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Abstract

A facile and flexible strategy is presented to produce porous Ag hollow sphere arrays, with a
micro/nanostructure and contaminant-free surface, based on a combination of the bottom-up and
top-down fabrication strategies, or by plasma bombardment of Ag-coated monolayer polystyrene sphere
templates. The arrays consist of periodically arranged micro-sized hollow spheres with nanoscaled pores
(mostly within 100 nm) in the shell layer. These arrays are structurally tunable in spherical size (in the
sub-10 um range), spacing (from a few nanometers to several microns), shell thickness (over tens of
nanometers) and porous configuration by the template and bombarding conditions. The strategy is
universal for the fabrication of other porous metal hollow sphere arrays. Such nanoscaled rough and
porous Ag hollow sphere arrays have potential applications in catalysis, antibacterial and photonic
devices. The arrays show significant surface-enhanced Raman scattering (SERS) activity (the minimum
detectable concentration of the standard molecule rhodamine 6G can be down to 10~!4 M) with good
stability and reproduction, and are a good candidate for the substrate of SERS effect based devices.

Online supplementary data available from stacks.iop.org/Nano/24/465302/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Ag hollow spheres and their arrays have received consid-
erable attention recently owing to their unique properties
and potential applications in catalysis [1, 2], antibacterial
activity [3, 4], and solar cells [5, 6], etc. In particular,
they are excellent substrates for surface-enhanced Raman
scattering (SERS) sensors due to their tunable surface
plasmon resonance over a broad range and large surface area
to adsorb the detected molecules [7-10]. Several fabrication
techniques have been developed, including microemul-
sion [11], chemical reduction [12], electroless plating [13],
hydrothermal assembly [14], thermal decomposition [15],
spray pyrolysis [16], template routes (amphiphilic graft
copolymers [17], polyelectrolyte capsule [18], nanoparti-
cles [19], SiO; nanospheres [20, 21], and polymer colloidal
spheres [22, 23]), etc. All these techniques are based on the

0957-4484/13/465302+08$33.00

bottom-up nanofabrication strategy. Generally, it is difficult to
obtain a Ag hollow sphere combining the advantages of both
roughness and porosity for better performances. Furthermore,
to our knowledge, there are few reports [24] on fabrication of
patterned Ag hollow spheres with tunable structures which are
vitally important for practical applications.

Our motivation is to construct the novel Ag hollow sphere
arrays (HSAs) with features including high roughness and
dense nanopores based on a combination of the bottom-up
and top-down fabrication strategies. We present a flexible and
simple way to fabricate porous Ag HSAs with controllable
and tunable structures based on the strategy of plasma
bombardment on a Ag-coated polystyrene (PS) colloidal
monolayer template, as illustrated in scheme 1. First, the
non-close-packed PS colloidal monolayer was coated with Ag
by ion beam sputtering deposition and subsequently removed
by dissolution. The Ag HSA was thus left. Then, plasma

© 2013 IOP Publishing Ltd Printed in the UK & the USA
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Scheme 1. Schematic illustration for the fabrication of porous Ag hollow sphere array based on the combination of bottom-up and
top-down strategies. (a) a close packed PS sphere monolayer template on a silicon substrate. (b) Ar plasma etching-induced non-close
packed PS sphere monolayer on the silicon substrate. (c) Ag-coated non-close packed PS sphere monolayer by ion-sputtering deposition.
(d) Ag hollow sphere array after removal of the inner PS spheres. (e) porous Ag hollow sphere array after Ar plasma bombardment.

bombardment was performed on the Ag HSA, and a porous
Ag HSA with a clean surface was finally obtained. The array
is contaminant-free, built of hollow spheres with porous Ag
shell layers, and homogeneous in macro-size. The spherical
shell-blocks are micro/nanostructured with evenly distributed
nanopores which cannot penetrate through the shell surface.
This array is structurally tunable in spherical size, spacing,
shell thickness and porous configuration by the template
and bombardment conditions. Such a hierarchically porous
HSA is very useful in catalysis, sensors, and nanodevices.
It exhibits significantly structurally enhanced SERS activity
with good stability and reproduction due to its unique
structure. This strategy is generally applicable for the
fabrication of other hierarchically porous metal HSAs.

2. Experimental section
2.1. Preparation of PS templates on Si-wafer

A PS suspension (containing 2.5 wt% colloidal spheres
1 pum in diameter, surfactant-free) was purchased from Alfa
Aesar Corporation. The uniform PS colloidal monolayer with
several square centimeters in dimension was prepared on
a well cleaned glass slide by a gas—liquid—solid interface
self-assembly method, as previously reported [25]. In brief,
the PS suspension and ethanol at a volume ratio of 1:1
were mixed. The ordinary glass slide (7.5 x 2.5 cm?) was
cleaned in turn with acetone, ethanol, 98% H;SO4/H,0,
(3:1 in volume), HyO/NH3 - HoO/H,O, (5:1:1 in volume),
and deionized water. After the glass slide was dried, an
appropriate amount of deionized water was dropped above it
to form a water film. About 150 ml of the mixed suspension
was pipetted onto the water film at its boundary location.
Then, a large area colloidal monolayer was formed after

liquid evaporation by using a gentle airflow at 30°C. The
monolayer was then picked up with a cleaned silicon wafer,
followed by heating at 110 °C for 10 min, for a good contact
between PS spheres and Si substrate. We thus obtained a
close-packed PS colloidal monolayer on a Si-wafer. Plasma
etching of the PS colloidal monolayer was performed to
form a non-close-packed monolayer template, using an argon
plasma cleaner (PDC-32G-2) with 18 W power for 6 min, as
previously reported [26, 27]. The spacing between adjacent
etched PS spheres was tuned by etching time. Longer etching
time led to a larger sphere spacing and a smaller sphere size.

2.2. Ag coating

Silver was subsequently deposited or coated on the etched
PS colloidal template on the Si-wafer by using a commercial
ion beam sputtering system at a pressure of 7.5 x 107> Torr
(Shenyang City Keyou Institute of Vacuum Technology,
China) [28]. Ar was used as shielding gas. Acceleration
voltage was 1.2 kV, and ion current was 2.5 mA. The
deposition rate was about 0.1 nm s~!, and the coating
thickness was controlled by sputtering time. After deposition,
the inner PS spheres were removed by dissolution in CH;Cl,
solution with ultrasonic vibration. An hexagonally arranged
Ag hollow sphere array was thus obtained. For reference, a
continuous Ag thin film was also prepared on the Si substrate
without the PS spheres under the same sputtering conditions.

2.3. Plasma bombardment and characterization

The Ag HSAs and the corresponding continuous thin film
were bombarded using radio-frequency (RF)-excited Ar
plasma, in an argon plasma cleaner (PDC-32G-2, Harrick
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Figure 1. FESEM images of the etched PS colloidal monolayer
before (a), and after Ag coating (about 70 nm in thickness) and
subsequent removal of the PS spheres (b). Inset in (b): the image
with a broken sphere in the edge region of the sample.

Plasma Co.) at a pressure of 0.15 Torr and an input power
of 18 W for 40 min. The flow rate of Ar gas was 8§ SCFH
(standard cubic feet per hour).

The samples were examined by field-emission scanning
electron microscope (FESEM, Sirion 200). X-ray diffraction
(XRD) measurements were conducted on a Philips X’Pert
instrument with Cu Ko radiation. Optical absorption
spectra were recorded on a spectrophotometer (Cary SE
UV/vis—-NIR). For SERS spectral examination, the samples
(0.5 cm x 0.5 cm) were immersed in 10 ml of rhodamine
6G (R6G) aqueous solutions with different concentrations
for 10 min, then taken out and immediately dried with
high-purity flowing nitrogen. Raman spectral measurements
were conducted on a French LABRAM-HR confocal laser
microRaman spectrometer with a laser wavelength of 785 nm
and a laser beam spot of 10 um on the sample. Laser power
was 10 mW.

3. Results and discussion

Figure 1(a) shows a typical morphology of the etched PS
colloidal monolayer, which is hexagonally arranged. After
ion beam sputtering, the PS spheres were coated with Ag
layer. The coating shells surrounding the PS spheres are
not dense but porous. So the subsequent immersion into
the CH,Cl, solution with ultrasonic vibration would lead
to dissolution or removal of the PS spheres. We can thus
obtain a homogeneous monolayer hollow sphere array with
a centimeter squared dimension. Figure 1(b) illustrates the
typical result, corresponding to the sample after Ag sputtering
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Figure 2. FESEM images of the sample, shown in figure 1(b), after
plasma bombardment for 40 min with power of 18 W ((a), (b)), and
pore size distribution (c).

for 12 min (about 70 nm in the coating thickness) and removal
of PS spheres, showing the hollow structure (see the image
with a broken sphere, inset in figure 1(b)). The formation
of such spherical shells is attributed to the ion-sputtering-
induced nonshadow deposition [29, 30]. XRD revealed that
the obtained film is Ag with fcc structure (figure S1 available
at stacks.iop.org/Nano/24/465302/mmedia). The Ag hollow
spheres are composed of nanoparticles tens of nanometers in
size and are still well isolated from each other. It should be
pointed out that the shell thickness near the top part of the
spheres is slightly bigger than that at the lower part due to
the different accessibility of the sputtered Ag atoms/clusters
to different places.

3.1. Morphologies and structure

After Ar plasma bombardment on the Ag HSA for 40 min,
numerous nanopores are formed uniformly on the spherical
shell surface over the whole sample, as shown in figure 2(a)
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Figure 3. Morphological evolution with plasma bombarding time for the Ag HSA shown in figure 1(b) (power: 18 W). (a) 5 min.

(b) 10 min. (c) 20 min. (d) 60 min.

due to isotropic plasma bombardment on the Ag hollow
spheres. All the hollow spheres remain of spherical profile
without distortion and exhibit an open-cell spongelike
morphology. Careful examination of the high-magnification
SEM image (figure 2(b)) reveals that these nanosized
pores are non-through and irregular, and of nanometers
to tens of nanometers in scale (figure 2(c)). Compared
with the original state (figure 1(b)), the Ag nanoparticles
have changed in shape and the particles’ boundaries have
become undistinguishable. As a whole, such porous Ag
hollow spheres are micro/nanostructured, and the constructed
periodic array is homogeneous in the macroscale but
hierarchically rough and porous in the nanoscale. In addition,
the array should be contaminant-free on the surface due to
the plasma bombardment during preparation. EDX analysis
has been done for such porous array (figure S2 available at
stacks.iop.org/Nano/24/465302/mmedia). There are only the
Ag peak, and the Si peak from the Si substrate, demonstrating
a clean surface. Hence, plasma bombardment is an effective
technique for surface micromachining of Ag films.

3.2. Influential factors

Further experiments have revealed that plasma power, plasma
bombarding time and Ag coating thickness are the key
influential factors for formation of the homogeneous porous
shell.

3.2.1. Bombarding time and power. Figure 3 shows the
morphological evolution with bombardment at the power
18 W for the Ag HSA shown in figure 1(b). When
bombardment is for a short time (say, 5 min), only a
few shallow nanopits are observed on the shell surface
(figure 3(a)). With increasing time, the nanopits increase in

number and size (figures 3(b) and (c)). When the bombarding
duration is long enough (say, 40 min in this study), the
homogeneous porous structure can be obtained in the shell
layer (figure 2). However, too long a plasma bombardment
leads to distortion or damage of the Ag hollow spheres, as
shown in figure 3(d).

Similarly, plasma power also has an important influence
on the number and size of nanopores. If we use low
bombarding powers, only some small nanopores are observed
and increasing power induces the more and bigger nanopores,
as shown in figure 4 corresponding to the sample shown in
figure 1(b) after bombardment for 40 min with the powers 6.8
and 10.5 W. In contrast, too high a power will lead to damage
of the hollow spherical structure. Only the appropriate power
can induce the homogeneous porous spherical shell. In our
case, a power of about 18 W is enough to obtain a perfect
result, as illustrated in figure 2.

3.2.2. Thickness of the coated layer. The modified
morphology of the shell depends strongly on Ag coating
thickness which is controlled by sputtering time. Figure 5
shows the results corresponding to the Ag shells with different
thicknesses after plasma bombardment for 40 min with the
power of 18 W. If the Ag coating was too thin (say, <50 nm),
the hollow spheres could collapse after plasma bombardment
because the thin shells are not strong enough (figures 5(a)
and (b)). Contrarily, when the Ag coating was too thick (say,
>90 nm), the nanopores in the shells decrease in number
and distribute inhomogeneously (figures 5(c) and (d)). Only
with suitable shell thickness (within tens of nanometers) can
numerous nanopores with even distribution be obtained, as
shown in figure 2.
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Figure 4. Influence of the bombarding power on the morphologies
of the sample shown in figure 1(b) (bombarding time: 40 min).
(a) 6.8 W. (b) 10.5 W.

3.3. Formation of homogeneous nanopores

The plasma bombardment-induced formation of nanopores on
the spherical shell surface is easily understood. Ag, unlike
other metals, has a high surface mobility, even at room
temperature [31]. During isotropic plasma treatment, the Ar™
ion bombardment will induce densification and even surface
melting (and/or slight sputtering) of the deposited Ag coating,
due to energy transferring. For the samples with thick enough
coating, such densification will result in contraction of the
Ag shells and hence formation of nanoholes or nanopits
on the cupped sites, as shown in figure 2. Also, surface
melting leads to a smooth surface (see figures 2(b) and
5(c)). For the samples with thin coating, which is of lower
heat capacity, the spherical morphology will be destroyed
due to a melting-induced weakening (see figures 5(a) and
(b)). For the deposited 2D Ag film on planar Si-wafer,
heat on the Ag surface should be easily transferred to the
substrate due to the planar contact and the Ag melting degree
is thus decreased, which results in the nanopores on such
film being smaller than those on the spherical shells under
the same experimental conditions, as demonstrated in figure
S3 (available at stacks.iop.org/Nano/24/465302/mmedia) and
figure 2. Additionally, compared with those before plasma
bombardment, the average thicknesses on top and bottom of
the Ag spherical shells and the Ag film are almost unchanged,
as a result of slight Ag sputtering.

It should be pointed out that plasma bombardment
is a different process from annealing which can heat
the entire Ag hollow spheres and induce their thermal
deformation. Figure S4 (available at stacks.iop.org/Nano/
24/465302/mmedia) gives the morphologies corresponding
to the Ag HSA shown in figure 1(b) after annealing

Figure 5. Influence of Ag coating thickness on the morphologies of the porous HSAs (power: 18 W, bombarding time: 40 min). (a) 20 nm.

(b) 50 nm. (¢) 90 nm. (d) 140 nm.
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Figure 6. Morphologies of the porous Ag HSAs from other PS
templates (70 nm in Ag coating thickness, plasma bombardment for
15 min with power of 18 W). (a) 500 nm PS monolayer.

(b) 1000 nm PS monolayer after plasma etching for a longer
duration (the neck connection can be removed by subsequently
heating the etched PS spheres).

for 20 min at different temperatures. After annealing at
300°C, all the Ag hollow spheres collapse with some
nanopores, which originates from heating-induced contraction
(figure S4(a) available at stacks.iop.org/Nano/24/465302/
mmedia); annealing at 400 °C induces big Ag particles (figure
S4(b) available at stacks.iop.org/Nano/24/465302/mmedia).
Therefore, plasma bombardment is a good technique for
surface morphological modification.

3.4. Extension of the strategy

The structural parameters of the porous Ag HSA are tunable
by PS sphere template configuration. Figure 6 shows the
morphologies of the porous HSAs with smaller spheres and
larger spacings. The easy control of size (in the sub-10 um
range) and spacing (from a few nanometers to several
microns) for such an array is important for functional
optimization or structure-related quantitative study of physical
properties. In addition, the strategy presented in this study
can be extended to fabricate other porous metal HSAs.
For instance, a porous Au HSA can be obtained (figure
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Figure 7. Raman spectra of R6G molecules on different substrates.
(a) 107 M R6G, the integration time = 5 s. Curve 1: the porous
Ag HSA shown in figure 2. Curve 2: the sample shown in figure 1(b)
(without plasma bombardment). Curve 3: the Ag continuous thin
film (without using PS spheres, shown in figure S3 available at
stacks.iop.org/Nano/24/465302/mmedia). (b) 10~'* M R6G, the
integration time = 15 s. Curve in (b): the porous Ag HSA shown in
figure 2. (The arrows in (b) show some characteristic peaks.)

S5 available at stacks.iop.org/Nano/24/465302/mmedia) by
similar process.

3.5. SERS properties

The hierarchically porous HSA, as mentioned above, is very
useful in catalysis, sensors, and nanodevices. Here, we take
the SERS performance of the sample shown in figure 2 as an
example to demonstrate its usability as a SERS-based device.
It exhibits significant SERS activity with good stability and
reproduction due to its unique structure.

3.5.1. Enhanced SERS activity. ~ Using R6G as the probe
molecules, the hierarchically porous Ag HSA shown in
figure 2 exhibited a significantly structurally enhanced SERS
activity under normal Raman excitation wavelength of 785 nm
(chosen according to its optical absorption spectra shown
in figure S6 available at stacks.iop.org/Nano/24/465302/
mmedia), as shown in figure 7(a). It can be seen that the
SERS activity of the porous HSA is much higher than that
of the original one without plasma bombardment and the
plasma-bombarded continuous thin film (figure S3 available
at stacks.iop.org/Nano/24/465302/mmedia). Further, for the
porous Ag HSA, the minimum detectable concentration
of R6G can be down to 1074 M when using a short
integration time (15 s) (figure 7(b)), which shows the
possibility of molecule-level detection. Correspondingly, for
the original Ag HSA without plasma bombardment and for the
plasma-bombarded continuous film, there are no detectable
signals.

Compared with the HSA without plasma bombardment,
we know that the nanopores on the Ag shell layer play a
dominant role in enhancement of the SERS activity. The
strong SERS effect for the hierarchically porous Ag HSA
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Figure 8. Raman spectra of 10~ M R6G on the porous Ag HSA
shown in figure 2 without (curve 1) and with (curve 2) the
experience of immersion in water for two weeks. Data integration
time = 5.

should be attributed to its unique structure, including the
efficient coupling among the nanoscaled interstitials on and
between the micro-sized Ag hollow spheres, the greater
surface area exposed to the environment, and the increased
density of optical modes induced by the periodic structure
[32, 33]. Upon optical excitation, these hot spots, especially
the hottest ones, support extremely intense local electromag-
netic fields and thus induce strong Raman signal of the local
adsorbed probe molecules [34-36]. The hierarchically porous
Ag HSA in this study has two advantages. Firstly, plasma
bombardment can remove organic contamination (PS and/or
CH,Cl,, if any), which is advantageous for adsorption of
the detected molecules. Secondly, the array structure can
easily lead to a nice signal uniformity, and is tunable, by
multi-structural parameters, for further optimization of SERS
activity.

3.5.2. Stability and reproducibility. A desirable SERS
substrate should be stable and durable in an aqueous
solution [37, 38]. Figure 8 gives the results of the SERS
activity for the porous Ag HSA shown in figure 2 before and
after immersion in deionized water for 2 weeks. Evidently,
neither a shift in the major Raman peaks nor a significant
change in Raman intensity occurs for the substrate soaked
in water for 2 weeks, revealing that it is stable for at least a
2-week period. This long-term stability in water is of great
importance for SERS-based devices in practical applications.

It is well known that the poor reproducibility of Raman
signals in traditional SERS analysis has been a main obstacle
to the use of SERS as a routine analytical tool [39—41]. We
collected SERS spectra of R6G from 9 randomly selected
positions on the porous Ag HSA shown in figure 2, as shown
in figure 9, exhibiting very good measurement reproducibility
across the whole substrate (<10% in standard deviation for
the main peaks). This is attributed to the highly homogeneous
structure of such array.

Intensity (a.u.)

1000 1200 1400 1600
Raman shift (cm™)

600 800

Figure 9. Raman spectra of 10~ M R6G collected from 9
randomly selected sites on the porous Ag HSA shown in figure 2.
Data integration time = 5s.

4. Conclusions

In summary, a facile and flexible strategy is presented
to fabricate hierarchically porous Ag hollow sphere arrays
based on plasma bombardment of Ag-coated PS colloidal
monolayers. The arrays are composed of periodically
arranged micro-sized hollow spheres with nanoscaled porous
structure in the shell layer, due to isotropic Ar™ bombardment.
The array architecture can be easily tuned by the PS template.
Only under special conditions, of suitable plasma power,
enough bombardment time, and certain coating thickness,
can the homogeneous porous configuration be obtained.
Importantly, such nanoscaled rough and porous Ag HSA has
potential applications in catalysis, antibacterial and photonic
devices. Due to the special structure, it has demonstrated
significantly structurally enhanced SERS activity with good
stability and reproduction, showing it to be an excellent
candidate for the substrate of SERS-based devices. The
strategy is universal for the fabrication of other porous metal
hollow sphere arrays.
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