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a b s t r a c t

There existed many visual tracking methods that are based on sparse representation model, most of them
were either generative or discriminative, which made object tracking more difficult when objects have
undergone large pose change, illumination variation or partial occlusion. To address this issue, in this
paper we propose a collaborative object tracking model with local sparse representation. The key idea
of our method is to develop a local sparse representation-based discriminative model (SRDM) and a local
sparse representation-based generative model (SRGM). In the SRDM module, the appearance of a target is
modeled by local sparse codes that can be formed as training data for a linear classifier to discriminate
the target from the background. In the SRGM module, the appearance of the target is represented by
sparse coding histogram and a sparse coding-based similarity measure is applied to compute the distance
between histograms of a target candidate and the target template. Finally, a collaborative similarity mea-
sure is proposed for measuring the difference of the two models, and then the corresponding likelihood of
the target candidates is input into a particle filter framework to estimate the target state sequentially
over time in visual tracking. Experiments on some publicly available benchmarks of video sequences
showed that our proposed tracker is robust and effective.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Object tracking is one of the most important components in
computer vision and arises in many practical applications such as
video surveillance, human motion understanding, and interactive
video processing, and so on. Although many trackers have been
proposed and have made successes under various scenarios, object
tracking is still challenging because the appearance of an object
may be changed drastically while undergoing significant pose
change, illumination variation and/or partial occlusion. Such a
thorough review can be found in [1,12], where tracking algorithms
were categorized into generative and discriminative approaches.
Generative methods formulated the tracking problem as searching
for the most similar regions to the target model. Discriminative
methods treated the tracking problem as a binary classification
problem which attempts to design a classifier to distinguish the
target object from the background. In this paper, we concentrate
mainly on designing a robust tracking model that confronts the
aforementioned challenges by combining tracking outputs of the
generative and discriminative models.

Recently, sparse representation [4] has been successfully ap-
plied in visual tracking, and a plethora of sparse representation-
based tracking methods have been proposed [2,5–10,19,21,23].
Among these generative appearance models based on sparse repre-
sentation, tracking problems were formulated to attempt to jointly
estimate the target appearance by finding a sparse linear combina-
tion over a dictionary containing the target and trivial templates.
Further experiments showed that sparse representation was effi-
cient and adaptable to the aforementioned challenges, especially
to partial occlusion. However, those sparse representation-based
trackers only considered global templates, did not make full use
of local representations, and hence failed in tracking target when
the templates directly cropped from target image are very limited
[24]. Therefore, Local patch-based sparse representation models
were introduced in [5,7,9]. In [5,7] the object appearance was mod-
eled by histograms of local sparse representation, however, both of
their methods were based on a static local dictionary obtained
from the first frame and may fail in dynamic scenes. Afterwards,
Jia et al. [9] adopted an alignment pooling method scanning across
local patches based on sparse coefficients for robust tracking.
Although these trackers with local sparse representation have
demonstrated good robustness in many videos, they may fail in
the discrimination between the target and the background more
possible when there are some challenging factors, such as
background clutter and the background regions with similar
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appearance to the object class. In comparison, discriminative
appearance models based on sparse representation posed visual
object tracking as a binary classification issue. In [2], local image
patches of a target object were represented by their sparse codes
with an over-complete dictionary constructed online, and the
sparse codes were treated as training samples. The key idea of
the model was to train a classifier by learning the sparse codes
and to maximize the separability between the object and non-
object regions discriminately. Nevertheless, a major limitation of
the discriminative appearance models is in that they were heavily
relied on training sample selection. Moreover, most discriminative
appearance models took the current object location as one positive
sample, and its neighborhoods as negatives. However, the impre-
cise current object location could degrade the appearance model
and cause drift.

In actually, generative and discriminative appearance models
have their respective pros and cons, and are complementary to
each other to a certain extent. Therefore, we propose an efficient
tracking algorithm incorporating the information from a devel-
oped generative model and a discriminative model, based on local
sparse representation. Our proposed algorithm mainly contain a
local dictionary obtained by sampling local image patches within
the target region from the first frame; a sparse representation-
based generative model (SRGM) with local sparse template which
is represented by histograms of local sparse representation based
on the dictionary and is updated online; a sparse representation-
based discriminative model (SRDM) with a linear classifier which
is trained by learning the sparse codes based on the dictionary
and is updated online; and a similarity function fusing the
information from the generative model and the discriminative
appearance model. The discriminative model is able to investigate
informative samples as support vectors for object/non-object clas-
sification, resulting in a strong discrimination. Although our
SRDM module has a good generalization ability to distinguish ob-
ject and background, the local sparse representation-based classi-
fier may be affected when updated with the background
information as positive samples. However, the SRGM module
can alleviate the influence since it is distinct to be foreground
or background with local sparse coding histograms. Thus, the
SRDM and SRGM module are complementary to each other to
some extent.

The main contributions of this paper are:

� A novel target appearance modeling method by combining the
generative model and the discriminative appearance model
based on local sparse representation.
� A new similarity measure between the candidates by fusing the

information from the generative model and the discriminative
appearance model.

2. Related works

There was a rich literature on appearance modeling and repre-
sentation [12]. An effective object representation should have a
strong description or discrimination ability to distinguish targets
from background. Most of recent tracking algorithms focused on
object representation schemes with generative appearance models
[3,6–10,13,14,16,17,19–23,33,38] and discriminative models
[2,5,11,15,25,26,37].

Generative methods formulated the tracking problem as
searching for the most similar regions to the target model. Inten-
sity histogram was perhaps the simplest way to represent object
appearance in many tracking algorithms [3], but it missed the spa-
tial information of object appearance, which makes it sensitive to
noise as well as occlusion in many tracking applications. To solve
these problems, Nejhum et al. [17] modeled the target appearance

as a small number of rectangular blocks with histograms, whose
positions within the tracking window are determined adaptively.
More recently, He et al. [22] presented a tracking framework based
on a locality sensitive histogram that was computed at each pixel
location and a floating-point value was added to the corresponding
bin for each occurrence of an intensity value. In addition, to cover a
wide range of pose and illumination variation, Ross et al. developed
an online subspace learning model to account for appearance var-
iation [13]. Recently, the sparse representation framework [4,18]
has attracted considerable interests in object tracking due to its
robustness to occlusion and image noise. Following the pioneer
work, many methods adopted sparse representation model for
tracking objects [5–10,19–21,23]. In [6], each target candidate
was represented as a linear combination of a set of online updated
templates, consisting of target templates and trivial templates, and
the candidate with the smallest error to target template recon-
struction is regarded as the tracking result. More recently, Zhang
et al. [8] presented a multi-task sparse optimization framework.
Instead of treating test samples independently, the framework ex-
plored the interdependencies between test samples by solving a
regularized group sparsity problem. Besides the high computa-
tional cost, another drawback of these trackers is to model object
appearance as global sparse templates. Since local representations
can capture the local structural target appearance, the local visual
representations [7,9,22] were robust to global appearance changes
caused by illumination variation, shape deformation, and partial
occlusion. In [24], extensive experiments have demonstrated that
local sparse representation-based trackers outperformed those
with global sparse templates. Therefore, Jia et al. [9] adopted an
alignment pooling method scanning across local patches based
on sparse coefficients for robust tracking. As these methods
exploited generative representation of target objects only and did
not take the background into account, they were less effective for
tracking in cluttered background.

By training a model via a discriminative classifier, discrimina-
tive methods [2,11,15,25,26,37] have shown good performance in
discriminating object from the background. Avidan et al. [11]
developed an online boosting method for tracking targets, which
was an ensemble tracker that yielded a strong classifier by a set
of weak classifiers. Bai et al. [25] treated object tracking as a
weakly supervised ranking problem, which can avoid the heuristic
and unreliable step of training sample selection towards the true
target samples. In contrast with them, Babenko et al. [15] used
multiple instance learning (MIL) instead of traditional supervised
learning to handle ambiguous binary data obtained online. Zhang
et al. [26] proposed an online weighted multiple instance tracker,
which incorporated the important information of samples into
the online multi-instance boosting learning process, resulting in
robust tracking results. Despite the success of the discriminative
methods, a major challenge is how to choose positive and negative
samples when updating the adaptive appearance model. Since
most discriminative trackers took the current object location as
one positive sample and sampled its neighbors as negatives, it
might degrade the appearance model and cause drift due to the
imprecise current object location.

In this paper, we propose an effective object tacking method
involving a generative model and a discriminative appearance mod-
el based on local sparse representation. The proposed method con-
sists of three main parts: a generative appearance model for object
representation, which is composed of local patch templates with
the corresponding histograms of local sparse representation, and
thus provides a more flexible mechanism to deal with the problem
of appearance change; a discriminative appearance model for object
representation, which is obtained by learning the local sparse codes
of the negative and positive samples, and thus is capable of discrim-
inating object from the background powerfully; a similarity mea-
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sure, which is the combination of different models between the gen-
erative model and the discriminative appearance model, and further
ensures a more stable scheme to locate the target more accurately.

3. Proposed algorithm

While most tracking algorithms use either generative or discrim-
inative appearance model, our module collaborates both of them. In
general, discriminative methods use information from the target
and the background, yet the discriminative methods may be affected
when updated with the background patches as positive samples. On
the contrary, generative methods are often distinct to be target or
background by searching for the most similar regions to the target
in the current frame. Thus, generative methods are more amenable
for discriminative models because of their simplicity and flexibility.

The basic flow of our collaborative appearance model is illustrated
in Fig. 1. The main procedures of our model are: for SRDM module,
firstly positive and negative samples around the manually labeled
target location are cropped out, then sparse codes for each image
patch are computed to form the training data and thus, a linear clas-
sifier is constructed by learning the sparse codes; for the SRGM mod-
ule, overlapped sliding windows on the normalized target image is
applied to obtain image patches, then each image patch using an
over-complete dictionary is encoded, and the corresponding sparse
codes are aggregated to form sparse coding histogram; finally, our
target template is generated by the sparse coding histogram.

3.1. Object representation by local sparse coding

Motivated by the success of sparse representation in object
tracking [5,7], a local sparse representation is used to model the
appearance of target patches and the corresponding sparse codes
are collected to represent the target object. Let P = {pi|i = 1:K} de-
note the vectorized image patches extracted from a target region,
where pi e Rd w is the ith local image patch, d is the dimensionality
of image patches, and K is the number of local image patches. Each
local image patch pi from the target region will have a correspond-
ing vector with sparse coefficient ai e Rc � 1, which is computed by:

âi ¼ arg min kaik1 subject to kpi � Daik2 < e; ð1Þ

where the dictionary D e Rd � c is generated from k-means cluster
centers (c denotes the number of clusters) via the patches belonging
to the labeled target object in the first frame. When the sparse codes
Aj ¼ â1; â2; . . . ; âK½ �T of all the image patches for the jth candidate are
computed, they are collected to represent the whole candidates.

3.2. Sparse representation-based discriminative model

To initialize the classifier of the model in the first frame, positive
and negative samples (local image patches) are cropped out around

the labeled target location. Let l(x) denote the location of image
patch x. First, a set of image patches Xr ¼ xjr > klðxÞ � l�1k

� �
for posi-

tive samples is cropped out from the first frame, and image patches
from an annular region Xr;b ¼ x r < klðxÞ � l�1k < b

��� �
are regarded as

negative samples, where r and b are thresholds defining the annular
area (measured in pixels), respectively. Then the sparse codes of im-
age patches are computed to form the training data, {(A1, y1), -
. . ., (An, yn)}, where Aj e R(K � c) � 1, yj e {+1,�1}, and n is the number
of training samples.

With the training data, our discriminative model is learned by
minimizing the following loss function

min
w;b

Lðw; bÞ ¼min
w;b

Xn

j¼1

lðyj;w; b;AjÞ þ
k
2
kwk2

; ð2Þ

where l(yj, w, b, Aj) is a loss function, w and b are classifier parameters.
Apart from convexity, smoothness is another desirable fact for the loss
function, so the exponential loss function has the form as below:

lðy;w; b;AÞ ¼ e�yðwTAþbÞ: ð3Þ

In the tracking process, candidates are sampled and the correspond-
ing sparse codes are calculated as the form A = {A1, . . ., AN}, where N
is the number of candidates. Then the classification score for the
learned classifier can be obtained by

scoreðAÞ ¼ ewTAþb: ð4Þ

The basic flow of our SRDM appearance model is illustrated in Fig. 2.

3.3. Sparse representation-based generative model

To represent the basis distribution for both target and candi-
dates, similar to [7], the sparse coding histogram is defined by:

Tq ¼ C
XK

i

kðkcik2Þjaiqj; ð5Þ

where Tq is the value of the qth bin in sparse coding histogram, ci

represents local patch i at a certain position of the target, k(||ci||2)
is an isotropic kernel function which is applied to assign smaller
weights to image patch far away from the target center, C is a nor-
malization constant, and aiq is the qth coefficient of the ith image
patch. Similarly, the sparse coding histogram of a candidate can
be computed as:

Hq ¼ C
XK

i

k
Y � ci

h

����
����

2
 !

ja�iqj; ð6Þ

where Y represents certain position of the target.
How to determine the similarity between the candidate and the

template is one key issue in object tracking so that the most similar
target location can be found out by a similarity measure function.
Therefore, let sim(T, H) be a similarity measure between the candi-

Fig. 1. The basic flow of our collaborative appearance model. It consists of two main parts: SRDM module and SRGM module.
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date H and the template T to search for the most similar candidate.
There are some well-known goodness-of-fit statistical metrics such
as Euclidean distance, Bhattacharyya coefficient and log-likelihood
ratio statistic [35]. Here the weighted sum of Bhattacharyya dis-
tance is adopted to measure the similarity as

simðT;HÞ ¼ qðT;HÞ; ð7Þ

where q is the Bhattacharyya distance between the histograms of
candidate and template,

qðT;HÞ ¼
Xc

q¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tq � Hq

q
: ð8Þ

The Bhattacharyya distance can reflect the perceptual similarity
between candidate and template. If they are partly similar, their
histograms will be similar much more and hence the correspond-
ing Bhattacharyya distance will be high, i.e., the angle between
the two histogram vectors is small, and vice verse. Occasionally,
it is possible that the histograms of two dissimilar templates are
very similar. Fortunately, such cases are rare because the sparse
coding histograms are local and they only reflect the local features
of images [36]. The basic flow of SRGM model is shown in Fig. 3.

3.4. Collaborative object tracking model

We propose a collaborative model to integrate the discrimina-
tive module and the generative module based on local sparse rep-

resentation. Here, a more robust and effective probability function
for candidates is proposed, by fusing the classification score based
on the learning model and the similarity function based on the
sparse coding histograms. The collaborative likelihood measure
of the cth candidate is defined as

Lc ¼ scoreðAcÞ � simðT;HcÞ; ð9Þ

and the candidate with the highest probability is formed as the
tracking result.

In this paper, we select the multiplicative formula, which is more
effective in our tracking method than the alternative additive strat-
egy (e.g., Lc = e ⁄ score(Ac) + (1 � e) ⁄ sim(T, Hc)), to measure the likeli-
hood of candidate. It is because that, firstly, the SRDM can learn a
margin-based discriminative SVM classifier for maximizing inner-
class separability. With the power of max-margin learning, the clas-
sification score score(Ac) assigns larger weight to the candidate
which is considered as positive samples and restricts the others.
As a result, the score(Ac) can be treated as the weight of the similarity
function (i.e. SRGM) between the candidate and the template based
on the sparse coding histograms. Moreover, in SRGM the similarity
with local sparse coding histograms has the ability to reject back-
ground false alarm. The similarity sim(T, Hc) assigns higher weight
to the candidate with less background and simultaneously, it also
be treated as the weight of the classification function (i.e. SRDM).
Lastly, if the classification score of an indistinguishable candidate
or the similarity of candidate with false background is approxi-

Fig. 2. Graphical representation of SRDM module.

Fig. 3. Graphical representation of SRGM module.
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mately equal to 1, the likelihood function results in trivial change
when multiplying with the classification function or the similarity
function. Therefore, our model is flexible, robust and complemen-
tary to others with the simple multiplicative scheme.

3.5. Update scheme

Since object tracking with fixed template or classifier cannot
adapt the change of target appearance over time, it will be failed
in dynamic scenes. It is important to update the model online to en-
hance the adaptivity of the tracker. However, if the template or clas-
sifier is updated too frequently with new tracking results, even small
errors will be accumulated and the tracker will drift from the target
more and more far away. Therefore, to address the issue, firstly, the
dictionary D is fixed for the same sequence so that the dictionary
cannot be deteriorated even if the tracking failures and occlusions
during the update process. Then, for the SRGM module, to balance
between the old and new templates, a weight x is assigned to them
and the template histogram is updated by

Hnew ¼ xHfirst þ ð1�xÞHtemp; ð10Þ

where x is a constant and is set to 0.8 in this paper. The new histo-
gram Hnew consists of the histogram Hfirst at the first frame and the
histogram Htemp obtained during tracking process.

For SRDM module, once the tracker location is updated, the
appearance model is updated every several frames. First, a set of
patches Xr ¼ fx r > klðxÞ � l�1k

�� g is cropped out and the positive
sample is labeled. To obtain negative samples, patches
Xr;b ¼ fx r < klðxÞ � l�1k < b

�� g are cropped out from an annular re-
gion, where r and b are the same as before. Therefore the discrim-
inative model is updated to minimize loss function of this data Eq.
(2), when received new data {(A1, y1), . . ., (An, yn)}. In this way, our
SRDM module is adaptive and discriminative.

4. Tracking by Bayesian inference

Particle filter [27,28] provided a convenient framework for esti-
mating and propagating the posterior probability density functions
of state variables. In this paper, to form a robust tracking algo-
rithm, a collaborative similarity is embedded into the particle filter
framework. Given the observations of the target y1:t = {y1, . . ., yt} up
to time t, the current target state St can be estimated by maximiz-
ing a posterior (MAP) that associates with the highest likelihood:

st ¼ arg max
st

pðSt jy1:tÞ; ð11Þ

where p(St|y1:t) is posterior probability and is recursively computed
as

p Stjy1:tð Þ / p ytjStð Þ
Z

St�1

p StjSt�1ð Þp St�1jy1:t�1ð ÞdSt�1; ð12Þ

where p(yt|St) is the observation model or likelihood function that
estimates the likelihood of the state yt given the observation St,
while p(St|St�1) is the motion model that predicts the current state
given the previous state.

4.1. Dynamic model

In this paper, similarly to [6], an affine image warping is applied
to model target motion of two consecutive frames. Let St = (l1, l2, -
l1, l2, l3, l4) be the six-dimensional parameter vector for affine
transformation, where l1, l2, l3, l4 are the deformation parame-
ters which represent the rotation angle, scale, aspect ratio, and
skew direction at time t, respectively, and l1, l2 are the 2D position
parameters. The transformation of each parameter is indepen-
dently represented by a scalar Gaussian distribution around their
previous state St�1. Then the motion model is obtained by a Gauss-
ian distribution as follows:

pðSt jSt�1Þ ¼ OðSt; St�1;NÞ; ð13Þ

where Oð�Þ is the Gaussian distribution and N is the covariance
matrix.

4.2. Observation model

In this inference framework, the observation model is very
important because it reflects target appearance variations under
the condition of pose changes, illumination variations or partial
occlusion. Therefore, the observation model p(yt|St) (we omit t
without causing confusion) can be defined as:

pðy Sj Þ / Ly; ð14Þ

where the right side of the equation denotes the collaborative like-
lihood between the candidate and the target (defined in Eq. (9))
based on the local sparse coding.

Algorithm 1 gives a summary of the complete tracking
algorithm.

The proposed tracking algorithm is summarized in Algorithm 1.

1: Input: The initial state of the target S1 = (l1, l2, l1, l2, l3, l4), the
video frames F1, . . . Ft, and the dictionary D from the first frame.

2: Output: The current target state St at time t
Initialization:
3: Initialize the object in the first frame and crop out a set of

negative and positive image patches.
4: Construct an initial dictionary D and compute the sparse codes of

each image patch by Eq. (1).
5: Train an initial classifier by Eq. (2) and obtain classifier parameters

w�1; b
�
1. Compute the initial template histogram by Eq. (5).

Online tracking:
6: for t = 2, . . ., T do
7: Sample candidates and calculate the corresponding sparse

codes with the dictionary D by Eq. (1).
8: SRGM module: calculate the sparse coding histogram of the

candidates and the similarity between the candidates and the
template using Eqs. (6), (7) and (8).

9: SRDM module: compute the classification score with the
learned classifier w�t�1; b

�
t�1 by Eq. (4).

10: Collaborative model: determine the final tracking result St

using the collaborative likelihood within particle filtering
framework by Eqs. (11)–(14).

11: End for.
12: Update the template histogram by Eq. (10) with the newly

obtained template and the classifier parameters w�t ; b
�
t .

13: End.

Table 1
Tracking sequences used in our experiments.

Video
clip

Number of
frames

Main challenges

woman 550 Partial occlusion, pose variations
shop2cor 350 Heavy occlusion, pose variations
faceocc2 814 Significant and long duration occlusion
david 462 Large illumination and pose variations, partial

occlusion
bird2 98 In-plane/out-of-plane pose change and partial

occlusion
sylv 1344 Illumination and pose variations
singer1 351 Significant illumination and scale variations
bolt 190 Large pose variation and fast motion

C. Xie et al. / J. Vis. Commun. Image R. 25 (2014) 423–434 427
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Fig. 4. Screenshots of tracking comparison of our tracker (yellow box) with the trackers of L1 (red box), IVT (mulberry box), CT (green box), SCM (blue box) and ASLA (cyan
box), highlighting instances of partial or significant occlusion, significant pose and illumination changes, and so on. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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5. Experiments

In this section, we evaluate our proposed method on eight pub-
licly available video sequences involving the challenges of partial
or significant occlusion, significant pose and illumination changes,
and so on. The details of the selected video sequences are listed in
Table 1. Also, five state-of-the-art trackers are tested on the same
sequences, including incremental visual tracking (IVT tracker)
[13], L1 tracking (L1 tracker) [6], adaptive structural local sparse
appearance model (ASLA tracker) [9], sparsity-based collaborative
model (SCM tracker) [5], and real-time compressive tracking (CT
tracker) [29]. For fair comparison, all of them are experimented

on the same dynamic model and the same particles (500 particles
per frame in this work), and they use the same initialized target
locations in these video sequences. The tracking videos
[13,15,37], MATLAB codes, and data sets can be, respectively found
from URLs [30–32].

Our method learns sparse codes and a linear classifier directly
from original image patches. Therefore, the computational cost of
our SRDM is smaller than that of most recent discriminative track-
ing methods which use multiple features. In addition, we address
the computational complexity reduction of the similarity measure
between candidates and template by exploiting the sparse coding
histograms from original image patches. Consequently, the

Fig. 4 (continued)
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computational cost of our SRGM is smaller than other methods
using color histograms or texture histograms. For fair comparison,
all the experiments are implemented by a MATLAB on a 2.5 GHz
machine with 4 GB RAM. Our method runs at around 1.5 s per
frame and the IVT, L1, ASLA, SCM, CT trackers spend about 0.5,
20, 1, 1.2, 0.8 s per frame, respectively. For qualitative analysis,
some representative frames are selected to show the evaluation
comparison of our tracker with the others. The performance eval-
uation can be found in Fig. 4.

5.1. Qualitative analysis

The sequence ‘‘woman’’ comprises partial occlusion and pose
changes. As seen in Fig. 4(A), our tracker, the trackers of ASLA
and SCM show competitive compared to the trackers of L1, IVT
and CT, for the whole sequence frames. On the contrary, the track-
ers of L1 and CT cannot adapt to these changes, resulting in serious
drift (see all the frames shown in Fig. 4(A)), while the IVT tracker
also fails in capturing target after frame 230.

The sequence ‘‘shop2cor’’ comprises heavy occlusion and pose
changes. As illustrated in Fig. 4(B), our tracker performs the same

with the trackers of ASLA and SCM and can track the man success-
fully for the whole sequence, while the trackers of IVT and CT
works poorly (see the frame 106, 124, 164, 313 of shop2cor in
Fig. 4(B)). The L1 tracker also performs poorly when the occlusion
is severe in shop2cor (see frame 106 in shop2cor).

The sequence ‘‘faceocc2’’ mainly comprises heavy occlusion and
pose changes. Fig. 4(C) shows that most of trackers can track the
target successfully for the whole sequence, but the CT tracker ap-
pears to target drifting after frame 707.

Results on the sequence ‘‘david’’ are shown in Fig. 4(D). From
the Fig. 4(D), the L1 tracker drifts away after the frame 94 of david
sequence. The trackers of IVT and CT appear to start target drifting
in frames 188, 278, 395.The other three trackers, including ours,
can yield more stable and accurate results when the object under-
goes the challenges of illumination changes and pose variations.

In Fig. 4(E), the trackers of IVT and CT fail to track the target
after frame 35 and, the L1 as well as ASLA also miss the target in
frame 52. Surprisingly, both our tracker and the SCM yield satisfac-
tory results.

The sequence ‘‘bolt’’ mainly comprises very fast motion and
large pose variations. From the Fig. 4(F), as shown in frames 21,

Fig. 4 (continued)
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Fig. 5. Center location error plots for our tracker and the five state-of-the-art trackers.
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Fig. 6. Pascal score plots for our tracker and the five state-of-the-art trackers.
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42, 72, 128, 154 of bolt sequence, all of the compared trackers ex-
cept for our tracker cannot handle the cases of very fast motion and
severe appearance variations well and thus exhibit severe drift. In
general, our tracker achieves the best performance in terms of both
accuracy and robustness.

As illustrated in Fig. 4(G), our tracker, SCM tracker and ASLA
tracker perform well during the whole sequence, while the L1
tracker cannot handle the sudden illumination changes and drifts
from the target in our experiment. Moreover, the trackers of IVT
and CT drift away from the target area in frames 197, 314, and
344 due to significant illumination and scale variations.

The last sequence ‘‘sylv’’ is mainly used for the cases of illumi-
nation changes and large pose variations. Results on the sequence
‘‘sylv’’ are illustrated in Fig. 4(H). In this sequence, we found that
the L1 tracker cannot adapt these changes automatically and thus
result in serious drift (see all the frames shown in Fig. 4(H)). More-
over, IVT, SCM and ASLA fail to track the target after frame 924 be-
cause of the target appearance change. Fortunately, our tracker can
generally handle the appearance change well, yielding a more sta-
ble and accurate result than other trackers.

5.2. Quantitative analysis

Two criteria are used to evaluate the performance of the pro-
posed tracker quantitatively. The first one is center location error

that measures the Euclidean distance between the central position
of the tracking result and that of the manually labeled ground
truth. In our experiments, the ground truth centers of the objects
in the video clips, woman, shop2cor, faceocc2, david, bird2, bolt,
singer1 and sylv, are provided by [13,15,37]. The second one, sim-
ilar to [34], is success rate that indicates the number of the success-
ful tracked frames and is defined as:

Pascalscore ¼ BR \ BT

BR [ BT
; ð15Þ

where BR and BT are the tracked bounding box and the ground truth
bounding box, respectively. If the Pascalscore is larger than 0.6, it is
considered to be successful in tracking for each frame in this paper.

Fig. 5 and Fig. 6 illustrate the comparison of our tracker with the
trackers of L1, IVT, ASLA, CT and SCM in terms of center location er-
ror and Pascal score. The center location errors and Pascal scores
are reported in Table 2 and Table 3, respectively. Experimental re-
sults show that our proposed tracking algorithm outperforms the
others on the ‘‘shop2cor’’, ‘‘bird2’’, ‘‘bolt’’, ‘‘singer1’’and ‘‘sylv’’ se-
quences. As shown in Table 2, our method has the smallest average
center location errors implying that it is more robust than the
other five trackers. From Table 3, we also observe that our tracker
achieves the highest success rate compared with the other five
trackers except for the cases of ‘‘woman’’, ‘‘david’’, and ‘‘faceocc2’’
sequences. Moreover, our tracker achieves an average score of

Table 2
Center location errors (in pixels) of the proposed tracker and the five state-of-the-art trackers. Bold blue font with underline indicates the best performance; bold red font with
underline indicates the second best tracker for each sequence.

Table 3
Pascal scores of the proposed tracker and the five state-of-the-art trackers demonstrate the success rate of the successfully tracked frames for each sequence. Bold blue font with
underline indicates the best performance; bold red font with underline indicates the second best tracker for each sequence.
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86.9%, which indicates that it is of the highest success rate than the
other trackers on the eight experiments.

6. Conclusion

In this paper we propose a novel, robust, and adaptive approach
with the design of an collaborative appearance model based on lo-
cal sparse representation. Different from traditionally local sparse
representation model, this work adopts the classification score in
SRDM module and the similarity in SRGM module to define a col-
laborative likelihood measure. Finally, the collaborative likelihood
is embedded into a Bayesian inference framework for the estima-
tion of object state in consecutive frames. Our method combines
the advantages of generative and discriminative appearance mod-
els to account for scene changes. Compared with state-of-the-art
tracking methods, the proposed method achieves favorable perfor-
mance in both the qualitative and quantitative respects.
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