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a b s t r a c t

Fluorescence spectroscopy is a rapid and non-destructive method for monitoring water quality. In this
work, wavelet analysis, together with independent component analysis (ICA), was applied for component
recognition of seriously overlapped, multi-component, three dimensional fluorescence spectra. Wavelet
analysis extracts the features of the spectra and amplifies differences among phenolic homologs. ICA
analysis in blind signal separation was used to separate single component before multiple linear regres-
sion (MLR). The proposed method increases the correct classification rate and enriches the spectra library.
As such, it is a useful alternative to traditional techniques in component recognition.

� 2014 Elsevier B.V. All rights reserved.
Introduction

Fluorescence spectroscopy is a rapid and non-destructive meth-
od used in vivo and in situ water quality monitoring because of its
high sensitivity and good expression of features [1,2]. Methods for
spectra analysis based on the three-linear model have received
significant attention over the past several years. Among known
methods, parallel factor analysis (PARAFAC) is the most classical
one [3–5]. However, non-multi-linear problems are very common
in this field, and such problems may be attributed to [6]: (1) The
non-linear relationship between signals and analyte concentra-
tions, (2) the non-multi-linear of signals, and (3) the variation in
component profiles across different samples.

Models that allow deviations of multi-linearity in one way or
another include: parallel profiles with linear dependencies (PARA-
LIND) [7], multivariate curve resolution couple to ALS (MCR-ALS)
[8], non-bilinear rank annihilation (NBRA), [9] unfolded partial
least-squares (U-PLS), [10] multi-way PLS (N-PLS), [11] and artifi-
cial neural networks (ANN) [12,13]. Models must be selected
according to the cause of deviation. For example, U-PLS can be used
for three dimensional fluorescence spectra, whereas ICA can be
used to analyze second order data, regardless of whether the data
is in accordance with the three-linear model or not [14,15].
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Moreover, the non-negativity constraint is unnecessary when
using the ICA [16]. When the extracted proportions are negative,
the proportions should be multiplied by �1.

Zhang et al. converted three dimensional spectra into two
dimensional spectra [17,18], extracted fluorescence features from
harmful algal bloom(HAB) species and discriminated the algae at
the division and genus level. Wavelet analysis combined with
Bayesian discriminant analysis, a method established by MLR,
was used to determine discriminant spectra. This method discrim-
inates the algae in the wavelet domain, thereby avoiding the errors
caused by tri-linearity deviations. However, this method only dis-
criminates the species in the spectral library. Even worse, opera-
tions containing all spectra increase the risk of error. Therefore,
blind separation must be executed before discrimination. Thus
MLR only takes specific components into account. When the result
of blind separation contains the spectra that are not included in the
spectral library, these spectra are considered new species and
added to the library. Therefore, the proposed process not only in-
creases the correct classification rate, but also enriches the spectral
library.

In the present work, wavelet analysis and ICA are used to ana-
lyze three dimensional fluorescence spectra and facilitate the mon-
itoring of water quality. In the next section, the theoretical bases of
our method are introduced in detail. The section thereafter verifies
the feasibility of the proposed method by experiments. Finally, a
concise conclusion and some remarks are given.
Theories

Wavelet analysis

Wavelet multi-scale decomposition, also called ‘‘mathematics
microscope’’ [19], can refine the intrinsic information of data and
extract inner relations. Local representation information in terms
of both time and frequency can be extracted by wavelet analysis.
The wavelet features of the spectra are the projections of original
spectra in the wavelet space [20–22].

The wavelet analysis theory of fluorescence spectra is as
follows:

The fluorescence spectra of organic matter is: H(f), f = 1, 2, . . ., F,
where F is the number of measured points. First, wavelet analysis
Fig. 1. Main steps of deali
refines H(f) into multi-scale signals by selecting an appropriate
orthogonal scale base Uj,n(f) and corresponding wavelet base. The
relationship of scale space Uj and wavelet space Wj is as follows:

Uj ? Wj ð1Þ

Ujþ1 ¼ Uj �Wj ð2Þ

Then, the scale component bj,n and wavelet component ek,n can be
obtained:

bj;n ¼
XF

f¼1

Hðf ÞW�j;nðf Þ ð3Þ

ek;n ¼
XF

f¼1

Hðf ÞU�k;nðf Þ k ¼ 1;2; . . . ; j ð4Þ

The scale component (also called the low-frequency component)
represents most of the measured points and contains large scale
information. The wavelet component (also called the high-fre-
quency component) reveals few findings in several measured points
and contains small scale information. Thus, the scale component
was used as standard spectral feature in this paper. Daub4 (Daube-
chies wavelet with four filter coefficients) [23] was employed as the
mother wavelet because it is the most local in terms of time domain
[21].

Independent component analysis

ICA is a signal processing technique that aims to recover under-
lying source signals from a set of mixed signals, based on the
assumption that source signals are statistically independent [15].
ICA has been applied to spectroscopic data [24], speech recognition
[25], blind signal separation [26], fault detection [27], statistical
process monitoring [28], and batch process monitoring [29].

The ICA of a random vector is used to search the linear transfor-
mation that minimizes the statistical dependence among its com-
ponents [15,30]. To design a practical optimization criterion, the
expansion of mutual information is used as the function of
cumulants.

The following linear statistical model is assumed as:

y ¼ Pxþ m ð5Þ
ng with spectra data.
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where x, y and v are random vectors with zero mean and finite
covariance, and P is a regular square matrix. The ICA problem is that
both P and its corresponding x can be calculated from a given y.

A fast fixed-point algorithm for ICA is used in this paper [31].
The number of independent components (ICs) is evaluated by find-
ing the break of statistical value of the factor analysis functions
which are the eigenvalue (EV), the logarithm of eigenvalue (Log
EV), and ratio of the ith eigenvalue (EVR) to its previous one [32].

Main steps of dealing spectra

N mixture samples of M components are measured by fluores-
cence spectrophotometer, and three dimensional multi-compo-
nent fluorescence spectra Yn e RI�J (n = 1, � � �, N) are obtained;
here, I is the number of excitation wavelengths and J is the number
of emission wavelengths. Based on the Beer–Lambert law and the
add-sum principle of multi-component spectra, the linear separa-
tion model can be described as follows:

Yn ¼ an;1X1 þ � � � þ an;MXm þ En ðn ¼ 1; . . . ;NÞ ð6Þ
Fig. 2. Emission and excitation spect

Fig. 3. Differential emission and excitation
where Xi (i = 1, . . ., M) e RI�J are the original signal of the spectra, an,i

(i = 1, . . ., M) e RI�J are the corresponding concentrations, and En

indicates noise residuals. When Yn e RI�J(n = 1, . . ., N) and Xi

(i = 1, . . ., M) e RI�J are unfolded, the linear separation model above
has the equivalent expression:

Y ¼ AX þ E ð7Þ

where Y e RN�(I�J) (n = 1, . . ., N) are the known measured spectra,
A e RN�M and X e RM�(I�J) are unknown hybrid matrix and source
spectra signal respectively, and E e RN�(I�J) is the noise.

The main steps applied in dealing with spectral data, as shown
in Fig. 1 are as follows:

Step 1. Analyze two dimensional spectra data by wavelet
transformation.
Step 2. Find the reference spectra by Bayesian discrimination
from the scale vectors and establish a reference spectral library
by cluster analysis [17,18].
Step 3. Blindly separate the wavelet scale vectors of the mixed
spectra by ICA using a fast fixed-point algorithm, where the
ra of three phenolic compounds.

spectra of three phenolic compounds.



Table 2
Reagents of different concentrations (unit: mg/L).

No. 1 No. 2 No. 3 No. 4 No. 5

Phenol 0.167 0.15 0.025 0.165 0.125
Thymol 0.2 0 0.08 0.044 0.08
m-Cresol 0 0.28 0.1 0.168 0.025

X. Yu et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 124 (2014) 52–58 55
input signals are wavelet scale vectors of the mixed spectra and
the output signal is the solution after mixing.
Step 4. Based on the reference spectra database, establish a
fluorometric quantify method by MLR.

Experiment and discussion

Experiment description

The reagents [phenol (Shanghai Chemical Reagent Co., Ltd., PR
China), thymol (Tianjin Guangfu Fine Chemical Research Institute,
PR China), m-cresol(Shanghai Chemical Reagent Co., Ltd., PR Chi-
na), and their mixtures] were prepared. Stock solutions (100
mg L�1 for each phenolic compound) were prepared by dissolving
the appropriate phenolic compound in HPLC-grade ethanol, and
the solutions were stored for use. Standard solutions (100 lg L�1

for each phenolic compound) were made by diluting the stock
solutions in ultrapure water, and stored at the same conditions
as the stock solutions.

The reagents were scanned by a Hitachi F-7000 fluorescence
spectrophotometer (Hitachi High-Technologies Corporation,
Tokyo, Japan) with excitation wavelengths of 260–500 nm and
emission wavelengths ranging from 240 nm to 360 nm. During
measurement, the scanning intervals were taken as 2.0 nm for both
excitation and emission wavelengths.

The similarity coefficient p between spectra si and spectra sj is
calculated by:

p ¼
si � sT

j

ksikksjk

�����

����� ð8Þ

where si, sj are spectral components. Based on this definition,
0 6 p 6 1 can be obtained; here, the larger the value of p is, the
more similar the spectra are. The value of p can be used as a
recognition threshold during spectral analysis.
Fig. 4. Emission and excitation frequency dom

Table 1
Similarity coefficients of the three phenolic compounds after transformation.

Original/diff/wavelet Phenol

Phenol –
Thymol 0.9907/0.8213/0.7867
m-Cresol 0.9568/0.8311/0.7374
Spectra pre-processing

The feature excitation and emission spectra of phenol, thymol,
and m-cresol are shown in Fig. 2. These organic compounds are pri-
ority pollutants in water, and their spectra overlap extensively,
thus, these reagents were selected for detection in this paper.

Given that the spectra of the compounds are very similar to
each other, as shown in Fig. 2 analysis of Formula (5) is inapplica-
ble when the spectra are operated directly. Differential and wave-
let analyses are used to improve the resolution of the spectra and
reduce correlations.

Figs. 3 and 4 show that the correlations among the spectra are
significantly reduced; this decrease is even more obvious after
wavelet analysis. This result may be attributed to the fact that
the component selected for the frequency domain has the largest
difference among the phenolic compounds. In this paper, the third
scale component is selected as the feature wavelet spectra. In prac-
tice, two or more components can be combined as feature spectra
according to requirement synthesize effects among different wave-
let components. The strength of the first peak differs significantly
among the emission spectra of the three phenolic compounds in
Fig. 4 and the rate of change between the 5th and 10th data point
of thymol is lower than of two other phenolic compounds because
these data points contain distinctive frequency components.
Wavelet analysis results in more spectral peaks, more incisive
spectral band and higher resolutions than the original spectra.
ain spectra of three phenolic compounds.

Thymol m-Cresol

0.9907/0.8213/0.7867 0.9568/0.8311/0.7374
– 0.9238/0.9007/0.7089
0.9238/0.9007/0.8089 –



Fig. 5. Norm and calculated differential emission spectra of the three phenolic compounds (a–c) are the norm emission differential spectra. (d–f) are the calculated emission
differential spectra.

Fig. 6. Norm emission and calculated excitation frequency domain spectra of the three phenolic compounds. (a–c) are the norm emission frequency domain spectra. (d–f) are
the calculated emission frequency domain spectra.
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The p of the three phenolic compounds obtained after wavelet
analysis are the smallest among three methods shown in Table 1.
The decline in p enables more efficient separation.
Experiment results and discussion

Five mixtures of different concentrations of phenol, m-cresol,
and thymol are presented in Table 2.

Taking the spectra of no. 1 as an example, each row of the three-
dimensional fluorescence spectrum connected with the next one
forms a large emission spectrum, and each column connected
forms a large excitation spectrum. After executing differential
and wavelet analyses on the emission spectra, three calculated
emission spectra can be extracted from the mixed spectra through
ICA, as shown in Figs. 5 and 6. The component number is 3 in this
experiment.

The p values obtained by proposed method are larger than those
obtained by two other methods, as shown in Fig. 7. The difference
in emission spectra is smaller than the difference in excitation
spectra, but the p values of the emission wavelet spectra and emis-
sion differential spectra (0.9786 and 0.9647, respectively) are
larger than those of their excitation counterparts respectively
(0.9188 and 0.9128, respectively). Although superiority in
frequency domain p is less significant than that in the differential
domain, superiority in the excitation spectra is significant and in-
creases of p in phenol and m-cresol are 1.4% and 2.1%, respectively.
In the excitation spectra of phenol, the p is low when analyzed by
the original method, partly because phenol and m-cresol show
similar waveform peak point positions and waveform broadening



Fig. 7. Similarity coefficients of the three phenolic compounds after transformation.

Table 3
Correct classification rates of the three methods.

Correct classification Excitation spectra Emission spectra

Phenol (%) Thymol (%) m-Cresol (%) Phenol (%) Thymol (%) m-Cresol (%)

Rate Original 84 82.5 83.4 87.4 79.5 82.6
Diff 93.7 89.7 92.1 92.3 94 89.4
Wavelet 98.2 96.4 99.9 98.8 98.6 99.8

Fig. 8. Correct classification rate of the three methods at different noise mean.
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as shown in Fig. 2. The correct classification rates which are the
numbers of correctly discriminated in the percentage of the total
number are listed in Table 3. The results indicate that the correct
classification rates are higher than 0.98 for phenol and m-cresol
using the proposed method; by contrast, a slight decrease is
observed for thymol.

To improve the correct recognition rates in multi-component
fluorescence spectra, the similarity coefficients of the emission
and excitation spectra were combined. Only the two coefficients
simultaneously exceeded the threshold; thus, the spectra are
recognized as the specific matter.
Noise immunity

To investigate the anti-noise properties of the three methods,
noise of different averages was added to the spectral data. The
correct classification rates of the three methods at different noise
averages are shown in Fig. 8.

While ICA can overcome the adverse effects of noise to a certain
extent, dividing the calculated spectra into different classes is dif-
ficult when the noise increases to a specific mean. For example,
when the noise mean is 0.1, the correct classification rate drops
to 34.7%. Given that differential transformation is sensitive to
noise, the roughness penalty approach should be used. The accu-
racy of differentiation and denoising increases but remains lower
than that obtained from wavelet analysis, likely because wavelet
analysis simultaneously performs time-domain and frequency-do-
main transformations, whereas differential transformation is
performed separately from denoising, which leads to loss of some
important information. The two other organics show consistent
trends. The method used in this paper has features of robustness
and anti-attacking. As the original spectra are difficult to recover
correctly from heavy noise, signals must contain as little noise as
possible.
Conclusions

In this study, wavelet analysis combined with ICA was applied
for component recognition of seriously overlapped, multi-compo-
nent, three dimensional fluorescence spectra. Wavelet analysis
can extract salient features of spectra, enabling more efficient dif-
ferentiation of phenolic homologs. ICA was used to separate single
component. The proposed method was proved to be successful in
reducing error recognition rates and enriching the spectral library.

Experiments on laboratory samples were performed to
determine the effectiveness of the proposed method. The proposed
method can be applied in water pollution monitoring and cases
that do not fit a three-linear model. Therefore, blind separation
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of wavelet components is a potential alternative to current
methods of performing three dimensional spectral analysis.
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