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Abstract
Coexisting multi-geodesic acoustic modes (GAMs), especially coexisting dual GAMs, are observed and studied
through Langmuir probe arrays at the edge plasmas of the HT-7 tokamak with lithium-coated walls. The dual
GAMs are named a low-frequency GAM (LFGAM) and a high-frequency GAM (HFGAM), and it is found that
within the measuring range, the HFGAM propagates outwards while the LFGAM propagates both inwards and
outwards with their central frequencies nearly unchanged, and both modes have maximum amplitudes at positions
with radial wavenumbers close to zero; meanwhile, the two positions happen to be where the continuum GAM
frequency is closest to the central frequencies of the LFGAM and the HFGAM. These characteristics are consistent
with those of a kinetic GAM converted from a continuum GAM. The nonlinear couplings between the LFGAM
and the HFGAM are also analysed. In this study, we observed not only the interaction between the LFGAM and
the HFGAM, but also the self-coupling of the GAM with the beat frequency between them, as well as the coupling
between the LFGAM and an unknown mode at ∼50 kHz. These nonlinear interactions may play important roles
during the saturation process of GAMs. Additionally, amplitude correlation analyses of multi-GAMs indicate that
second harmonic GAMs are probably generated from the self-interaction of fundamental GAMs.

(Some figures may appear in colour only in the online journal)

1. Introduction

Geodesic acoustic modes (GAMs) [1], which are the
high-frequency branch of zonal flows, are azimuthally
symmetric modes unique to toroidal plasmas. GAMs are
characterized by potential fluctuations with m = n = 0
and density fluctuations with m/n = 1/0 (m/n is the
poloidal/toroidal mode number). Recently, GAMs have
received considerable attention in magnetic fusion plasma

research due to the important role in controlling the transport
level of the plasmas through nonlinear interaction with
drift-wave turbulence [2, 3], which is further enhanced by the
observation of a competition between the turbulence level and
GAM flow shearing in the limit-cycle phase on ASDEX-U [4].
The dispersion relation of GAMs was first derived via fluid
theory and the linear dependence of the GAM frequency on the
ion acoustic velocity Cs , i.e. the so-called continuum GAM,
has already been observed in various fusion devices [5–9].
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However, the existence of GAM eigenmode was also reported,
especially at the edge plasmas. In JFT-2M, it was found
that the GAM frequencies remained constant along the radial
direction at several centimetres just inside the last closed
flux surface (LCFS) [10] and similar phenomena were also
observed in the HL-2A and HT-7 tokamaks [11, 12]; multi-
GAMs or splitting of GAM spectra at edge plasmas have
also been reported on the T-10 and ASDEX-U tokamaks
[13, 14]; in DIII-D, continuum GAM and eigenmode-type
GAM have both been observed through Doppler backscattering
systems under different discharge conditions [15]. Theoretical
and simulated results suggested that kinetic effects should
be considered to access these phenomena conflicting with
the dispersion relation deduced from fluid theory [16–18].
The concept of kinetic GAM (KGAM) was first proposed
by Zonca [19], indicating that on considering the finite
ion Larmor radius effects, the existence of a singular layer
would cause a continuum GAM to transform to a KGAM,
whereas comparisons between theoretical and experimental
results of KGAMs are scarce. Another important issue
of GAM is the nonlinear interaction of GAMs, especially
the self-coupling of GAMs, which was first reported in the
JFT-2M tokamak [20]. Theoretical and simulated analyses
suggested that the nonlinear interactions probably offer an
important saturation mechanism for GAMs and the generation
of the second harmonic is strongly influenced by the parallel
nonlinearity, while further experiments are needed to draw
further conclusions [21, 22].

In this work, two coexisting GAMs, sometimes coexisting
multi-GAMs, are observed through Langmuir probe arrays in
edge plasmas with a low collisionality due to the lithium-coated
walls on the HT-7 tokamak. The radial distributions of central
frequency, amplitude and radial wavenumber of these GAMs
all suggest that they are KGAMs converted from continuum
GAMs. Moreover, both cross-coupling and self-coupling
between these GAMs are shown, implying that the nonlinear
interaction is strongly dependent on the generated position
of GAMs. And an amplitude correlation analysis is used to
estimate the spectral energy flow between the fundamental
GAM and the second harmonic GAM. The paper is organized
as follows. The experimental setup is introduced in section 2.
Results and discussion are presented in section 3. A summary
is given in section 4.

2. Experimental arrangement

HT-7 is a limiter tokamak with R = 1.22 m, a = 0.27 m
and a circular poloidal cross-section. Experiments are carried
out in an ohmically heated deuterium plasma with the limiter
configuration under the following conditions: plasma current
Ip = 80–120 kA, toroidal magnetic field Bt = 1.8 T,
central-chord-averaged electron density ne = 1.5 × 1019 m−3

and safety factor at the limiter position qa = 4.5–6.7.
Measurements are carried out by two radially movable probe
systems marked A and B, and the arrangement is shown in
figure 1. Both probe systems are inserted from the top ports
of the tokamak. Probe array A is a standard four-tip probe,
which is reciprocating and is used for measuring the electron
temperature as well as the density and floating potential.
Probe array B has seven graphite tips, which are grouped

Toroidal (256cm)
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Figure 1. The arrangement of experiments and the structures of
probe arrays.

into two steps with 5 mm radial separation. The two tips
on the bottom step are Mach probes and on the top step are
five tips for measurements of the floating potential and its
fluctuations. This arrangement of two probe systems allows
simultaneous measurement of floating potential fluctuations
(φ̃f ) in the toroidal direction with large toroidal separations
(256 cm). Our previous experiments in HT-7 [12] and HL-2A
[23–25] and experiments in other devices [26, 27] all prove
that such an arrangement is effective in measurements of the
spatial and temporal structure of zonal flows. Based on the
good repeatability of the discharge on HT-7, we could move
both the probe systems shot by shot along the radial direction
in steps of 0.25 or 0.5 cm till 2 cm inside the LCFS; then the
distribution of the amplitude, central frequency as well as the
radial wavenumber of GAMs could be estimated, which will
be shown in the following.

3. Experimental results

3.1. Observation of two coexisting GAMs

Typical results of long-distance correlations of floating
potential fluctuations in edge plasmas are illustrated in figure 2,
showing the spectra of cross-power, coherence and toroidal
mode number between two φ̃f s on probe arrays A and B at
r − a = −1.0 cm, respectively. It should be noted that the
cross-power spectrum between two φ̃f s with a large toroidal
separation could highlight the spectral structures of long-range
coherent modes with less disturbance of ambient turbulence.
The spectra are averaged over 300 realizations with a frequency
resolution of 1 kHz, which is the default resolution in the
following figures unless with additional description. Two
coherent modes peaked at frequencies of 12 and 21 kHz appear
in the cross-power spectra, demonstrating strong correlation
over a distance of 256 cm toroidally, as shown in figures 2(a)
and (b). The phase shifts of the two coherent modes appear
to be almost zero and the corresponding mode numbers are
much smaller than one, as illustrated in figure 2(c), suggesting
that both modes are toroidally symmetric. A comparison of
the auto-power spectra between the Mirnov coil data and the
floating potential is also shown in figure 3(a). It could be found
that the MHD oscillation at 4 kHz has little influence on the
potential fluctuations. A typical profile of Te measured by the
reciprocating probe array is given in figure 3(b), showing that
the electron temperature at r − a = −1.0 cm is about 50 eV.
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Figure 2. Spectra of (a) cross-power, (b) coherence and (c) toroidal
mode number estimated from potential fluctuations on probe arrays
A and B toroidally separated by 256 cm in shot 113901.

According to the measured electron temperature, the
GAM frequency calculated from f th

GAM = √
(Te + 7Ti/4)/mi/√

2πR0 [28] is 13 kHz with the assumption of Ti = Te,
which seems to access the mode peaking at 12 kHz, while the
21 kHz coherent mode may be another GAM generated inside
and then propagated outwards. To distinguish the coexisting
GAMs, the two modes at 12 kHz and 21 kHz would be
called a low-frequency GAM (LFGAM) and a high-frequency
GAM (HFGAM), respectively, in the following. Then their
characteristics, especially the property of radial propagation,
will be given first.

3.2. Identification and characteristics of KGAM

The radial propagation of the LFGAM and the HFGAM could
be estimated when probe arrays A and B are placed with a radial
separation of several millimetres. The phase shift measured
by the two probe tips is composed of both radial and toroidal
components, i.e. �θAB(f ) = kr(f )dr + kφ(f )dφ . Because the
toroidal wavenumber kφ for GAM is zero and its contribution
to phase shift is negligible, �θAB can be used to estimate the
radial wavenumber kr for GAM.

The cross-power spectra between two φ̃f s on probe
arrays A and B, the amplitudes, central frequencies and
radial wavenumbers of the LFGAM and the HFGAM at
four radial positions inside the LCFS are shown in figure 4.
The cross-power spectra at different radial positions in
figure 4(a) illustrate the radial distributions of amplitude and
central frequency of the LFGAM and the HFGAM. The
GAM amplitude is calculated here from the integration of
cross-power density spectra on the special frequency band
determined by the central frequency and spectral width of the
GAM. It could be seen from figure 4(b) that the amplitudes
of the HFGAM keep growing in the radially inward direction,

while the amplitudes of the LFGAM have a maximum value
at �r ≡ r − a = −1.0 cm. And although the amplitudes
of the LFGAM are always larger than those of the HFGAM,
the HFGAM decays less slowly than the LFGAM. From
figure 4(c), it could be found that the central frequencies of both
LFGAM and HFGAM remained almost constant in the range of
measurement, with 1–2 kHz fluctuations. The eigenmode-type
property have already been reported on JFT-2M, ASDEX-U,
HL-2A and DIII-D [10, 11, 13, 15], as well as the simulations
[29]. To seek the relationship between the LFGAM, the
HFGAM and the continuum GAM, theoretic GAM frequencies
f th

GAM are also plotted in figure 4(c), and it seems that the
frequency of the LFGAM is consistent with the continuum
GAM at �r ∼ −0.8 cm and the frequency of the HFGAM is
possibly consistent with the continuum GAM at �r ∼ −2 cm.

The radial profiles of kr for the LFGAM and the HFGAM
are illustrated in figure 4(d). For the HFGAM, kr remains
positive in the whole measurement range, indicating that the
HFGAM keeps propagating outwards, while for the LFGAM,
kr changes sign between �r = −0.5 cm and �r = −1 cm,
probably at �r = −0.8 cm, indicating that the LFGAM
propagates in opposite directions on both sides of this position,
which implies that �r ∼ −0.8 cm with kr � 0 may be the
position where the LFGAM is generated. Similarly, it could
also be deduced that the HFGAM is probably generated at
�r ∼ −2 cm with kr � 0. Comparing with figure 4(b), it
seems that the LFGAM and the HFGAM both have maximum
amplitudes near the generation positions, suggesting that the
mode amplitude peaks as excitation and decays as propagation.
Then, going back to figure 4(c), it could be seen that the
frequencies of the LFGAM and the HFGAM are just consistent
with continuum GAM frequencies at �r ∼ −0.8 cm and
�r ∼ −2 cm, which happen to be the positions where kr is
close to zero.

According to the KGAM theory, the fluid assumption is
valid as the GAM remains as a long-wavelength structure, i.e.
kr � 0, and the kinetic effect should be taken into account as
the fluid approximation breaks down [19], explaining well why
the measured frequencies are closest to the continuum GAM
f th

GAM at positions with kr � 0. Moreover, it has been pointed
out theoretically that different from the long-wavelength limit
situation, the short-wavelength GAM itself is heavily damped
by the high-order resonance [30], consistent with the radial
relationship between amplitude and kr of the LFGAM and
the HFGAM. So it could be deduced that the LFGAM and
the HFGAM are probably two KGAMs excited from the
GAM continuous spectrum at the edge plasma, with radial
wavenumbers close to zero at the excitation locations. Then
the modes propagated both inwards and outwards, and during
the propagation their amplitudes decreased with increasing
absolute radial wavenumbers. The whole phenomenon is
consistent with the mode conversion process from a continuum
GAM to a KGAM predicted by the KGAM theory and
simulations [18, 19, 31].

3.3. Nonlinear couplings between KGAMs

Bispectral analysis is used to investigate the nonlinear
interaction between the LFGAM and the HFGAM, which
is a powerful fluctuation analysis technique for detecting
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GAM = √
(Te + 7Ti/4)/mi/

√
2πR0 is also plotted for comparison. Data are from shots 113903,

113906, 113908 and 113909, respectively.

the strength of nonlinear three-wave interactions among the
fluctuating quantities [32]. The squared auto-bicoherence
b2(f1, f2) and the auto-biphase θ(f1, f2) are defined as

B(f1, f2) = 〈X(f1)X(f2)X
�(f3 = f1 + f2)〉 (1)

b2(f1, f2) = |B(f1, f2)|2
〈|X(f1)X(f2)|2〉〈|X(f3)|2〉 (2)

θ(f1, f2) = tan−1 Im[B(f1, f2)]

Re[B(f1, f2)]
(3)

where X(f ) is the Fourier transform of the given time
series, which is the floating potential fluctuation φ̃f(t) here.
Another commonly used quantity is the summed squared

bicoherence �b2(f ), which is defined as a sum of b2(f1, f2)

for all f1 and f2 satisfying f = f1 + f2 and normalized
by N(f ), the number of Fourier components for each f in
the summation, i.e. �b2(f ) = �f =f1+f2b

2(f1, f2)/N(f ),
providing a degree of all the nonlinear interactions involving
the frequency component f . Figure 5(a) shows the surface plot
of b2(f1, f2) in the f1–f2 plane for the potential fluctuations
at �r = −1 cm. Because for auto-bicoherence f1 and f2

is interchangeable, only the area with f1 > 0 and f1 � f2

is shown. It should be noticed that B(f1, f2) has the
same absolute values at (f1, f2, f1 + f2), (f1 + f2, −f1, f2)

and (f1 + f2, −f2, f1), causing some quasi-symmetry of
auto-bicoherence b2(f1, f2), which could be seen from
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figure 5(a). It could be found that the strongest interactions are
concentrated at the three wave triads (9 kHz, 9 kHz, 18 kHz),
(9 kHz, 12 kHz, 21 kHz) and (12 kHz, 43 kHz, 55 kHz), which
could be seen more clearly from the bicoherences b2(f1) for
all frequencies obeying f1 + f2 = 9 kHz, f1 + f2 = 12 kHz
and f1 + f2 = 21 kHz shown in figures 5(b)–(d).

Firstly, it could be found that the strongest interaction
happens between the LFGAM and the quasi-coherence mode
between 40 and 70 kHz, as indicated by the marker (55 kHz,
−43 kHz, 12 kHz) in figure 5(a). The quasi-coherence mode
is common in edge plasmas and has been reported both in
TEXTOR and HL-2A [27, 33, 34]; however, its mode type and
generation mechanism are still unknown. The strong nonlinear
coupling implies that the quasi-coherence mode may play an
important role in the self-organizing system of GAMs and
ambient turbulence. Secondly, let us focus on the coupling
of (9 kHz, 12 kHz, 21 kHz), which is definitely the interaction
between the LFGAM and the HFGAM. According to the
resonance conditions for three-wave interaction f1 ± f2 = f3

and
−→
k 1 ± −→

k 2 = −→
k 3, the component at 9 kHz should also

be an azimuthally symmetric structure with m = n = 0.
Going back to figure 2, the frequency component at f = 9 kHz
is indeed toroidally symmetric and the only difference from
the LFGAM/HFGAM is that its amplitude is smaller. Then,
this is an obvious proof of the nonlinear interactions between
the LFGAM and the HFGAM, which may play an important
role during their saturation processes and has not yet been
theoretically mentioned. Thirdly, based on the analyses
above, the coupling of (9 kHz, 9 kHz, 18 kHz) should be the
self-interaction of the 9 kHz component while the frequency
component at f = 18 kHz is also a symmetric structure, which
could also be verified through figure 2. Self-interaction of
GAMs has been reported on the JFT-2M tokamak [20] and
discussed in detail theoretically [21, 22].

It should be emphasized that the bispectral analyses above
are only for the radial position at �r = −1 cm, where
the LFGAM reaches the maximum amplitude. In figure 6,
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Figure 6. Squared auto-bicoherence b2(f1, f2) for
f1 + f2 = fLFGAM at different radial positions. Data used are the
same as those in figure 4.

the auto-bicoherence b2(f1, f2) for all frequencies obeying
f1+f2 = fLFGAM at four different radial positions is illustrated.
It could be seen that the nonlinear coupling between the
LFGAM and the HFGAM, i.e. the value of bicoherence
b2(21 kHz) is the strongest at �r = −1 cm, and close to
the noise level at the other three positions, as shown by the
red dashed line. From figure 4, we know that the LFGAM
has the maximum amplitude at �r = −1 cm, suggesting that
the nonlinear coupling between the LFGAM and the HFGAM
occurs only when the amplitude of the LFGAM is sufficiently
large. Furthermore, the coupling between the LFGAM and
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the quasi-coherence mode at f ≈ 50 kHz, and the coupling
between the LFGAM and ambient turbulence beyond 200 kHz
are both largest at �r = −1 cm. These phenomena suggest
that the interactions between the LFGAM and other modes
(including both HFGAM and other ambient turbulence) are
all closely related to the amplitude of the LFGAM, which has
some similarities with the simulated result that the generation
rate of the second harmonics is proportional to the intensity of
the pump GAM [21].

Overall, besides the conventional coupling between the
GAM and the high-frequency turbulence (f > 200 kHz),
the bicoherence analyses here show three other types of
nonlinear interactions: the coupling between the LFGAM and
the HFGAM, the self-coupling of the GAM with the beat
frequency between the LFGAM and the HFGAM, and the
coupling between the LFGAM and the quasi-mode around
50 kHz. The intensities of these couplings all strongly depend
on the amplitude of the LFGAM. To totally unravel the
underlying physics during the saturation process of GAMs,
these interactions should be paid more attention and more
analyses are needed in the future.

3.4. Radial couplings between the LFGAM and the HFGAM

To further study the coupling between the LFGAM and the
HFGAM, the local wavenumber–frequency spectrum S(kr , f )

at �r = −1 cm is estimated. S(kr , f ) is calculated
through the two-point cross-correlation technique [35], which
has been widely used for characterizing plasma turbulence.
This approach is based on the assumption that fluctuations
can be described as a superposition of wave packets each
being characterized by a stochastic relationship between
wavenumber kr and frequency f . Contour plots of conditional
wavenumber–frequency spectrum S(kr |f ) = S(kr , f )/S(f )

with S(f ) = �kr
S(kr , f ) for φ̃f s with a radial separation

of d = 5 mm are shown in figure 7, as well as S(kr |f ) at
three given frequencies. From figure 7(a), it could be found
that besides the two noticeable peaks of the LFGAM and the
HFGAM, another peak concentrated around f = 9 kHz in
the negative territory could also be observed. S(kr |f ) at the
LFGAM, the HFGAM and f = 9 kHz is plotted in figure 7(b),

and the spectrally averaged radial wavenumber k̄r and the
wavenumber width σkr

could be estimated by

k̄(f ) =
∫

dk S(k|f ) k (4)

σ 2
k (f ) =

∫
dk [k − k̄(ω)]2S(k|f ). (5)

For the LFGAM, k̄r = −0.39 cm−1 and σkr
= 1.51 cm−1,

while for the HFGAM, k̄r = 0.44 cm−1 and σkr
= 2.25 cm−1.

The averaged radial wavenumbers are consistent with the
values calculated from the phase shift �θAB, which are used
to calculate the radial wavenumbers in figure 4(d). For
f = 9 kHz, k̄r = −0.71 cm−1, σkr

= 1.70 cm−1. It is
interesting to note that k̄r,9 kHz is close to the wavenumber
difference between the LFGAM and the HFGAM, k̄r,LFGAM −
k̄r,HFGAM = −0.83 cm−1, corroborating the nonlinear coupling
between the LFGAM and the HFGAM.

3.5. Energy flow during the self-interaction of GAMs

When the plasma current is increased to Ip = 120 kA with the
magnetic field and the chord-averaged electron density nearly
unchanged, multi-GAMs would appear. Figure 8 shows the
spectra of cross-power, coherence and toroidal mode number
between two φ̃f s on probe arrays A and B at the same radial
locations and several peaks could be observed in the frequency
range between 6 and 40 kHz. Similar to the analyses of figure 2,
these modes with high coherences and symmetric structures are
essentially attributed to GAMs. Considering that the spectral
width of a GAM is usually several kilohertz at the edge plasma
[14, 23, 26, 27, 33], there should be several GAMs in such a
frequency range larger than 30 kHz. Assuming the spectral
shape for each GAM satisfies the Lorentzian distribution in the
frequency domain, the cross-power spectrum between 6 and
40 kHz could be fitted by five summed Lorentzian functions,
as illustrated in figure 8(a). The fitting result shows good
consistency with the cross-power spectrum and the central
frequencies of the five fitted functions are 12, 15, 18, 24 and
30 kHz. Through the bicoherence analysis, it could be found
that the GAMs at 24 and 30 kHz are the second harmonics of the
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GAMs at 12 and 15 kHz, again emphasizing the important role
of the self-interaction of GAMs. This spectrum could be used
to study the spectral energy transfer between the fundamental
GAM and the second harmonic GAM.

To identify the energy flow direction between the
fundamental GAM and the second harmonic GAM, the
amplitude correlation technique [36, 37] is used on the GAMs
at 15 and 30 kHz. By comparing the time delay between
the envelopes of two time series x1(t) and x2(t), the cross-
correlation function (CCF) K(τ) = 〈x2

1 (t)x2
2 (t + τ)〉 could

estimate the energy flow direction between the two time series.
The technique could be used to study the spectral energy

transfer between different scales [38]. Shown in figure 9(a)
is the power spectrum of the floating potential fluctuations,
and the shaded spectra regions of 13–17 kHz and 27–31 kHz
correspond to the fundamental GAM and second harmonic
GAM, marked as GI and GII, respectively. The two time series
are then squared and passed through a low-pass filter to obtain
only the slowly varying amplitude information (with the dc
components removed). Then the CCF K(τ) is computed, as
shown in figure 9(b).

The CCF has a maximum at the negative time lag, which
means that the amplitude of the harmonic GAM lags with
respect to the fundamental GAM, which is further supported by
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temporal evolutions of GI(t) and GII(t) shown in figures 9(c)
and (d). It could be generally seen that the envelope of GII(t)

begins to increase after the envelope of GI(t) reaches the
local maximum. The interpretation of the time lag is that the
second harmonic GAM receives energy from the fundamental
GAM. In combination with the bicoherence analysis, it could
be implied that the harmonic GAMs may be generated by the
fundamental GAMs through self-nonlinear interactions.

4. Discussion

Compared with the single-peak GAM observed on the
HT-7 tokamak in previous experiments [12], the coexisting
multi-GAMs appeared when the walls were lithium coated
with the discharge parameters changed slightly, so the wall
condition must be the key factor to generate the multi-GAMs.
It should be noted that the plasma responses to a lithium-coated
wall have been measured on the NSTX tokamak [39, 40],
showing that as a result of applying lithium coating on the
graphite and plasma-facing components, the ion temperature at
the edge plasma becomes higher while the ion density becomes
lower, which means a decrease in the collision damping rate,
and this would certainly benefit the generation and propagation
of GAMs. This may be a possible mechanism to explain
the multi-GAMs on HT-7. The radial profile of collisional
damping of GAMs has been theoretically studied recently [41],
indicating that the damping rate of GAMs is nonmonotonic
as the collision rate increases, which may provide a possible
candidate responsible for multi-GAMs.

As mentioned in the last section, the distributions of
amplitude and radial wavenumber of the LFGAM and the
HFGAM are qualitatively coincident with the process that
KGAMs are converted from the GAM continuous spectrum.
However, the KGAM theory indicates that KGAM will
propagate at lower frequencies with respect to the GAM
continuum frequency, i.e. towards the lower temperature
or higher q region [19, 42], which seems inconsistent with
the observed inward propagating LFGAM. In fact, based
on figure 4(b), the decay length of the inward propagating
LFGAM could be roughly estimated as 0.5 cm, much smaller
than the averaged radial wavelength of the LFGAM 2π/k̄r ∼
12 cm, so the LFGAM is actually heavily damped as inward
propagating, still in coincidence with the KGAM theory [42].

5. Conclusion

In conclusion, the propagating and coupling characteristics of
coexisting multi-GAMs, especially dual GAMs at the edge
of the HT-7 tokamak with lithium-coated walls are studied
through Langmuir probe arrays. The mode structure and radial
propagation of the coexisting dual GAMs are analysed in detail.
Within the 2 cm measurement range inside the separatrix, it
is found that the central frequencies of the LFGAM and the
HFGAM remain nearly unchanged, and the radial positions
with maximum amplitudes of the LFGAM/HFGAM happen to
be where their krs are closest to zero and the continuum GAM
frequency is closest to their central frequencies. According to
the KGAM theory, kr ∼ 0 means a long-wavelength GAM,
i.e. the theoretic fluid limit without kinetic effects. As kr

increases, the fluid approximation breaks down and the kinetic

effects must be taken into account. Therefore, the LFGAM and
the HFGAM could be explained as two kinetic eigenmodes
generated from the continuum GAM, with their amplitudes
peaked as excitation and decayed as propagation. Moreover,
the bicoherence analyses indicate several types of nonlinear
interactions in the low-frequency range (f < 100 kHz).
In addition to the coupling between the HFGAM and the
LFGAM, and the self-coupling of the other GAM with the
beat frequency between the HFGAM and the LFGAM, the
strongest coupling comes from the LFGAM and a quasi-mode
at ∼50 kHz. The coupling intensities all reach maximum
near the exciting location of the LFGAM and these nonlinear
interactions should be considered during the saturation process
of GAMs in the edge plasmas. The coexisting multi-GAMs
are also found and at least five peaks of GAMs could be
observed, with two pairs of fundamental and second harmonic
frequencies. The amplitude correlation technique shows that
the spectral energy flows from the fundamental GAM into the
second harmonic GAM, implying that the harmonic GAMs are
generated from the fundamental GAMs.
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