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The normalized difference water indices (NDWIs) were successfully used in map land
surface water mapping (LSWM) from Landsat series multispectral images. This paper
evaluates the potential of the recent Landsat satellite (Landsat-8) Operational Land
Imager (OLI) multispectral images for LSWM using three NDWI models. We tested
the accuracy and robustness of the three OLI NDWI models in the Yangtze River
Basin and the Huaihe River Basin in China. The results demonstrate that the three OLI
NDWI models achieve an overall accuracy of more than 95%, a kappa coefficient of
0.89 and a producer’s accuracy of 95% for LSWM. The results also demonstrate that
the NDWI model using the green band (Band 3) and the SWIR1 band (Band 6)
(referred to as NDWIO6,3) of the OLI sensor has a higher LSWM accuracy than the
other two NDWI models.

1. Introduction

Land surface water (LSW), which includes rivers, lakes, reservoirs and wetlands, plays a
crucial role in water cycles (Du et al. 2012). Since 1972, the multispectral images from the
sensors of the Multispectral Scanner System (MSS, Landsat-1/2/3), Thematic Mapper
(TM, Landsat-4/5) and Enhanced Thematic Mapper Plus (ETM+, Landsat-7) have been
used to delineate LSW using the methods of single-band density slicing (Ryu, Won, and
Min 2002), images classification (Oki, Oguma, and Sugita 2002; Li et al. 2013) and water
index (McFeeters 1996; Xu 2006). The Landsat-7 mission was flawless until May 2003.
Moreover, a rapidly degrading electronic component ended the Landsat-5 mission in
November 2011. Fortunately, the recent Landsat satellite (Landsat-8) launched on 11
February 2013. The potential of the Landsat-8 Operational Land Imager (OLI) images
for delineating LSW must be evaluated.

Water indices are better at detecting LSW than single-band density slicing methods
(Qiao et al. 2012). Image classification methods are highly dependent on human expertise
and have difficulty in producing rapid and reproducible extractions of LSW information
because water bodies, such as tides and storm surges, can be fast moving (Ouma and
Tateishi 2006). Water indices can extract LSW information more accurately, quickly and
easily than classification methods (Li et al. 2013). A commonly used water index is the
normalized difference water index (NDWI) (McFeeters 1996). The other widely used
water index is the modified NDWI (Xu 2006). McFeeters’ NDWI and Xu’s NDWI have
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been successfully used to delineate LSW information (Li et al. 2013; Feyisa et al. 2014).
Therefore, McFeeters’ NDWI and Xu’s NDWI were used as the primary methods in this
study. This paper evaluates the potential of the Landsat-8 OLI images in delineating LSW
using different NDWIs so that the data from the Landsat-8 and the other Landsat satellites
can be used to map LSW for application purposes, e.g., shoreline extraction, flood area
mapping and wetland mapping.

2. Methodology

2.1. Data sites and study sites

Level 1 US Geological Survey (USGS) Landsat-8 OLI images were employed. These
images are in theWorld Geodetic System (WGS84) datum in GeoTIFF format and projected
using the Universal Transverse Mercator system. Three OLI images from Landsat-8, which
were acquired over the Yangtze River Basin and Huaihe River Basin in China, were used for
the LSWmapping (LSWM) analysis. The three OLI images were acquired on 14 May 2013
(path/row 121/38), 13 June 2013 (path/row 123/39) and 14 August 2013 (path/row 125/39).
The three study sites contained several water bodies, including small ponds, rivers, reser-
voirs and lakes, with different environmental conditions such as different depth, turbidity
and surface appearances (Figure 1 and Table 1). The sites exhibited predominantly flat or
mountainous topography. The test sites were deliberately selected so that the sub-scenes
consisted of complex surface features as the background features for the water features. The
Dongpu Reservoir was the main water features in Region I, and the background features
included the built-up land and vegetation. The Three Gorges Reservoir and the Yangtze
River were selected as the main water features in Region II, and the main background
features were the Three Gorges Dam, built-up land and vegetation. The Shahu Lake and the
Dong Lake were selected as the main water features in Region III, while the main back-
ground features were the built-up and vegetation.

It’s difficult to obtain accurate ground-truth reference data because the water body
changes over time (Ouma and Tateishi 2006). One acceptable option is to use the higher
resolution images collected simultaneously with the multispectral images to minimize any

Figure 1. Location of the study area (Image © 2014 Google, DigitalGlobe).
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time-dependent effects. Hence, the 15-m resolution OLI panchromatic images that were
acquired at the same time as OLI multispectral images were selected for the ground-truth
reference data. We also used the higher resolution QuickBird data (2.4 m) as auxiliary
data. The drawback is that QuickBird data downloaded from Google contain differences
in terms of their acquisition dates and colours (Figure 1); however, these QuickBird data
are sufficient for determining the properties of the random reference points. True ground-
truth reference data are preferable if they can be obtained.

2.2. Water indices and data pre-processing

McFeeters’ NDWI is a water index which is calculated from (Green-NIR)/(Green+NIR),
where Green and NIR are the reflectance of the green and NIR bands (McFeeters 1996).
McFeeters’NDWI is unable to completely separate built-up features from water features. To
address this problem, the modified NDWI (Xu’s NDWI) was developed, which is calculated
from (Green-SWIR)/(Green+SWIR), where SWIR is the reflectance of the SWIR band (Xu
2006). In this study, Band 3 (Green) and Band 5 (NIR) of OLI were selected to form one
McFeeters’NDWI model, i.e., NDWIO5,3,. Moreover, Band 3, Band 6 (SWIR1) and Band 7
(SWIR2) were used to form two Xu’s NDWI models, i.e., NDWIO6,3 and NDWIO7,3.
Hence, we must determine which OLI NDWI model performs the best at LSWM.

The parameters used in McFeeters’ NDWI and Xu’s NDWI require physical quan-
tities, such as the surface reflectance, rather than raw quantized calibrated pixel values.
The USGS standard level 1 Landsat-8 OLI products can be rescaled to the surface
reflectance using atmospheric correction modules. The FLAASH (Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes) module can accurately convert the raw
quantized calibrated pixel values to surface reflectance (Hu and Tang 2012). We used
FLAASH to obtain the surface reflectance values of the OLI data in this study. The
following equations are used in FLAASH:

L ¼ A
ρ

1� Sρe
þ B

ρe
1� Sρe

þ La (1)

where L is the pixel spectral radiance, ρ is the pixel surface reflectance, ρe is the
averaged surface reflectance, S is the atmosphere spherical albedo, La is the radiance
backscattered by the atmosphere. The parameters A, B, S and La are calculated from the
FLAASH module contained in the ENVI software package 5.0 provided by Envirosphere
Company (Redlands, CA, USA).

Furthermore, L can be obtained from the raw quantized calibrated pixel values (Qcal)
as follows:

L ¼ MQcal þ A (2)

where M is the band-specific multiplicative rescaling factor and A is the band-specific
additive rescaling factor. The parameters M and A are included in the OLI metadata file
(MTL file).

2.3. Image threshold segmentation

The thresholds for McFeeters’ NDWI and Xu’s NDWI were set to zero; however,
adjusting the threshold can more accurately delineate LSW information (Ji, Zhang, and
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Wylie 2009). The Otsu method (Otsu 1979) has been used successfully in LSW detection
(Du et al. 2012; Li et al. 2013). Therefore, the Otsu method was used in this study. The
Otsu method uses the maximum between-class variance criterion to determine the optimal
threshold t* for NDWI image segmentation:

σ2 ¼ Pnw � Mnw �Mð Þ2 þ Pw � ðMw �MÞ2
M ¼ Pnw �Mnw þ Pw �Mw

Pnw þ Pw ¼ 1

t� ¼ Arg Max
a�t�b

Pnw � Mnw �Mð Þ2 þ Pw � ðMw �MÞ2
n o

8>>><
>>>:

(3)

where σ is the between-class variance of the non-water and water, M is NDWI image
mean value, Pnw is the non-water class probability, Pw is the water class probability, Mnw

is the non-water class mean value and Mw is the water class mean value. Additional details
of the Otsu method for NDWI image segmentation can be found in Li et al. (2013).

2.4. Water body mapping validation

We used the producer’s accuracy (PA), overall accuracy (OA) and kappa coefficient to
evaluate the accuracy and robustness of the three OLI NDWI models at three sites.
Additional details of PA, OA and kappa coefficient can be obtained from Foody’s
(2002) results. The assessment was performed in three steps. First, we selected the OLI
panchromatic and QuickBird images with 2.4-m spatial resolution as the reference data.
Second, we used the OLI panchromatic images to generate more than 12,000 reference
points. To ensure the representativeness, more than 4000 random water features and
background features points were selected, respectively. In Region I, the 9496 background
features reference points represented built-up (6547 points) and vegetation (2949 points),
while the 4483 water features reference points represented ponds (601 points), the edge of
the Dongpu Reservoir (474 points) and the middle of the Dongpu Reservoir (3408 points).
The details of the reference points for Region II and Region III can be found from Table 1.
We then used the reference points to assess the accuracy of OLI LSW maps.

3. Results and discussions

The contrast between the water and the background was clear (Figure 1) at the three test
sites. A visual interpretation indicates that the nine NDWI images (Figures 2(a), (d), (g),
3(a), (d), (g), 4(a), (d), and (g)) clearly displayed open water bodies due to the enhance-
ment process. We used zero as the threshold to obtain the nine LSW maps (Figures 2(b),
(e), (h), 3(b), (e), (h), 4(b), (e), and (h)). The Otsu method determined thresholds (Table 2)
were applied to obtain the nine LSW maps (Figures 2(c), (f), (i), 3(c), (f), (i), 4(c), (f),
and (i)). The visual interpretation also indicates that the nine LSW maps, derived from the
zero threshold, contained many misclassifications, especially in Figures 2(h), 3(h) and
4(h), which were all derived from the NDWIO7,3 image.

3.1. Land surface water mapping accuracy analysis

A visual interpretation indicates that the nine LSW maps derived from the Otsu method
performed better than the nine LSW maps that used zero as the thresholds. Thus, we
used the PA, OA and kappa coefficient to quantitatively assess the accuracy of the nine
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LSW maps derived from the Otsu method in this section. Three scenarios were designed
to analyse the accuracy of the NDWI models at depicting different types of water bodies
and zones. The scenarios of all water features, which included the reference points of
middle water features and the edges of water features, were used to assess the total
accuracy of the LSW maps. The middle water features scenarios, which used the
reference points for the main water features, were used to assess the accuracy of the
larger water features. Moreover, the scenarios of water body edge features, which used
the reference points for the edges of water features (e.g., water–land boundaries) and
smaller water features (e.g., small ponds), were used to assess the accuracy of small
water features.

The total accuracy of the nine LSW maps (three ‘all’ columns in Table 2) is relatively
stable in the three test regions. The PA, OA and kappa coefficient values for the total
accuracy of the nine LSW maps exceeded 85%, 94% and 0.85, respectively. The highest
PA, OA and kappa coefficient values for the LSW maps at the three test sites corre-
sponded to the maps generated using the NDWIO6,3 model. The accuracy of larger water
features (three ‘middle’ columns in Table 2) at the three test sites exceeded the total
accuracy of the nine LSW maps. The PA, OA and kappa coefficient values for the larger
water features exceeded 95%, 95% and 0.92; the maximum PA, OA and kappa coefficient
values were obtained using the NDWIO6,3 model. In the water body edge scenario (three
‘edge’ columns in Table 2), the OA values for the three test sites exceeded 93%; however,
the PA and kappa coefficient values were smaller than those obtained for the other two
scenarios. Moreover, the highest PA and kappa coefficient values were only 80.92% and
0.8432, both coming from the NDWIO6,3 LSW map in Region II. The smallest PA and
kappa coefficient values were 41.49% and 0.5535, respectively, which were for the
NDWIO7,3 LSW map in Region I. However, the highest PA, OA and kappa coefficient
values were still obtained using the NDWIO6,3 model under the condition of small water
features and near the edge of water bodies.

The results (Table 2) illustrate that the OLI NDWIO6,3 model consistently had the
highest performance of the three NDWI models for LSWM at the three study sites under
the three different scenarios. The detailed analysis presented earlier indicates that utilizing

(a) (b) (c) (d) (e)
Legend

water

non-water

Misclassification

0 3.0
N

km

(i)(h)(g)(f)

Figure 2. Comparison of the resulting LSW maps derived from Landsat-8 OLI imagery in Region
I. (a) OLI NDWIO5,3 image; (b) LSW map of NDWIO5,3 with a 0.0 threshold; (c) LSW map of
NDWIO5,3 with a 0.238 threshold; (d) OLI NDWIO6,3 image; (e) LSW map of NDWIO6,3 with a 0.0
threshold; (f) LSW map of NDWIO6,3 with a 0.343 threshold; (g) OLI NDWIO7,3 image; (h) LSW
map of NDWIO7,3 with a 0.0 threshold; and (i) LSW map of NDWIO7,3 with a 0.525 threshold.
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the green band (Band 3, at wavelengths of 0.53–0.59 μm) and the SWIR1 band (Band 6,
at wavelengths of 1.57–1.65 μm) of the OLI to form Xu’s NDWI is the optimal choice for
LSWM. This result is consistent with laboratory analyses of spectral data (Ji, Zhang, and
Wylie 2009), which show that the NDWI model that uses the green band and SWIR band
(at wavelengths of 1.2–1.8 μm) is suitable for delineating LSW.

The results demonstrate that the NDWIO6,3 and NDWIO5,3 models are more suitable
for mapping LSW than the NDWIO7,3 model, even for small water features. The results
demonstrates that the OLI NDWIO7,3 model can also be used for LSWM. The NDWIO7,3
model is suitable for mapping large water features such as the large reservoirs in Region II
and the large lake in Region III. However, the OLI NDWIO7,3 model poorly maps small

(a) (b) (c) (d) (e)

Legend

water

non-water

Misclassification

0 3.0
N

km

(i)(h)(g)(f)

Figure 3. Comparison of the resulting LSW maps derived from Landsat-8 OLI imagery in Region
II. (a) OLI NDWIO5,3 image; (b) LSW map of NDWIO5,3 with a 0.0 threshold; (c) LSW map of
NDWIO5,3 with a 0.113 threshold; (d) OLI NDWIO6,3 image; (e) LSW map of NDWIO6,3 with a 0.0
threshold; (f) LSW map of NDWIO6,3 with a 0.286 threshold; (g) OLI NDWIO7,3 image; (h) LSW
map of NDWIO7,3 with a 0.0 threshold; and (i) LSW map of NDWIO7,3 with a 0.462 threshold.

(a) (b) (c) (d) (e)

Legend

water

non-water

Misclassification

0 3.0
N

km

(i)(h)(g)(f)

Figure 4. Comparison of the resulting LSW maps derived from Landsat-8 OLI imagery in Region
III. (a) OLI NDWIO5,3 image; (b) LSW map of NDWIO5,3 with a 0.0 threshold; (c) LSW map of
NDWIO5,3 with a −0.052 threshold; (d) OLI NDWIO6,3 image; (e) LSW map of NDWIO6,3 with a
0.0 threshold; (f) LSW map of NDWIO6,3 model with a 0.029 threshold; (g) OLI NDWIO7,3 image;
(h) LSW map of NDWIO7,3 with a 0.0 threshold; and (i) LSW map of NDWIO7,3 with a 0.060
threshold.
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water features such as the ponds in Region I. The results also demonstrate that there were
a few misclassifications, especially for small water features and eater body edges, in the
LSW maps that were caused by an overestimation of small water features (e.g., certain
small ponds in Region I) and mixed land–water pixels (e.g., water–land boundaries in the
three test regions). These problems can be addressed using a spectral unmixing technique
(Oki, Oguma, and Sugita 2002).

3.2. Optimal segmentation threshold analysis

Threshold selection is very important in LSWM using McFeeters’ NDWI and Xu’s NDWI.
The NDWI image histograms are bimodal (Figure 5). The critical threshold can be used for
LSWM. The determined thresholds using Otsu method are at the bottoms of the two peaks
(Figure 5). Previous work has shown that larger variances between the water features and
background features typically minimize the probability of LSW (Li et al. 2013). The
maximum variance values between the features of water and background for the three
OLI NDWI models at the three test sites were derived from the NDWIO6,3 image, which also
indicates that the OLI NDWIO6,3 model has more robustness for LSWM than the NDWIO5,3
and NDWIO7,3. This result is consistent with the results of the LSWM accuracy analysis.

4. Conclusions

In this study, we evaluated the potential of the Landsat-8 OLI images for LSWM. We
calculated three OLI NDWI models for LSWM in the Yangtze River Basin and the
Huaihe River Basin, China. The results demonstrate that the OLI images can be accurately
and easily used for LSWM. The results also demonstrate that the NDWIO6,3 model based
on the green band (Band 3) and the SWIR1 band (Band 6) of the OLI is the best indicator
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Figure 5. Comparison of the histograms and optimal thresholds (marked with a red arrow) for the
three NDWI models using the Landsat-8 OLI data.
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for LSWM. The results also demonstrate that using green and SWIR1 bands of the OLI
sensor to derive Xu’s NDWI provides better LSWM results than using McFeeters’ NDWI,
which is consistent with previous results (Xu 2006; Ji, Zhang, and Wylie 2009). These
results indicate that the new Landsat satellite data from the OLI sensor can be used to
delineate LSW information with other Landsat images such as TM and ETM+.
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