracking process and
vice verse. The first sequence ‘faceocc’ involves target
objects undergoing partial occlusion and the variances of
the affine parameters s1 are set to (2, 2, 0.005, 0.01, 0.001
and 0.001) in this experiment. The second sequence
‘faceocc2’ is used to test these four tracking methods when
target objects undergo partial occlusion and in-plane pose
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change, and the variances of s1 are set to (2, 2, 0.005, 0.01,
0.001 and 0.001). We utilise the third sequence ‘david’ to
evaluate the trackers with the target undergoing illumination
variation, in-plane/out-of-plane pose change and partial
occlusion, while the variances of s1 are set to (4, 4, 0.01,
0.02, 0.002 and 0.001). The fourth sequence ‘sylv’ is used
to evaluate the four trackers when the target object
undergoes in-plane/out-of-plane pose change, fast motion
and illumination change, while the variances of s1 are set to
(1, 1, 0.005, 0.005, 0.001 and 0.001). The fifth sequence
‘girl’ is for the case with the target object undergoing heavy
occlusion, fast motion, in-plane/out-of-plane pose change
and moving camera, and the variances of s1 are (4, 4, 0.01,
0.01, 0.001 and 0.001). The last sequence ‘lemming’ is for
the case when the target object undergoes heavy occlusion,
very fast motion and in-plane/out-of-plane pose change, and
the variances of the affine parameters s1 are set to (8, 8,
0.03, 0.02, 0.002 and 0.001) in this experiment.
IET Comput. Vis., 2013, Vol. 7, Iss. 5, pp. 320–334
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Fig. 5 Centre location error plots for the proposed tracker, L1 tracker, IVT tracker and MIL tracker
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As seen in Fig. 4a, our tracker illustrates competitive
performance for the whole sequence frames compared with
L1 and IVT trackers. However, the target starts to drift
in frames 662, 687, 779 and 878 by the MIL tracker.
As illustrated in Fig. 4b, our tracker and the IVT tracker
both can track the face of the man successfully for the
IET Comput. Vis., 2013, Vol. 7, Iss. 5, pp. 320–334
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whole sequence, while the MIL tracker appears to start
target drifting in frame 805 and the L1 tracker totally loses
the target from the beginning of the frame 494. From
Fig. 4c, the L1 tracker loses the target from the early frames
of the sequence because of sudden illumination variation.
The MIL tracker and IVT tracker cannot track the target
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Fig. 6 Pascal score plots for the proposed tracker, L1 tracker, IVT tracker and MIL tracker
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successfully and drift from the target area in frames 310, 396,
426 and 458. In Fig. 4d, the L1 tracker fails to track the target
after frame 420 and the IVT tracker also misses the target in
frame 932. However, both our tracker and the MIL tracker can
make satisfied tracking. As shown in Fig. 4e, our tracker
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yields the best performance during the whole sequence. The
L1 tracker performs the second best partly because it is
specifically designed to handle occlusions via sparse
approximation with trivial bases, whereas the other two
trackers drift away from the target area in frames 138, 213,
IET Comput. Vis., 2013, Vol. 7, Iss. 5, pp. 320–334
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Table 2 Centre location errors (pixel) of the proposed tracker,
IVT tracker, L1 tracker and MIL tracker

Video name L1
tracker

IVT
tracker

MIL
tracker

Proposed
tracker

girl 12.992 35.463 26.520 16.943
sylv 91.987 36.417 11.106 8.614
faceocc 6.527 12.472 19.557 8.690
david 75.383 20.529 15.634 11.350
faceocc2 45.406 6.961 14.329 6.680
lemming 201.917 104.166 14.891 22.082
overall centre
location errors

434.212 216.008 102.037 74.359

Bold font indicates the best performance; italic font indicates the
second best

Table 3 Pascal scores of the proposed tracker, IVT tracker, L1
tracker and MIL tracker demonstrate the success rate of the
successfully tracked frames for each sequence

Video L1
tracker

IVT
tracker

MIL
tracker

Proposed
tracker

girl 0.980 0.446 0.683 0.782
sylv 0.309 0.520 0.751 0.851
faceocc 1.000 0.978 0.993 0.983
david 0.204 0.462 0.710 0.882
faceocc2 0.577 0.975 0.994 1.000
lemming 0.237 0.334 0.836 0.698
overall Pascal
score

3.307 3.715 4.967 5.196

Bold font indicates the best performance; italic font indicates the
second best.

www.ietdl.org
322 and 434. From Fig. 4f, it can be seen that the L1 tracker
and IVT tracker drift away from the target area very quickly
because of the very fast motioning of the target. Our tracker
and the MIL tracker can track the target well in the whole
sequence.
6.2 Quantitative analysis

We use two criteria to evaluate the performance of the
proposed tracker quantitatively. The first one is the centre
location error that measures the Euclidean distance between
the central position of the tracking result and that of the
manually labelled ground truth. In our experiments, the
ground truth centres of the objects in faceocc, faceocc2,
Fig. 7 Process of two-step object tracking
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david, sylv, girl and lemming video clips for every five
frames are provided by Babenko et al. [5] and Santner
et al. [49]. The second one is the success rate that indicates
the number of successful tracked frames. To calculate the
success rate, similar to Everingham et al. [50], a Pascal
score is defined as

Pascal score = BR > BT

BR < BT
(17)

where BR and BT are the tracked bounding box and the ground
truth bounding box, respectively. Figs. 5 and 6 plot centre
location error and Pascal score, respectively, for our tracker,
L1 tracker, IVT tracker and MIL tracker. The centre
location errors and Pascal scores are reported in Tables 2
and 3, respectively. From experimental results, we can see
that our proposed tracking algorithm outperforms the
others. As shown in Table 2, our method achieves the best
performance on the ‘sylv’, ‘david’ and ‘faceocc2’
sequences. Although L1 tracker and MIL tracker perform
better than our tracker in the cases of ‘girl’, ‘faceocc’ and
‘lemming’ video clips, our method has the lowest overall
centre location errors implying that it is more stable than
the other three trackers. From Pascal scores in Table 3, we
also observe that our tracker has the highest success rate
compared with the other three trackers, except for the cases
of the ‘girl’, ‘faceocc’ and ‘lemming’ sequences.
Considering overall Pascal score, our tracker has a score
5.196, which indicates that it is of the highest success rate
than the other trackers in the six experiments.

6.3 Two-step tracking analysis

To illustrate the process of the two-step object tracking, a case
of experiment on the toy video sequence is shown in Fig. 7.
Since the accumulative errors and no ground truth available
when updating the dictionary and the classifier, using only
dynamic MIL classifier with dynamic dictionary results in
slight drift from the target in frame 576. However, in the
same frame, using the two-step strategy involving static
MIL classifier and static dictionary with the ground truth of
the first frame can effectively alleviate the drift problem
during the tracking process.
To further demonstrate the power of our two-step strategy

for target tracking, a one-step tracker is constructed with the
online updated dictionary and the dynamic MIL classifier
and repeated the evaluation on the sequences, girl, sylv,
faceocc, david and faceocc2.
331
& The Institution of Engineering and Technology 2013



Fig. 8 Screenshots of tracking results comparison of the one-step tracker (dark grey box) with the two-step tracker (grey box) on the girl, sylv,
faceocc, david and faceocc2 video sequences, respectively
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Fig. 8a illustrates the final tracking results on the eight

representative video frames, where the two-step tracker
shows competitive performance in the whole sequence
frames, whereas the one-step tracker starts target drifting
after frame 89. As illustrated in Fig. 8b, both the two-step
tracker and one-step tracker can obtain competitive results
in the first 496 frames; however, the latter one starts to
make the target drift away from frame 531. From Fig. 8c,
we find that the one-step tracker makes the target drift away
from frame 220 and finally loses the target after frame 244,
because it does not have the ability to objectively capture
the pose and illumination changes, while the two-step
tracker with the ground truth of the first frame can. In
Fig. 8d, the two-step tracker can track the face of the man
during the entire sequence, whereas the one-step tracker is
unable to obtain satisfied results from frame 823 and fails
to locate the target after frame 846. As shown in Fig. 8e,
the two-step tracker achieves a good performance during
the tracking process, and the one-step tracker drifts away
from the target site in frames 322 and 357 and further fails
to track the target from frame 404.

7 Conclusion

When an object undergoes significant pose change,
illumination variation and/or partial occlusion, the
representation of objects plays a very important role in the
robustly and adaptively visual object tracking. This paper
proposes a novel approach with the design of appearance
model, that is, online MIL classifier based on local sparse
codes. Different from traditional classifier using raw image
features, this work instead adopts the sparse codes of local
image patches with an overcomplete dictionary for object
representation, and uses a MIL classifier to discriminate the
target object from the background. The learned MIL classifier
is then embedded into a Bayesian inference framework to
construct a robust tracking algorithm. In addition, to alleviate
the influence of the drift problem when updating the
proposed tracker, we put forward a two-step tracking strategy
with a static and dynamical classifier. With this tracking
strategy, experiments on some challenging video sequences
show that the proposed tracker achieves state-of-the-art
performance in qualitative and quantitative respects under
partial occlusion, illumination, pose variation and so on.
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