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The nonlinear canonical gyrokinetic Vlasov equation is obtained from the nonlinear

noncanonical gyrokinetic theory using the property of the coordinate transform. In the linear

approximation, it exactly recovers the previous linear canonical gyrokinetic equations derived by

the Lie-transform perturbation method. The computation of the test particle gyrocenter motion in

tokamaks with a large magnetic perturbation is presented and discussed. The numerical results

indicate that the second-order gyrocenter Hamiltonian is important for the gyrocenter motion of

the trapped electron in tokamaks with a large magnetic perturbation. VC 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4789550]

I. INTRODUCTION

Gyrokinetic theory1–12 and simulation13–20 are widely

used to investigate the long time behavior of the magnetized

plasma, including the low-frequency turbulence and the

interaction between the high-frequency wave and particles in

tokamaks. The classical gyrokinetic theory1–3 has been

developed by the recursive method, while the modern gyro-

kinetic theory4–11 has been developed by the Lie-transform

perturbation method.21–24

The Lie-transform perturbation method is used to sim-

plify the equations of motion. It has been applied to the

guiding-center (GC) theory25–27 and the modern gyrokinetic

theory. In the modern gyrokinetic theory, the phase-space

transformation from the GC coordinates to the gyrocenter

(GY) (GC in perturbed fields) coordinates is a Lie transform,

which is dependent of the electromagnetic perturbations.

The transformation decouples gyromotion from the GY

motion, that is, the GY magnetic moment is a conserved

quantity.

The modern gyrokinetic theory based on the Lie-

transform perturbation method has been derived by starting

from different GC coordinates; for example, the noncanoni-

cal coordinates4–8 and the canonical coordinates9–11 have

been used independently to derive the gyrokinetic theory.

The noncanonical coordinates are simple and clear, while the

canonical coordinates are useful in some circumstances, such

as the numerical computation of the equations of motion11,28

and the canonical equilibrium distribution function.29,30 It

has been found that the zonal flow damping can be correctly

simulated using the canonical equilibrium distribution func-

tion, while spurious zonal flow oscillations can be generated

by the local (noncanonical) equilibrium distribution func-

tion.29,30 The previous canonical gyrokinetic thoeries9–11 are

linear and written in terms of specific canonical coordinates.

It is of interest to develop the nonlinear gyrokinetic theory in

terms of canonical coordinates.

In this paper, the nonlinear canonical gyrokinetic Vlasov

equation using the property of the coordinate transform and

its numerical application is presented. The rest of the paper

is organized as follows. In Sec. II, the nonlinear gyrokinetic

theory based on the Lie-transform perturbation method is

reviewed. In Sec. III, the property of the Lie transform in the

nonlinear gyrokinetic theory is presented. In Sec. IV, the ca-

nonical nonlinear gyrokinetic equations are presented using

the property of the coordinate transform. In Sec. V, the com-

putation of the test particle gyrocenter motion with a large

magnetic perturbation in tokamaks is presented and dis-

cussed. In Sec. VI, the main results are summarized.

II. A BRIEF REVIEW OF NONLINEAR GYROKINETIC
THEORY BASED ON THE LIE-TRANSFORM
PERTURBATION METHOD

In the gyrokinetic theory, the following standard order-

ings are assumed,8

�B ¼ q0=L� 1; (1a)

jdEj
vthB0

� jdBj
B0

� d f

f0

� �d � 1: (1b)

Here, q0 is the Larmor radius, and L is the characteristic

length of the equilibrium magnetic field B0; (dE; dB) are the

perturbation parts of the electromagnetic fields defined as

(d B ¼ r� d A, d E ¼ �rd/� @td A), and vth is the ther-

mal velocity of the particle. d f and f0 are the perturbation

part and the unperturbed part of the distribution function,

respectively.

A. Unperturbed guiding-center equations of motion

The unperturbed fundamental one-form (the GC

extended Lagrangian) can be written in terms of the nonca-

nonical GC coordinates (X; vk; n; l; t;�U) as

Ĉ0 � C0 � h0ds ¼ C0idZi � h0ds (2a)

¼ ðvkb0 þ A0Þ � dX þ ldn� U dt� h0ds; (2b)a)Electronic mail: yfengxu@mail.ustc.edu.cn.
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with X the GC position, vk the parallel velocity, l the mag-

netic moment, n the gyro-angle, U the total energy of the

particle, and s the independent parameter. Here, b0 ¼ B0=B0,

with B0 the equilibrium magnetic field and X ¼ r � q0ðl; nÞ,
with r the particle position and q0 the Larmor radius vector.

Throughout the paper, es ¼ 1 ¼ ms is set to simplify the for-

mulae, with es and ms the electric charge and the mass of the

particle species s, respectively. The unperturbed GC

extended Hamiltonian is

h0 � H0 � U ¼ 1

2
v2
k þ lB0 þ /0 � U; (3)

with H0 the unperturbed GC Hamiltonian, and /0 the equi-

librium scalar potential. The Lagrange two-form is defined

as x � dC.31 The unperturbed Lagrange two-form can be

written as

x̂0 � x0 � dh0 � ds (4a)

¼ 1

2
�ijkB�k0 dXi � dXj þ b0jdvk � dXj

þ dl � dnþ dð�UÞ� dt� dh0�ds; (4b)

with

B�0 ¼ B0 þ vkr � b0; (5)

d the exterior differential, � the exterior product, �ijk the per-

mutation tensor, and b0j the component of the unit vector b0.

The Jacobian of the noncanonical GC coordinates J 0 can be

obtained from J 2
0 ¼ jx0ijj, that is, J 0 ¼ B�k0 ¼ B�0 � b0. The

Jacobian of the canonical GC coordinates is unity.

The unperturbed GC equations of motion in terms of the

noncanonical coordinates are written as

d0Zi

ds
¼ fZi; h0g0 ¼ Jij

0@jh0: (6)

Here, J0 is the unperturbed Poisson matrix, which is the

inverse matrix of the unperturbed Lagrange matrix x0. The

non-zero components of the unperturbed Poisson matrix are

JXiXj

0 ¼ � �
ijkb0k

B�k0
; (7a)

J
Xivk
0 ¼ �J

vkX
i

0 ¼ B�i0

B�k0
; (7b)

Jnl
0 ¼ �Jln

0 ¼ 1; (7c)

J
tð�UÞ
0 ¼ �J�Ut

0 ¼ 1: (7d)

B. Lie-transform perturbation method

When a perturbation of the electromagnetic fields is

introduced, the GC magnetic moment l is not conservative

any more. To decouple the GY motion from the gyromotion,

we need to find a new conservative magnetic moment �l.

The phase-space Lagrangian Lie-transform perturbation

method22–24 is an effective method for seeking a new con-

servative magnetic moment by the GY phase-space transfor-

mation. The GY phase-space transformation T gy and its

inverse T �1
gy are defined as

�Z
iðZ; �dÞ � T gyZi; (8a)

Zið �Z; �dÞ � T �1
gy

�Z
i
: (8b)

T gy and T �1
gy are generated by the nth-order vector fields Gn

ðn ¼ 1; 2 � � �Þ. Due to the scalar invariance,

�F ð �ZÞ ¼ FðZÞ; (9)

a push-forward operator T�1
gy and a pull-back operator Tgy

induced by the transformation and its inverse are written as

�F ¼ T�1
gy F ; (10a)

F ¼ Tgy
�F : (10b)

Tgy and T�1
gy are expressed by the generating vectors Gn. The

transformation of the fundamental one-form is

�̂C ¼ T�1
gy Ĉ þ dS; (11)

where S is a gauge function used to simplify the equations of

motion. The scalar function F can be chosen as the Hamilto-

nian and the distribution function. From Eqs. (8), (9), and

(10), we have

Tgy
�F ðZÞ ¼ �F ðT gyZÞ; (12a)

T�1
gy Fð �ZÞ ¼ FðT �1

gy
�ZÞ: (12b)

Note that fF; hgZ ¼ f �F; �hg �Z and fZi; hgZ ¼ @Zi

@ �Z
j ð �ZÞf �Z

j
; �hg �Z .

For simplying the GY equations of motion, the symplec-

tic part of the transformed one-form has the same function as

the symplectic part of the unperturbed one, therefore,

�xð �ZÞ ¼ x0ðZÞjZ¼ �Z : (13)

Note that J ¼ x�1 and J 2 ¼ jxijj,26 one can easily find

�Jð �ZÞ ¼ J0ðZÞjZ¼ �Z ; (14a)

�J ð �ZÞ ¼ J 0ðZÞjZ¼ �Z : (14b)

Note that the GC coordinates and the GY coordinates can be

chosen as the canonical coordinates or the noncanonical

coordinates. The Jacobian of the GY coordinates �J has the

same function as the unperturbed Jacobian of the GC coordi-

nates J 0,

�J ð �ZÞ ¼ J 0ðZÞjZ¼ �Z ¼ B�k0ðZÞjZ¼ �Z ; (15)

for the noncanonical coordinates (X; vk; n; l; t;�U);

�J ð �ZÞ ¼ J 0ðZÞjZ¼ �Z ¼ 1; (16)

for the canonical coordinates.9–11
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C. Noncanonical gyrokinetic equations based on the
Lie-transform perturbation method

With the perturbed scalar and vector potentials ðd/; dAÞ
introduced, the fundamental one-form can be separated into

the unperturbed part and the perturbed part,

Ĉ � Ĉ0 þ Ĉ1; (17)

where the perturbed part of the one-form is written as

Ĉ1 ¼ C1 ¼ C1idZi

¼ dAðX þ q0; tÞ � dðX þ q0Þ � d/ðX þ q0; tÞdt: (18)

Here, the spatial dependence of the gyroradius vector q0 is

ignored, that is, q0 ¼ q0ðl; nÞ.8
The GY extended-phase-space transformation can be

expanded in powers of the amplitude ordering parameter �d
up to Oð�2

dÞ, written as

�Z
i ¼ Zi þ Gi

1 þ Gi
2 þ

1

2
Gj

1@jG
i
1: (19)

Note that t is not affected by the transformation, that is,

Gt
1 ¼ 0 ¼ Gt

2. The transformed fundamental one-form is

defined as

�̂C � �C � �hds ¼ �Cid �Z
i � �hds: (20)

It can be expanded in powers of �d up to Oð�2
dÞ, written as

�C0i ¼ C0i; (21a)

�C1i ¼ C1i � Gj
1x0ji þ @iS1; (21b)

�C2i ¼ �Gj
2x0ji �

1

2
Gj

1ðx1ji þ �x1jiÞ þ @iS2; (21c)

�h0 ¼ h0; (21d)

�h1 ¼ �Gi
1@ih0; (21e)

�h2 ¼ �Gi
2@i

�h0 �
1

2
Gi

1@i
�h1: (21f)

Here, Sn is independent of U and s, that is, @USn ¼ 0 ¼ @sSn.

x1 and �x1 are Lagrange two-forms, defined as

x1ji ¼ @jC1i � @iC1j; (22a)

�x1ji ¼ @j
�C1i � @i

�C1j: (22b)

Here, S1 and S2 are the first-order and the second-order of

the scalar field function used for canceling the gyroangle de-

pendence of the extended Lagrangian. The first-order

Lagrange two-form can be rewritten as

x1 ¼ dC1 ¼
1

2
�ijkd BkdXi � dXj þ d EjdXj � dt

þ �ijkd Bk@lq
i
0dl � dXj þ �ijkd Bk@nq

i
0dn � dXj

þ dE � @lq0dl � dtþ d E � @nq0dn � dt: (23)

Clearly, x1 denotes the perturbation part of the electromag-

netic field tensor. From Eqs. (21b) and (21c), the first-order

and second-order generating vector fields are obtained,

Gi
1 ¼ ½@jS1 þ ðC1j � �C1jÞ	Jji

0 ; (24a)

Gi
2 ¼ @jS2 �

1

2
Gk

1ðx1kj þ �x1kjÞ
� �

Jji
0 : (24b)

For simplifying the GY equations of motion, the simplec-

tic part of the transformed Lagrangian is chosen to be formally

same as the unperturbed one, that is, �C1i ¼ 0 ¼ �C2i, then

�x1 ¼ 0, �x ¼ x0. The nth-order generating vectors Gn in

terms of the GC coordinates can be obtained from Eq. (24)

Gi
n ¼ fSn; Z

ig þ dAn � fX þ q0; Z
ig � dwnft; Zig; (25)

where

½dA1; dw1	 ¼ ½dA; d/	; (26a)

½dA2; dw2	 ¼
1

2
Gr

1 � dB;
1

2
Gr

1 � dE

� �
; (26b)

Gr
1 ¼ fS1;X þ q0g: (26c)

Note that the generating vectors Gn are non-Hamiltonian

flows, although the first term in Eq. (25) is a Hamiltonian

flow. However, Gn are incompressible flows in the phase

space.12

Using Eq. (25), the nth-order generating vectors Gn can

be rewritten as

GX
n ¼ �

b0

B�k0
� ðdAn þrSnÞ � @vkSn

B�0
B�k0

; (27a)

G
vk
n ¼

B�0
B�k0
� ðdAn þrSnÞ; (27b)

Gn
n ¼ �ðdAn � @lq0 þ @lSnÞ; (27c)

Gl
n ¼ dAn � @nq0 þ @nSn; (27d)

GU
n ¼ dwn � @tSn; (27e)

Gt
n ¼ 0: (27f)

To decouple the GY motion from the gyromotion, the GY

Hamiltonian �hn is chosen to satisfy the condition �hn ¼ h�hni.
Here, h� � �i denotes the gyro-average. Thus, the first-order and

second-order scalar field functions can be chosen as

d0S1

ds
¼ ~K1 ; (28a)

d0 S2 þ 1
2

S1; Z
if gC1i

� �
ds

¼ � 1

2
f gS1; ð _S1Þ0g þ

e2
s

2ms

gjdAj2

� S1; �h1

� �
; (28b)

with Kn defined as

K1 � �C1i
_Z

i

0 ¼ d/� ð _X0 þ _n0@nq0Þ � dA; (29a)
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K2 �
1

2
Gi

1x1ij
_Z

j

0: (29b)

For any function A, ~A denotes the gyroangle dependence

part, defined as ~A � A� hAi.
By substituting Eq. (28) into Eqs. (21e) and (21f), the

first-order and the second-order GY extended Hamiltonians

are written as

�h1 ¼ hK1i ¼ hd/i � _X0 � hdAi � _n0hdA � @nq0i; (30a)

�h2 ¼ �
1

2
h S1; ð _S1Þ0
� �

i þ 1

2
hjdAj2i: (30b)

The GY equations of motion are written in terms of the

Poisson matrix as

d �Z
i

ds
¼ Jij

0@j
�h ¼ Jij

0@jð�h0 þ �h1 þ �h2Þ: (31)

Note that the GY equations of motion satisfy the Liouville’s

theorem.8

The nonlinear gyrokinetic Vlasov equation f �F; �hg ¼ 0

can be written in terms of the noncanonical coordinates as

@t
�F þ d �X

dt
� �r �F þ

d�vk
dt
@�vk

�F ¼ 0: (32)

The GC distribution function can be obtained by the

pull-back transformation of the GY distribution function,

that is, F ¼ Tgy
�F,

F ¼ �F þ Gi
1@i

�F þ Gi
2@i

�F þ 1

2
Gi

1@iðGj
1@j

�FÞ: (33)

Note that in gyrokinetic theories8 and simulations,20 Eq. (33)

is usually kept up to Oð�dÞ.
For the low-frequency turbulence, the displacement cur-

rent can be neglected, thus the gyrokinetic Maxwell equa-

tions can be written as

r2ð/0 þ d/Þ þ @tðr � ðA0 þ d AÞÞ ¼ � 1

�0

X
q; (34a)

r2ðA0 þ dAÞ � rðr � ðA0 þ d AÞÞ ¼ �l0

X
J; (34b)

where the summation is taken over particle species and the

particle charge density and current are expressed in terms of

the guiding-center distribution

q ¼
ð

FdðX þ q0 � rÞd6 Z; (35a)

J ¼
ð
ð _X0 þ _n0@nq0ÞFdðX þ q0 � rÞd6Z; (35b)

with d6Z ¼ B�k0
m d3Xdvkdldn. The energy invariant is defined as

Etotal ¼
ð

d3x
�0

2
jE0 þ d Ej2 þ 1

2l0

jB0 þ d Bj2
� 	

þ
Xð

d6Z F
1

2
v2
k þ lB0

� 	
: (36)

III. PROPERTY OF THE COORDINATE TRANSFORM

In this section, we present the property of the coordinate

transform in the gyrokinetic theory. It will be used in the

next section for deriving the nonlinear canonical gyrokinetic

equations from the noncanonical gyrokinetic equations.

Let Z1 and Z2 be two different sets of GC coordinates,

and the transformation between them is given by

Z2 ¼ Z2ðZ1Þ: (37)

Let

�Z1 ¼ T gyZ1; (38a)

�Z2 ¼ T gyZ2; (38b)

which means that �Z1 and �Z2 are two sets of GY coordinates

based on the two sets of GC coordinates Z1 and Z2, respec-

tively. T gy is determined by the generating vectors (25). The

transform between the two sets of GY coordinates is given

by

�Z2 ¼ �Z2ð �Z1Þ: (39)

Using the scalar invariance

�F ð �Z2Þ ¼ FðZ2Þ; (40)

and the pull-back transform, we found

�F ð �Z2ð �Z1ÞÞ ¼ FðZ2ðZ1ÞÞ
¼ Tgy

�F ðZ2ðZ1ÞÞ ¼ �F ðTgyZ2ðZ1ÞÞ
¼ �F ðZ2ðT gyZ1ÞÞ ¼ �F ðZ2ð �Z1ÞÞ: (41)

Therefore, we found the property of the coordinate transform

�Z2ð �Z1Þ ¼ Z2ðZ1ÞjZ1¼ �Z1
; (42)

which indicates that the transform between two sets of the

GY coordinates is the same as the transform between the two

corresponding GC coordinates.

Using this property, we can quickly derive the GY equa-

tions of motion based on an arbitrary GC coordinates (Z2)

from a standard GY equations of motion based on Z1, instead

of carrying out the lengthy calculation of the Lie transform

once again from the GC coordinates (Z2) to the GY coordi-

nates ( �Z2), as will be shown in the following. The point is that

the Lie transform from the GC coordinates to the GY coordi-

nates is a time-dependent transform determined by the field

perturbations, while the coordinate transform between the GC

(or between the GY) coordinates is a time-independent trans-

form that is independent of the field perturbations.

For any vector A in terms of the GC coordinates, we

have

AiðZ2Þ ¼ AjðZ1Þ
@Zi

2

@Zj
1

: (43)

Ai can be chosen as dZi

dt ðZÞ and Gi
nðZÞ.
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For any vector A in terms of the GY coordinates, we have

�A
ið �Z2Þ ¼ �A

jð �Z1Þ
@ �Z

i
2

@ �Z
j
1

: (44)

Using the property of the coordinate transform (42), we

have

@ �Z
i
2

@ �Z
j
1

¼ @Zi
2

@Zj
1

" #
Z1¼ �Z1

: (45)

By choosing �A
i

as d �Z
i

dt ð �ZÞ and using Eq. (45), Eq. (44)

becomes

d �Z
i
2

dt
ð �Z2Þ ¼

d �Z
j
1

dt
ð �Z1Þ

@ Zi
2

@ Zj
1

" #
Z1¼ �Z1

(46a)

¼ �J
jkð �Z1Þ

@ �hð �Z1Þ
@ �Z

k
1

@ Zi
2

@ Zj
1

" #
Z1¼ �Z1

¼ @ Zi
2

@ Zj
1

" #
Z1¼ �Z1

�J
jkð �Z1Þ

@ �Z
l
2

@ �Z
k
1

@ �h0ð �Z2Þ
@ �Z

l
2

; (46b)

¼ �J 0
ilð �Z2Þ

@ �h0ð �Z2Þ
@ �Z

l
2

; (46c)

with the GY Poisson matrix and the GY Hamiltonian in

terms of the GY coordinates �Z2 given by

�J
0 ilð �Z2Þ �

@ Zi
2

@ Zj
1

Jjk
0 ðZ1Þ

@ Zl
2

@ Zk
1

" #
Z1¼ �Z1

; (47a)

¼ ½J 0 jk0 ðZ2Þ	Z2¼ �Z2
; (47b)

�hð �Z1Þ ¼ �hð �Z1ð �Z2ÞÞ ¼ ½�hðZ1ðZ2ÞÞ	Z2¼ �Z2
� �h0ð �Z2Þ: (47c)

Note that in obtaining Eq. (47a), we have used Eq. (14a) to

find �J
jkð �Z1Þ ¼ ½Jjk

0 ðZ1Þ	Z1¼ �Z1
.

Equation (47a) indicates that the Poisson matrix in terms

of the GY coordinates �Z2 can be obtained from the Poisson

matrix in terms of �Z1, by simply using the corresponding GC

coordinate transform relation. Equation (47b) indicates that

the Poisson matrix in terms of the GY coordinates �Z2 can be

obtained by simply making the substitution, Z2 ! �Z2, in

J0ðZ2Þ, the unperturbed GC Poisson matrix in terms of Z2, as

is expected using Eq. (14a). Equation (47c) indicates that
�h0ð �Z2Þ, the GY Hamiltonian in terms of �Z2, can be obtained

from �hð �Z1Þ by simply using the transform between the GC

coordinates, as is expected from the scalar invariance of the

GY Hamiltonian.

By choosing �A
i
as Gi

nð �ZÞ, Eq. (44) becomes

Gi
nð �Z2Þ ¼ Gj

nð �Z1Þ
@ Zi

2

@ Zj
1

" #
Z1¼ �Z1

: (48)

Equation (48) means that the generating vectors in terms of

the GY coordinates �Z2 can be obtained from the generating

vectors in terms of the GY coordinates �Z1, using the coordi-

nate transform between the GC coordinates Z1 and Z2.

IV. NONLINEAR GYROKINETIC EQUATIONS IN TERMS
OF THE CANONICAL COORDINATES

If the gyrokinetic equations in terms of a standard coor-

dinate system are known, one can find the gyrokinetic equa-

tions in terms of a new coordinate system by simply using

the property of the coordinate transform (42), instead of car-

rying out the lengthy calculation of the Lie transform from

the new GC coordinates to the new GY coordinates.

A. The nonlinear canonical gyrokinetic equations

In Sec. II, the nonlinear gyrokinetic equations in terms

of the noncanonical GC coordinates Z ¼ ðX; vk; n; l; t;�UÞ
using the Lie transform perturbation method have been intro-

duced. In this subsection, we develop the nonlinear gyroki-

netic equations based on general canonical GC coordinates

Zc ¼ ðh1;P1; h2;P2; n; l; t;�UÞ by the coordinate transform

between (X; vk) and (h1;P1; h2;P2).

The extended-phase-space transformation between the

canonical GC coordinates Zc and their corresponding canoni-

cal GY coordinates �Z
c ¼ ð�h1

; �P
1
; �h

2
; �P

2
; �n; �l; t;� �UÞ is

�Z
c ¼ T gyZc. It can be expanded in powers of �d up to Oð�2

dÞ
and has the same form of Eq. (19). From Eqs. (25) and (48),

we can obtain the first-order generating vectors related to

(h1;P1; h2;P2) in terms of the canonical coordinates

Gh1

1 ¼ � d A � @ X

@P1
þ @P1 Sc

1

� 	
; (49a)

Gh2

1 ¼ � d A � @ X

@P2
þ @P2 Sc

1

� 	
; (49b)

GP1

1 ¼ d A � @ X

@h1
þ @h1 Sc

1; (49c)

GP2

1 ¼ d A � @ X

@h2
þ @h2 Sc

1; (49d)

and the second-order generating vectors related to

(h1;P1; h2;P2) in terms of the canonical coordinates,

Gh1

2 ¼ �
1

2
ðGr

1 � d BÞ � @ X

@ P1
þ @P1 Sc

2

� �
; (50a)

Gh2

2 ¼ �
1

2
ðGr

1 � d BÞ � @ X

@ P2
þ @P2 Sc

2

� �
; (50b)

GP1

2 ¼
1

2
ðGr

1 � d BÞ � @ X

@h1
þ @h1 Sc

2; (50c)

GP2

2 ¼
1

2
ðGr

1 � d BÞ � @ X

@h2
þ @h2 Sc

2: (50d)

Here, Sc
n is the scalar field functions in terms of the canoni-

cal coordinates. The generating vectors are determined by

the GC coordinate transform ð @X
@P1 ;

@X
@P2 ;

@X
@h1 ;

@X
@h2Þ. If the coor-

dinate transform is known, then one can find the generating

vectors.
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From Eq. (46c), the GY equations of motion related to

(h1;P1; h2;P2) in terms of the canonical coordinates are

obtained,

d�h
1

ds
¼ @ð

�h
c
0 þ �h

c
1 þ �h

c
2Þ

@ �P
1

; (51a)

d �P
1

ds
¼ � @ð

�h
c
0 þ �h

c
1 þ �h

c
2Þ

@�h
1

; (51b)

d�h
2

ds
¼ @ð

�h
c
0 þ �h

c
1 þ �h

c
2Þ

@ �P
2

; (51c)

d �P
2

ds
¼ � @ð

�h
c
0 þ �h

c
1 þ �h

c
2Þ

@�h
2

: (51d)

Here, �h
c
nð �Z

cÞ ¼ ½�hnðZðZcÞÞ	Zc¼ �Z
c , as is indicated by

Eq. (47c).

The nonlinear gyrokinetic Vlasov equation can be

written in terms of the canonical coordinates as

@t þ
d�h

1

dt
@�h

1 þ d �P
1

dt
@ �P

1 þ d�h
2

dt
@�h

2 þ d �P
2

dt
@ �P

2

 !
�F

c ¼ 0:

(52)

Here, �F
cð �ZcÞ ¼ ½ �FðZðZcÞÞ	Zc¼ �Z

c . h1 and h2 are two independ-

ent angle variables. For the axisymmetric tokamak, the mo-

mentum variable P1 can be chosen as the toroidal angular

momentum, a constant of the unperturbed motion. Further-

more, the momentum variable P2 can be replaced by the

energy variable U, which is also the constant of the unper-

turbed motion. We can use the canonical variables to com-

pute the canonical form of the gyrocenter distribution

function, �F
c
, then transform it into the noncanonical form,

which can be used to directly compute the density and cur-

rent using Eq. (35).

B. The nonlinear gyrokinetic Hamilton’s equations
in terms of specific canonical coordinates

In this subsection, we first introduce a specific canoni-

cal variables ðh;Ph; ac;PaÞ, which are defined in Refs. 11

and 32. Then, we choose the canonical variables

(h1;P1; h2;P2) as ðh;Ph; ac;PaÞ and develop the nonlinear

canonical gyrokinetic Hamilton’s equations in terms of the

latter variables.

The equilibrium magnetic field in an axisymmetric toka-

mak can be written in terms of the magnetic coordinates

ðw; h; fÞ as

B ¼ qðwÞrw�rhþrf�rw (53a)

¼ gðwÞrfþ IðwÞrhþ gðwÞdðw; hÞrw; (53b)

with w the poloidal magnetic surface. qðwÞ is the safety fac-

tor. Note that the toroidal angle f is an ignorable coordinate.

The canonical variables ðPa; ac;Ph; hÞ are expressed in terms

of the noncanonical variables ðw; h; f; qkgÞ as

Pa ¼w�qkg;

Ph ¼ qkgðqþ I=gÞ� ðw�w0Þ qðw0Þþ
ðw0

0

@hddw

� 	
þ
ðw

w0

qdwþ
ðw

w0

ðw

0

@hddwdw (54a)

�qkg q� qðw0Þ þ
ðw

w0

@hddw

 !
; (54b)

ac ¼ �fþ qðw0Þh�
ðw

w0

ddw; (54c)

with w0 chosen as the initial value of the poloidal magnetic

flux or the toroidal angular momentum. Here, qk ¼ vk=B.

By choosing (h1;P1; h2;P2) as ðh;Ph; ac;PaÞ, and using

Eqs. (49) and (50), we can obtain the first-order generating

vectors related to ðh;Ph; ac;PaÞ,

Gh
1 ¼ � d A � @X

@Ph
þ @PhS

c
1

� 	
; (55a)

Gac

1 ¼ � d A � @X

@Pa
þ @PaS

c
1

� 	
; (55b)

GPh
1 ¼ d A � @X

@h
þ @hSc

1; (55c)

GPa
1 ¼ d A � @X

@ac
þ @ac

Sc
1; (55d)

and the second-order generating vectors related to

ðh;Ph; ac;PaÞ,

Gh
2 ¼ �

1

2
ðGr

1 � dBÞ � @X

@Ph
þ @PhS

c
2

� �
; (56a)

Gac

2 ¼ �
1

2
ðGr

1 � dBÞ � @X

@Pa
þ @PaS

c
2

� �
; (56b)

GPh
2 ¼

1

2
ðGr

1 � dBÞ � @X

@h
þ @hSc

2; (56c)

GPa
2 ¼

1

2
ðGr

1 � dBÞ � @X

@ac
þ @ac

Sc
2: (56d)

The GC coordinate transform ð @X
@P1 ;

@X
@P2 ;

@X
@h1 ;

@X
@h2Þ can be found

in Ref. 11. Note that Eq. (23) in Ref. 11 exactly agrees with

Eq. (55).

By choosing (h1;P1; h2;P2) as ðh;Ph; ac;PaÞ, and using

Eq. (51), the GY equations of motion related to

ðh;Ph; ac;PaÞ in terms of the canonical coordinates are

d�h
dt
¼ @ �h

c

@ �Ph
; (57a)

d �Ph

dt
¼ � @

�h
c

@�h
; (57b)

d�ac

dt
¼ @ �h

c

@ �Pa
; (57c)
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d �Pa

dt
¼ � @

�h
c

@�ac
; (57d)

with

�h
cð �ZcÞ ¼ �hð �ZÞ ¼ �Hð �ZÞ � �U ¼ �H0 þ �H1 þ �H2 � �U ; (58a)

�H0 ¼ H0; (58b)

�H1 ¼ hd/i � ð _w0hd Awi þ _h0hd Ahi
þ _f0hd Afi þ _n0hdA � @nq0iÞ; (58c)

�H2 ¼ �
1

2
h S1; ð _S1Þ0
� �

i þ 1

2
hjdAj2i: (58d)

Note that Eqs. (29c)–(29f) in Ref. 11 can be recovered from

Eq. (57) in the linear approximation.

V. COMPUTATION OF THE GYROCENTER MOTION

In this section, we will give a numerical example of the

code GYCAVA,11 in which the gyrocenter equations of

motion (57) are used. We will show that the second-order

GY Hamiltonian (58d) is important for the trapped electron

in tokamaks when the long-wavelength magnetic perturba-

tion is large.

To model a static magnetic island, we choose the pertur-

bation of the poloidal magnetic flux as

w1 ¼ �dAf ¼ w1ð2;1ÞðwÞcosð2h� fÞ; (59a)

w1ð2;1ÞðwÞ ¼ �wðw� waxisÞðwb � wÞ: (59b)

Here, �w is a small constant. ðwaxis ¼ 0;wb ¼ 0:098WbÞ are

the values of the equilibrium poloidal magnetic flux at the

magnetic axis and the boundary of the tokamak, respectively.

The parameters of the perturbation are chosen as

w1ð2;1ÞðwsÞ=ws ¼ 10�3, with ws the value of the equilibrium

poloidal magnetic flux on the rational surface where q ¼ 2.

With the perturbation, the ratio of the width of the magnetic

island to the minor radius is about 6%. The scale length of the

imposed perturbation of the poloidal magnetic flux has the

same order as the minor radius of the tokamak, that is,

k?q0 � 1 with k? the wave number in the perpendicular

direction. Thus, the finite-Larmor-radius effect is not important

in this numerical example. Furthermore, the ratio of the first

term of the right-hand side of Eq. (58d) to the second term has

the order of Oðk2
?q

2
0Þ. Thus, the first term can be neglected in

contrast to the second term in this numerical example.

The Poincare section plots for the trapped electron orbits

without and with the second-order GY Hamiltonian (58d)

are shown in Figs. 1(a) and 1(b). The banana width of the

trapped electron with �H2 is small, while the one without �H2

is large.

The deviations of Hamiltonian and the longitudinal

invariant are shown in Fig. 2 for the trapped electrons, which

are defined as

DE=E0 �
�Hð �ZÞ � ½ �Hð �ZÞ	t¼0

½ �Hð �ZÞ	t¼0

; (60a)

DJ =J 0 �
J � J 0

J 0

: (60b)

Here, �Hð �ZÞ and J are the gyrocenter Hamiltonian function

evaluated at the gyrocenter coordinates and the longitudinal

invariant, respectively; ½ �Hð �ZÞ	t¼0 and J 0 are the initial val-

ues of �Hð �ZÞ and J , respectively. The longitudinal invariant

is defined as J ¼
Þ

Phdh.11,32

The initial error of the energy defined as ð �Hð �ZÞt¼0 �
E0Þ=E0 is �0:07 for the orbit without �H2 and 3� 10�4 for

the orbit with �H2. It indicates that �H2ð �ZÞt¼0=E0 ¼ 0:07.

Note that the particle energy conserves for a static mag-

netic island. It is seen from Fig. 2 that the deviations of Ham-

iltonian have the order of 10�3 for the orbit without �H2 and

the order of 10�4 for the orbit with �H2, which numerically

demonstrate the conservation of the particle energy.

From Fig. 2, it is seen that the deviations of the longitu-

dinal invariant have the order of 10�1 for the orbit without
�H2 and the order of 10�3 for the orbit with �H2. It indicates

that J is still a good invariant with �H2, while J is not a

FIG. 1. Poincare section plots of the magnetic flux surfaces (dotted line) and

the trapped electron orbits (dotted symbol) with the initial energy E0 ¼
1 keV and the pitch vk=v ¼ 0:4. Two different launch points are labeled by

the square and the triangle symbols, respectively. (a) and (b) are for the

orbits without and with �H2, respectively.
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good invariant without �H2. The underlying physics of the

longitudinal invariant J for the trapped particles with a mag-

netic perturbation was discussed in Ref. 11.

According to the above discussion, we know that the

trapped electron orbits without �H2 are unphysical due to the

large numerical error produced by neglecting �H2. Therefore,

the second-order GY Hamiltonian is important for the GY

motion of the trapped electron in tokamaks with a large mag-

netic perturbation.

VI. SUMMARY

The nonlinear gyrokinetic Vlasov equation in terms of

the canonical coordinates has been derived using the prop-

erty of the coordinate transform, instead of carrying out the

Lie-transform perturbation calculation. In the linear approxi-

mation, the results exactly recover the previous linear canon-

ical gyrokinetic equations11 derived by the Lie-transform

perturbation method.

The computation of the GY motion with a large magnetic

perturbation has been presented and discussed. The numerical

results indicate that the second-order GY Hamiltonian (58d) is

important for the GY motion of the trapped electron in toka-

maks with a large magnetic perturbation.

For a new set of GC coordinates and its corresponding

GY coordinates (canonical or noncanonical), we do not need

to derive the gyrokinetic theory by carrying out the Lie-

transform perturbation calculation again. If we know the

gyrokinetic equations based on one set of GC coordinates,

then we can directly obtain the gyrokinetic equations based

on another set of GC coordinates using the property of the

coordinate transform.
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