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Nonlinear gyrokinetic theory based on a new method and computation of the
guiding-center orbit in tokamaks

Yingfeng Xu,a) Zongliang Dai, and Shaojie Wang
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The nonlinear gyrokinetic theory in the tokamak configuration based on the two-step transform is

developed; in the first step, we transform the magnetic potential perturbation to the Hamiltonian part,

and in the second step, we transform away the gyroangle-dependent part of the perturbed

Hamiltonian. Then the I-transform method is used to decoupled the perturbation part of the motion

from the unperturbed motion. The application of the I-transform method to the computation of the

guiding-center orbit and the guiding-center distribution function in tokamaks is presented. It is

demonstrated that the I-transform method of the orbit computation which involves integrating only

along the unperturbed orbit agrees with the conventional method which integrates along the full orbit.

A numerical code based on the I-transform method is developed and two numerical examples are

given to verify the new method. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871726]

I. INTRODUCTION

The turbulence transport is a very important topic in the

tokamak confinement research. The micro-instabilities

related to the turbulence are often investigated by using the

gyrokinetic theory1–8 and simulation.9–16 In the modern

gyrokinetic theory,4–8,17–23 the Lie-transform perturbation

method24–27 is used to decouple the gyrocenter motion from

the gyromotion. Then the kinetic equation can be reduced to

the gyrokinetic equation, which is much easier to investigate

the evolution of the tokamak plasmas on the timescale longer

than the gyro-period.

The Lie-transform method is a very effective and gen-

eral method to treat the perturbation problem. Several differ-

ent transform procedures have been used in nonlinear

gyrokinetic theories.5,7,8 In the gyrokinetic theory developed

by Brizard and Hahm,7,8 one-step transform procedure from

the guiding-center coordinates to the gyrocenter coordinates

is used to derive the gyrokinetic equations. The gyrocenter

transform of the procedure includes the dA term and the Sn

term. Here, dA is the perturbation part of the magnetic poten-

tial. Sn is the nth-order gauge function, used to remove the

gyroangle-dependent part the Lagrangian and thus to keep

the gyrocenter magnetic moment conservative. The gyroki-

netic equations developed by Hahm et al.5 have been widely

used in the electromagnetic gyrokinetic simulation.16 His

Lie-transform perturbation method is based on a two-step

transform procedure. The first step is to move the dAk term

into the Hamiltonian part by a simple transform, which

makes all the perturbations appear in the Hamiltonian part

and keep the transformed Poisson bracket formally same as

the unperturbed one. The second step is the conventional

Lie-transform determined by the perturbations only through

the gauge function Sn. However, the perpendicular compo-

nent of the magnetic potential perturbation is not included

and the slab geometry is used in his work. This two-step

transform procedure also has been used to derive the kinetic

theory of turbulence by Wang,22 and the full electromagnetic

potential perturbations are included. In this kinetic theory,

the first-step transform procedure, which is related to the

magnetic potential perturbation dA, is clear and easy to

understand and may be useful in the gyrokinetic simulation.

The first-step transform procedure makes the transformed

Poisson bracket independent of perturbations.

Recently, the I-transform method is developed, which

can be used to decoupled the perturbation part of the motion

from the unperturbed motion, is a useful method in the ki-

netic and gyrokinetic theory.21–23 The method has been

developed to formulate the nonlinear gyrokinetic equation in

the Fokker-Planck form and to find the nonlinear scattering

term from the nonlinear gyrokinetic equation. Note that the

first-order I-transform was introduced by Cary and

Kaufman28 in discussing the ponderomotive effects on the

dynamics of the oscillation center.

In this paper, first we derive the nonlinear gyrokinetic

equations in the tokamak configuration including the full

electromagnetic potential perturbations by the two-step

transform procedure from the guiding-center coordinates to

the gyrocenter coordinates. Then the I-transform method is

used to make the transformed gyrokinetic equations same as

the unperturbed ones. Finally, a numerical orbit code based

on the short-time I-transform method is developed to com-

pute the guiding-center orbit, and two numerical examples

are given to validate the new code.

The remaining part of this paper is organized as follows.

In Sec. II, the guiding-center theory is reviewed. In Sec. III, the

nonlinear gyrokinetic theory based on the two-step transform

procedure is developed. In Sec. IV, the gyrokinetic equation

based on the I-transform method is derived and its application

to the computation of the guiding-center orbit and the guiding-

center distribution function is presented. In Sec. V, we develop

a numerical orbit code based on the short-time I-transform

method and give two numerical examples to validate the new

method. In Sec. VI, the main results are summarized.a)Electronic mail: yfengxu@mail.ustc.edu.cn
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II. REVIEW OF THE UNPERTURBED GUIDING-
CENTER THEORY

In the guiding-center theory, the guiding-center transform,

which can be solved by the Lie-transform perturbation method,

is used to remove the fast gyromotion.29 By using the Lie-

transform perturbation method, the guiding-center transforma-

tion from the particle phase-space coordinates ðr; vkp; lp; npÞ
to the guiding-center phase-space coordinates (X; vk; l; n) is

expanded in powers of a small parameter �B. Here, �B¼ q0/L,

where q0 is the Larmor radius, and L is the characteristic length

of the equilibrium magnetic field B0. X is the guiding-center

coordinates, vk is the velocity component parallel to the unper-

turbed magnetic field B0, l is the magnetic moment, and n is

the gyroangle. The subscript p denotes the phase-space coordi-

nates of particle. In general guiding-center theory, the

guiding-center transform X ¼ r � q0; vk ¼ vkp, l¼ lp, and

n¼ np are often used. The unperturbed fundamental one-form

(the guiding-center Lagrangian) for a charged particle,

Ĉ0 � C0 � H0dt ¼ C0idZi � H0dt; (1)

can be written in terms of the noncanonical guiding-center

coordinates.30–32 The unperturbed symplectic part and the

unperturbed guiding-center Hamiltonian are

C0 ¼ ðmvkb0 þ muE þ eA0Þ � dX þ m

e
ldn; (2a)

H0 ¼
1

2
mðv2

k þ u2
EÞ þ lB0 þ

ml
e

b0 � r � uE þ e/0: (2b)

Here, m and e are the mass and the charge of the particle,

respectively. The equilibrium E�B velocity uE

� E0 � b0=B0 associated with the equilibrium /0 can be

chosen of the order of the thermal velocity, that is,

uE/vth� 1.31,32

The Lagrange two-form is defined as x � dC.8,33 The

unperturbed Lagrange two-form can be written as

x̂0 � x0 � dH0 � dt. The two-form x0 is

x0 ¼
1

2
�ijkeB�k0 dXi � dXj þ mb0jdvk � dXj

þðm=eÞdl � dn� dH0 � dt; (3)

where

B�0 ¼ B0 þ ðm=eÞvkr � b0 þ ðm=eÞr � uE; (4)

d is the exterior differential, � is the exterior product, �ijk is

the permutation tensor, and b0j is the component of the unit

vector b0 along the unperturbed magnetic field.

The unperturbed guiding-center equations of motion are

written as

_Z
i

0 �
d0Zi

dt
¼ Zi;H0

� �
¼ Jij

0@jH0: (5)

Here, J0 is the unperturbed Poisson matrix, which is the inverse

matrix of the unperturbed Lagrange matrix x0.8,33 The non-zero

components of the unperturbed Poisson matrix J0 are

JXiXj

0 ¼ � �
ijkb0k

eB�k0
; (6a)

J
Xivk
0 ¼ �J

vkX
i

0 ¼ B�i0

mB�k0
; (6b)

Jnl
0 ¼ �Jln

0 ¼ e=m: (6c)

Here, B�k0 ¼ B�0 � b0.

III. NONLINEAR GYROCENTER EQUATIONS OF
MOTION AND GYROKINETIC VLASOV-MAXWELL
EQUATIONS

In the standard modern nonlinear gyrokinetic theory,8

the amplitude of the perturbations is much smaller than the

corresponding equilibrium quantities, that is,
jdEj
vthB0
� jdBj

B0

� df
f0
� �d � 1. Here, (dE; dB) are the perturbation parts of

the electromagnetic fields defined as dB ¼ r� dA,

dE ¼ �rd/� @tdA, and vth is the thermal velocity of the

particle. df and f0 are the perturbation part and the unper-

turbed part of the distribution function, respectively. The fre-

quency x and perpendicular wave vector k? of the

perturbations satisfy the conditions, x=X� 1; k?q0 � 1.

Here, X is the gyro-frequency of a charged particle.

With the electromagnetic perturbation potentials

(d/; dA) introduced, the conservation of the guiding-center

magnetic moment l is broken. For removing the fast gyro-

motion, the gyrocenter conservative magnetic moment �l is

found by the gyrocenter transformation from the guiding-

center coordinates to the gyrocenter coordinates.

The fundamental one-form can be separated into the

unperturbed part and the perturbation part

Ĉ � Ĉ0 þ Ĉ1; (7a)

Ĉ1 ¼ C1idZi � H1dt ¼ edAðX þ q0; tÞ � dðX þ q0Þ
�ed/ðX þ q0; tÞdt: (7b)

The first-order Lagrange two-form x̂1 can be rewritten as

x̂1 ¼ dĈ1 ¼ x1 � dH1 � dt

¼ 1

2
�ijkedBkdXi � dXj þ edEjdXj � dt

þ �ijkedBk@lq
i
0dl � dXj

þ �ijkedBk@nq
i
0dn � dXj

þ �ijke@lq
i
0@nq

j
0dBkdl � dn

þ edE � @lq0dl � dtþ edE � @nq0dn � dt;

(8)

with the first-order Lagrange two-forms x1 defined as

x1� dC1, that is, x1ji ¼ @jC1i � @iC1j. Hereafter, the spatial

dependence of the gyroradius vector q0 is ignored in the fol-

lowing, that is, q0 ¼ q0ðl; nÞ.8
In the Subsections III A–III C, first we move the pertur-

bation part of magnetic potential dA into the Hamiltonian

part by the Lie-transform perturbation method. This trans-

form makes the symplectic part of the transformed funda-

mental one-form same as the unperturbed one. We call it dA

042505-2 Xu, Dai, and Wang Phys. Plasmas 21, 042505 (2014)
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transform. Then the conventional Lie-transform method is

used to remove the gyroangle-dependent part of the

Hamiltonian by the gauge function Sn. Finally, the gyroki-

netic equations are presented.

A. The dA transform

The dA transform T A from the guiding-center coordi-

nates Z to the transformed coordinates Z* is expressed in

terms of dg, that is Z�i ¼ T AZi. According to the conven-

tional Lie-transform perturbation method, dA transform can

be expanded in powers of the amplitude ordering parameter

�d, written as

Z�i ¼ Zi þ dgi
1 þ dgi

2 þ
1

2
dgj

1@jdgi
1 þ…; (9)

where dg1 and dg2 are the first-order and second-order gener-

ating vector fields, respectively.

The transformed fundamental one-form is defined as

Ĉ
� ¼ C� � H�dt ¼ C�i d �Z

�i � H�dt. To make the symplectic

part of the transformed fundamental one-form same as the

unperturbed one, we set C�i ¼ C0i. Then, we have Ĉ
� ¼ C0

�H�dt. From the symplectic part of Ĉ
� ¼ T

�1
A Ĉ, we obtain

0 ¼ C1i � dgj
1x0ji; (10a)

0 ¼ �dgj
nx0ji � dgj

n�1x1ji; for n 	 2: (10b)

Note that

fX þ q0;X þ q0g ¼ 0: (11)

Using Eq. (11), we can obtain the nth-order generating

vectors

dgi
1 ¼ edA � @jðX þ q0ÞJ

ji
0 ; (12a)

dgi
n ¼ 0; for n 	 2: (12b)

Then, the dA transform can be simplified as

Z�i ¼ Zi þ dgi
1 þ

1

2
dgj

1@jdgi
1: (13)

It is not hard to show that dg1 is an incompressible flow

in the phase space

1

J @iðJ dgi
1Þ ¼ 0; (14)

with J being the Jacobian of the phase space. The compo-

nents of dg can be explicitly written as

dgX
1 ¼ �

b0

B�k0
� dA; (15a)

dg
vk
1 ¼

eB�0
mB�k0

� dA; (15b)

dgn
1 ¼ �

e2

m
dA � @lq0; (15c)

dgl
1 ¼

e2

m
dA � @nq0: (15d)

The transformed Hamiltonian can be obtained by the pull-

back transform

H� ¼ T
�1
A H ¼ H � dgi

1@iH þ
1

2
dgj

1@jðdgi
1@iHÞ; (16)

with H¼H0 þ H1.

After the dA transform, we have the transformed funda-

mental one-form

Ĉ
� ¼ C0 � ðH0 þ dH�Þdt; (17a)

dH� ¼ ed/� eð _X0 þ _n0@nq0Þ � dAþ e2

2m
jdAj2: (17b)

Note that all the perturbations appear in the Hamiltonian

part.

B. The gyrokinetic Lie transform

Note that the perturbed Hamiltonian in Eq. (17b) is

gyroangle-dependent. To decouple the gyromotion from the

gyrocenter motion, we need to make the gyrocenter Lie-

transform.

The gyrocenter phase-space transformation T S from the

variables Z* to the gyrocenter variables �Z defined as �Z
i

¼ T SZ�i can be expanded in powers of the amplitude order-

ing parameter �d up to Oð�2
dÞ written as

�Z
i ¼ Z�i þ Gi

1 þ Gi
2 þ

1

2
Gj

1@jG
i
1; (18)

where G1 and G2 are the first-order and second-order gener-

ating vector fields, respectively.

The transformed fundamental one-form is defined as

�̂C � �C � �Hdt ¼ �Cid �Z
i � �Hdt: (19)

We choose �Ci ¼ Ci0, that is, the transformed Lagrangian

two-form is formally same as the unperturbed one, then
�Cni ¼ 0; �x1 ¼ 0; �x ¼ x0. By using this choice, the transfor-

mation of the fundamental one-form, �̂C ¼ T
�1
S Ĉ

� þ dS, can

be expanded up to Oð�2
dÞ,

�C0i ¼ C0i; (20a)

0 ¼ �Gj
nx0ji þ @iSn; ðn ¼ 1; 2Þ; (20b)

�H0 ¼ H0; (20c)

�H1 ¼ dH� � Gi
1@iH0; (20d)

�H2 ¼ �Gi
1@idH� þ 1

2
Gi

1@iðGj
1@jH0Þ � Gi

2@iH0: (20e)

Here, T
�1
S is the push-forward transformation. S1 and S2 are

the first-order and second-order scalar field function used for

removing the gyroangle dependence of the Hamiltonian.

From Eq. (20b), we can find the generating vector fields,
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Gi
n ¼ @jSnJji

0 ; ðn ¼ 1; 2Þ: (21)

The components of the nth-order generating vector field can

be explicitly written in terms of the noncanonical variables

in the generic form21

GX
n ¼ �

b0

eB�k0
�rSn � @vkSn

B�0
mB�k0

; (22a)

G
vk
n ¼

B�0
mB�k0

� rSn; (22b)

Gn
n ¼ �

e

m
@lSn; (22c)

Gl
n ¼

e

m
@nSn: (22d)

From Eq. (21), we can see that Gn’s are the Hamiltonian

flows. Therefore, Gn’s are incompressible flows in the phase

space, that is,

1

J @iðJGi
nÞ ¼ 0: (23)

Here, J is the Jacobian of the phase space.

To decouple the gyrocenter motion from the gyromo-

tion, the gyrocenter Hamiltonians �Hn are chosen to satisfy

the condition �Hn ¼ h �Hni. Here, h� � �i denotes the gyro-

average. Thus, the first-order and second-order scalar field

functions can be chosen as

d0S1

dt
¼gdH�; (24a)

d0S2

dt
¼ � 1

2
fgS1; ð _S1Þ0g � S1; hdH�if g; (24b)

with d0

dt defined as d0

dt ¼ @t þ _X0 � r þ _vk0@vk þ _n0@n. For any

function A, ~A denotes the gyroangle dependence part,

defined as ~A � A� hAi. By substituting Eq. (24) into Eqs.

(20d) and (20e), the first-order and the second-order gyro-

center Hamiltonians are written as

�H1 ¼ hdH�i ¼ ehd/i � e _X0 � hdAi

�e _n0hdA � @nq0i þ
e2

2m
hjdAj2i; (25a)

�H2 ¼ �
1

2
hfS1; ð _S1Þ0gi: (25b)

C. Equations of the gyrocenter motion and
Maxwell-Vlasov equations

The gyrocenter equations of motion are written in terms

of the Poisson matrix as

d �Z
i

dt
¼ Jij

0@j
�H ¼ Jij

0@jð �H0 þ �H1 þ �H2Þ: (26)

Note that the gyrocenter equations of motion satisfy the

Liouville’s theorem.8 The nonlinear gyrokinetic Vlasov

equation @t
�F þ f �F; �Hg ¼ 0 can be written in terms of the

noncanonical coordinates as

@t
�F þ d �X

dt
� r� �F þ

d�vk
dt
@�vk

�F ¼ 0: (27)

The guiding-center distribution function can be obtained by

the two-step pull-back transform of the gyrocenter distribu-

tion function, that is, F ¼ TAF� ¼ TATS
�F

F� ¼ TS
�F ¼ �F þ Gi

1@i
�F þ Gi

2@i
�F þ 1

2
Gi

1@iðGj
1@j

�FÞ; (28a)

F ¼ TAF� ¼ F� þ dgi
1@iF

� þ 1

2
dgj

1@jðdgi
1@iF

�Þ: (28b)

The Poisson equation and Ampere law can be expressed as

r2ð/0 þ d/Þ ¼ � 1

�0

X
q; (29a)

r2ðA0 þ dAÞ ¼ �l0

X
J: (29b)

Here, the displacement current has been dropped for the low-

frequency perturbations, and the Coulomb gauge r � ðA0

þdAÞ ¼ 0 has been used. The charge density and the current

are expressed in terms of the coordinates Z*, written as

q ¼ e

ð
F�dðX� þ q0 � rÞd6Z�; (30a)

J ¼ e

ð
T
�1
A ð _X0 þ _n0@nq0ÞF�dðX� þ q0 � rÞd6Z�; (30b)

with d6Z� ¼ B�k0
m d3X�dv�kdl�dn�. Here, X þ q0ðZÞ ¼ X�

þq0ðZ�Þ has been used.

Using Eq. (15), we can obtain T
�1
A ð _X0 þ _n0@nq0Þ

¼ _X0 þ _n0@nq0 � e
m dA. Then the expressions of the density

and the current can be rewritten as

q ¼ e

ð
TS

�FdðX� þ q0 � rÞd6Z�; (31a)

J ¼ e

ð
ð _X0 þ _n0@nq0ÞTS

�FdðX� þ q0 � rÞd6Z� �
x2

p

l0c2
dA:

(31b)

Here, xp is the plasma frequency of some particle.

r2ð/0þ d/Þ ¼ � 1

�0

X
e

ð
TS

�FdðX� þ q0� rÞd6Z�; (32a)

r2ðA0þdAÞ

¼
x2

pe

c2
dA�l0

X
e

ð
ð _X0þ _n0@nq0ÞTS

�FdðX� þq0� rÞd6Z�:

(32b)

Here, x2
pi=x

2
pe ¼ me=mi � 1 has been used.

x2
pe

c2 dA is the col-

lisionless skin depth term. This term is first mentioned in

Ref. 5 which only considers dAk in the slab model.

The energy invariance can be written as
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Etotal ¼
ð

d3x

�
�0

2
jE0 þ dEj2 þ 1

2l0

jB0 þ dBj2
�

þ
Xð

d6 �Z �FT�1
S T�1

A ðH0 � e/0Þ;
(33a)

¼
ð

d3x
�0

2
jE0 þ dEj2 þ 1

2l0

jB0 þ dBj2
� �

þ
Xð

d6 �Z �FðH0 � e/0 þ �H1 � ehd/i

þ �H2 þ ehfS1; d/giÞ: (33b)

The dA transform is easy to understand. It makes all the

perturbations appear in the Hamiltonian part and keeps the

structure of the Poisson bracket unchanged. The gyrokinetic

theory based on the dA transform, which is similar to the ki-

netic22 situation, agrees with the standard modern nonlinear

gyrokinetic theory.8 This will be demonstrated up to Oð�2
dÞ in

Appendix A. In addition, the second transform is determined

by the perturbations only through the gauge functions Sn.

IV. SHORT TIME BEHAVIOR

A. I-transform method

The new phase-space transformation T �S called I

transform21–23 from the gyrocenter variables �Z to new varia-

bles �Z
�

defined as �Z
�i ¼ T �S �Z

i
can be expanded in powers of

the amplitude ordering parameter �d up to Oð�2
dÞ, written as

�Z
�i ¼ �Z

i þ G�i1 þ G�i2 þ
1

2
G�j1 @jG

�i
1 ; (34)

where G�1 and G�2 are the first-order and second-order gener-

ating vector fields, respectively. The transformed fundamen-

tal one-form is defined as

�̂C
�
� �C

� � �H
�
dt ¼ �C

�
i d �Z

i � �H
�
dt: (35)

To make the transform equations of motion same as the

unperturbed one, we set �C
�
i ¼ C0i and �H

� ¼ H0, that is,

Ĉ
� � C0 � H0dt. From the transform of the one-form,

�̂C
�
¼ T

��1
S

�̂C þ dS�, we have

�C0i ¼ C0i; (36a)

0 ¼ �G�jn x0ji þ @iS
�
nðn ¼ 1; 2Þ; (36b)

�H0 ¼ H0; (36c)

0 ¼ �H1 þ �H2 � G�i1 @iH0; (36d)

0 ¼ �G�i1 @i
�H1 þ

1

2
G�i1 @iðG�j1 @jH0Þ � G�i2 @iH0: (36e)

Note that the second-order gyrocenter Hamiltonian �H2 is

placed in the first-order equation (36d).23 From Eq. (36b),

the nth-order generating vectors are

G�in ¼ @jS
�
nJji

0 ðn ¼ 1; 2Þ: (37)

Like Gn, G�n are also the Hamiltonian flows and incompressi-

ble in the phase space, that is, 1
J @iðJG�in Þ ¼ 0. From Eqs.

(36d) and (36e), the first-order and second-order gauge func-

tions can be chosen as

d0S�1
dt
¼ d �H ; (38a)

d0S�2
dt
¼ � 1

2
S�1; d �H
� �

: (38b)

With d �H ¼ �H � H0 ¼ �H1 þ �H2. The transformed equations

of motion are

d �Z
�i

dt
¼ Jij

0@jH0; (39)

which has the same form as the unperturbed ones. Then, the

transformed gyrokinetic Vlasov equation is

@t
�F
� þ f �F

�
;H0g ¼ 0: (40)

Note that Eq. (40) is valid in a short-time interval.23 The

transformed gyokinetic Vlasov equation is independent of

the electromagnetic perturbations. By using the pull-back

transform �F ¼ T
�
S

�F
�

and the incompressibility of G�n in the

phase space, we can find

�F ¼ �F
� þ 1

J @i J ½ðG�1 þ G�2Þ þ
1

2
G�i1 G�j1 @j
 �F�

� �
: (41)

The gyrokinetic theory based on the I-transform method

can be used to compute the guiding-center orbit and the guiding-

center distribution function with the short-time approximation.23

In Subsection IV B, we will discuss the short-time I-transform

method and give the procedure of the computation of the

guiding-center orbit and the guiding-center distribution function.

B. Application of the short-time I-transform method to
the computation of the guiding-center orbit and the
guiding-center distribution function

We choose a short time Dt, which satisfies

�t ¼ _Z
k

0Dt=Lk � 1; (42)

with Zk ¼ ðXi;�vk; tÞ; Lk ¼
�Hn

@k
�Hn

, that is, ðx; k � V; _vk0=Lvk Þ
�Dt� 1. For the standard gyrokinetic ordering, we have

kkVk � k? � VD, then the condition becomes xDt;xtDt� 1,

with xt¼ kkVk. Before pushing the gyrocenter of the particle

every a short time, we choose

�Zðt� DtÞ ¼ �Z
�ðt� DtÞ; (43)

which means that two coordinates has the same phase-space

point at t – Dt and Gnðt� DtÞ ¼ 0. Thus, we can choose Sn(t
– Dt)¼ 0.

First, we make some general remarks on the computa-

tion of G�i1 . S�1 is kept up to Oð�2
t Þ, expressed as

S�1ð �Z
�Þ ¼

ðt

t�Dt

d �H ½ �Z�kðsÞ
ds ’
ðt

t�Dt

d �H ½ �Z�kðtÞ þ _�Z
�k
0 ðtÞ

� ðs� tÞ
ds ’ d �HDt� _�Z
�k
0 @kd �H

Dt2

2

¼ d �HDt� fd �H ;H0gt

Dt2

2
: (44)
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The subscript t denotes that the Poisson bracket is computed

at the phase-space coordinates �Z
�ðtÞ. Then we can find G�i1

from Eq. (44)

G�i1 ¼ �Jij
0@jS

�
1 ’ �f �Z

�i
; d �HgtDtþ f �Z

�i
; fd �H ;H0ggt

Dt2

2
:

(45)

Next, we will analyze G�i2 by using the short-time

approximation. S�2 can be expressed as

S�2 ¼ �
1

2

ðt

t�Dt

fS�1; d �Hgds: (46)

From Eq. (44), we have

fS�1; d �HgDt ¼ fS�1; S�1g þ Oð�2
d�

3
t Þ � Oð�2

d�
3
t Þ: (47)

Then we can find

G�i2 ¼ �Jij
0@jS

�
2 � Oð�2

d�
3
t Þ: (48)

Thus, G�i2 can be neglected when keeping up to Oð�2
d�

2
t Þ.

The guiding-center orbit can be found from the gyrocen-

ter orbit by the gyrocenter transform related to electromag-

netic potential perturbations.18 The procedure of the

computation of the gyrocenter orbit based on the I-transform

method can be expressed as

�ZðtÞ ¼ T ��1
S ðt; t� DtÞ½�Z�ðt� DtÞ þ DZ0
; (49)

which includes two steps: First, the equations of motion is

integrated along unperturbed orbit during the short time Dt

�Z
�iðtÞ ¼ �Z

�iðt� DtÞ þ DZi
0

¼ �Z
�iðt� DtÞ þ

ðt

t�Dt

f �Z
�i
;H0gsds: (50)

Second, we make the inverse I-transform (T ��1
S ðt; t� DtÞ)

�Z
iðtÞ ¼ T ��1

S ðt; t� DtÞ �Z�iðtÞ

¼ �Z
�i � G�i1 þ

1

2
G�j1 @jG

�i
1 : (51)

Here, the inverse I-transform is kept up to Oð�2
d�

2
t Þ, thus G�2 is

neglected due to Eq. (48). The new procedure of the gyrocen-

ter orbit computation agrees with the conventional method,

which integrate the gyrocenter equations of motion along the

full orbit. This will be demonstrated in Appendix B. We will

give two numerical examples about the guiding-center orbit

computation by using the new procedure in Sec. V.

The guiding-center distribution function can be obtained

from the gyrocenter distribution function by the pull-back

transform (28) as is adopted in the standard modern gyroki-

netic theory. The pull-back transform will give the adiabatic

part of the guiding-center distribution function. Next, we dis-

cuss the computation of the gyrocenter distribution function

by the I-transform method, which will give the nonadiabatic

part. From Eq. (43), we have

�Fð�Z � DZ0; t� DtÞ ¼ �F
�ð�Z � DZ0; t� DtÞ; (52)

which means the two distribution functions are same at t – Dt.
By integrating Eq. (40) along the unperturbed orbit from

t – Dt to t, we can obtain

�F
�ð�Z; tÞ ¼ �F

�ð�Z � DZ0; t� DtÞ: (53)

By using Eqs. (41), (52) and (53), we can find

�Fð�Z; tÞ ¼ �Fð�Z � DZ0; t� DtÞ þ 1

J @i½J ðG�1 þ
1

2
G�i1 G�j1 @jÞ �F
:

(54)

Here, G�2 has been neglected. Equation (54) can be used to

solve the gyrocenter distribution function by two steps.23

The first step, which is related to the first term of the right-

hand side of Eq. (54), is to compute the gyrocenter distribu-

tion function along the unperturbed orbit at t – Dt. The

second step, which is shown in the second term, is to com-

pute the effects of the electromagnetic perturbations.

Equation (54) derived by using the I-transform method pro-

vides an alternative method for the nonlinear gyrokinetic

simulation. The I-transform method, which splits the gyro-

center distribution function into the unperturbed part and the

perturbation part, is similar to the df-method. The character

of the I-transform method is that all the perturbations are

included in the first-order generating vector field G�1. This

character may be useful for theoretical analysis.

V. THE NUMERICAL CODE NLT AND ITS EXAMPLES

A. The code NLT

The numerical Lie-transform code NLT for computing

the guiding-center orbit is developed, which is based on the

short-time I-transform method presented above. Equations

(37), (38a), (50), and (51) have been used in the code NLT to

compute the gyrocenter orbit. The long-time computation of

the gyrocenter orbit is composed of many short-time compu-

tations, that is, Eq. (49). In the code NLT, we choose the

short time Dt as one time step. The procedure of the short-

time computation has been discussed in Subsection V B.

To validate the code NLT, the code GYCAVA,18 which

has been developed earlier, is used as a benchmark in the fol-

lowing numerical examples. Both of them can be used to

compute the guiding-center orbit in the tokamak configura-

tion with a strong short-wavelength electromagnetic pertur-

bation. The finite-Larmor-radius effect is included in the two

codes. The code GYCAVA, based on the conventional

method, pushes the phase-space point by integrating along

the full gyrocenter orbit.

B. The numerical examples

In this subsection, we compare the new code NLT with

the code GYCAVA. In both of the codes, the magnetic flux

coordinates (w, h, f) are used, with w being the poloidal

magnetic flux, h being the poloidal angle, and f being the to-

roidal angle. Two numerical examples are illustrated for val-

idating the code NLT. The finite-Larmor-radius effect is not
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important in the two examples due to the character length of

the perturbations used has the same order as the minor

radius.

The first example is about the ion neoclassical polariza-

tion drift. The initial energy of the trapped ion is chosen as

E0i¼ 10 keV. The unperturbed electric potential is not

included, thus H0¼E0i¼ 10 keV. The large time-varying

electric potential perturbation is chosen as34

d/ ¼ d/0wsinðxtÞ: (55)

Here, the mode frequency and amplitude are chosen as

x ¼ 2:0� 104Hz; d/0 ¼ 2:0� 105V=Wb, which makes the

perturbation part of the Hamiltonian has the same order as

the unperturbed one, that is, �H1 � H0. Note that w � 0.1 Wb

for the model tokamak equilibrium used here.

The ion drifts radially, which is induced by the strong

time-varying radial electric field, is shown in Fig. 1. It is

clearly seen that both of the codes NLT and GYCAVA have

the same orbit with the large electric potential perturbation.

The second example is about the gyrocenter motion in a

large magnetic island perturbation. The perturbation of the

poloidal magnetic flux is chosen as

dw ¼ dwðm;nÞcosðmh� nf� xtÞ (56)

to model a static magnetic island. The poloidal and toroidal

numbers are chosen as m¼ 2, n¼ 1. The mode frequency

and amplitude are chosen as x¼ 0, dwðm;nÞ=wb ¼ 10�3, with

wb¼ 0.098 Wb being the values of the equilibrium poloidal

magnetic flux at the boundary of the tokamak. The initial

particle energies of the electron and ion are set as

E0e¼ 1 keV and E0i¼ 100 keV. The Poincare section plots of

the passing particles computed by the codes NLT and

GYCAVA are shown in Fig. 2.

The Poincare plots of the passing particles have the drift

island structure. The island structure of the passing electron

is almost same as the magnetic island, while the island struc-

ture of the passing ion is shifted away from the magnetic

field. From Fig. 2, it is clearly seen that both of the codes

have the same Poincare plots for the electron and the ion.

From these two numerical examples, it can be seen that

the guiding-center orbits computed by two different methods

have the same results, which shows that the code NLT is

valid for computing the guiding-center orbit in tokamaks.

VI. SUMMARY

The gyrokinetic theory in tokamak configuration based

on the two-step transform has been presented. The two-step

transform procedure includes the dA transform, which makes

the effects of the magnetic potential perturbation appear in the

Hamiltonian part, and the gyrokinetic Lie-transform, which

transforms away the gyroangle-dependent part of the

Hamiltonian to decouple the gyromotion from the gyrocenter

motion. Note that the dA transform is generated by an incom-

pressible flow in the phase space; the gyrokinetic Lie-

transform presented in this paper is generated simply by a

Hamiltonian flow. It has been proved that this gyrokinetic

theory is equivalent with the conventional one. The two-step

transform proposed in this paper is a generalization of Ref. 5,

which considers dAk in the slab model. The gyrokinetic

Maxwell equations include the full electromagnetic potential

perturbation ðd/; dAÞ. The collisionless skin depth term due

to the full magnetic potential perturbation dA has been recog-

nized by using the dA transform.

The I-transform method is used to make the transformed

equations of motion has the same form as the unperturbed

ones. The application of the short-time I-transform method

FIG. 1. Comparison of the neoclassical polarization drift of the trapped ion

computed by NLT (labeled by plus and line) and by GYCAVA (labeled by

cross and line), respectively.

FIG. 2. Comparisons of the drift structure of the passing ion and the passing

electron in a static magnetic field. The plus and the diamond symbols denote

the Poincare plots of the passing ion computed by NLT and GYCAVA,

respectively. The cross and the square symbols denote the Poincare plots of

the passing electron computed by NLT and GYCAVA, respectively.
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to the computation of the guiding-center orbit and the

guiding-center distribution function has been presented. It is

demonstrated analytically that the new method agrees with

the conventional method in the orbit computation. A new

code based on the short-time I-transform method is devel-

oped, which involves integrating only along the unperturbed

orbit. Two numerical examples including the strong electro-

magnetic field perturbations have been illustrated to validate

the new code by using a code which involves integrating

along the full orbit in the conventional method. The unper-

turbed motion is well-understood so that the I-transform

method provides an alternative method to compute the

guiding-center orbit and the guiding-center distribution func-

tion. It can also be used and may bring about advantages in

the nonlinear gyrokinetic simulation.
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APPENDIX A: THE EQUIVALENCE OF THE
GYROKINETIC THEORY BASED ON THE TWO-STEP
TRANSFORM PROCEDURE AND THE STANDARD
MODERN NONLINEAR GYROKINETIC THEORY

For the gyrokinetic theory based on the two-step trans-

form procedure, the phase-space transform and the pull-back

transform are

�Z
i ¼ T ST AZi ¼ Zi þ dgi

1 þ Gi
1 þ Gi

2

þ dgj
1@jG

i
1 þ

1

2
Gj

1@jG
i
1; (A1a)

F ¼ TAF� ¼ TATS
�F

¼ �F þ
�

dgi
1 þ Gi

1 þ Gi
2 þ dgj

1@jG
i
1

þ 1

2
Gj

1@jG
i
1 þ

1

2
dgj

1@jdgi
1

�
@i

�F

þ 1

2
ðdgi

1dgj
1 þ Gi

1Gj
1 þ 2dgi

1Gj
1Þ@ij

�F: (A1b)

For the gyrokinetic theory based on the conventional8

procedure, the phase-space transform and the pull-back

transform are

�Z
†i ¼ T † Zi ¼ Zi þ G†i

1 þ G†i
2 þ

1

2
G†j

1 @jG
†i
1 ; (A2a)

F† ¼T† �F
† ¼ �F

†þðG†i
1 þG†i

2 þG†j
1 @jG

†i
1 Þ@i

�F
†þ 1

2
G†i

1 G†j
1 @ij

�F
†
:

(A2b)

Here, the conventional first-order generating vector G†
1

can be expressed as

G†i
1 ¼ dgi

1 þ Gi
1: (A3)

The conventional second-order generating vector G†
2 can be

expressed as

G†i
2 ¼ fS

†
2; Z

ig � 1

2
G†k

1 x1kjJ
ji
0 : (A4)

The conventional gauge function S†
2 and the new gauge func-

tion S2 have the following relations:

S†
2 ¼ S2 �

1

2
S1; Z

j
� �

C1j: (A5)

From Eqs. (A4), (A5), and (21), the conventional second-

order generating vector G†
2 can be rewritten as

G†i
2 ¼ Gi

2 �
1

2
S1; Z

j
� �

C1j; Z
i

� �
� 1

2
Gk

1x1kjJ
ji
0 : (A6)

Then, we can obtain

G†i
2 þ

1

2
G†j

1 @jG
†i
1 ¼ Gi

2 þ dgj@jG
i
1 þ

1

2
Gj

1@jG
i
1 þ

1

2
dgj

1@jdgi
1:

(A7)

From Eqs. (A1a), (A2a), (A3), and (A7), we can see that

�Z
i ¼ �Z

†i
: (A8)

From Eq. (A8) and the property of the scaler invariance

FðZÞ ¼ �Fð �ZÞ ¼ �F
†ð �Z†Þ, we have

�F ¼ �F
†
: (A9)

Using Eqs. (A9), (A1b), (A2b), (A3), and (A7), we can see

that

F ¼ F†: (A10)

Equations (A8), (A9), and (A10) mean that the gyrokinetic

theory based on the two-step transform procedure agrees

with the standard modern nonlinear gyrokinetic theory.8

APPENDIX B: THE EQUIVALENCE OF THE SHORT-
TIME I-TRANSFORM METHOD AND CONVENTIONAL
METHOD FOR COMPUTING GYROCENTER ORBIT

According to the conventional18 method, the change of

the phase-space position D�Z
†

during a short time Dt is kept

up to Oð�2
d�

2
t Þ, written as

D �Z
†i ¼

ðt

t�Dt

f �Z
i
; �Hgsds

’ f �Z
i
; �Hgt�DtDtþ ff �Z

i
; �Hg; �Hgt�Dt

Dt2

2
: (B1)

According to the short-time I-transform method, from

the procedure of gyrocenter orbit computation, the change of

the phase-space position D�Z during a short time Dt is kept

up to Oð�2
d�

2
t Þ, written as
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D �Z
i ¼ D �Z

�i � G�i1 þ
1

2
G�j1 @jG

�i
1 : (B2)

From Eq. (45), the first-order generating vector can be

rewritten as

G�i1 ’ �ðf �Z
�i
; d �Hgt�Dt þ ff �Z

�i
; d �Hg;H0gt�DtDtÞDt

�ðf �H0; f �Z
�i
; d �Hggt�Dt � fd �H ; f �Z

�i
;H0ggt�DtÞ

Dt2

2

¼ �f �Z
�i
; d �Hgt�DtDt

�ðff �Z
�i
; d �Hg;H0gt�Dt þ ff �Z

�i
;H0g; d �Hgt�DtÞ

Dt2

2
:

(B3)

Using Eq. (B3) and keep up to Oð�2
d�

2
t Þ, we have

1

2
G�j1 @jG

�i
1 ¼

1

2
fS�1; fS�1; �Z

�iggt�Dt

’ 1

2
ff �Z

�i
; d �Hg; d �Hgt�Dt

Dt2

2
: (B4)

From Eq. (50), the change of the phase-space position D�Z
�

during a short time Dt can be computed by integrating along

the unperturbed orbit

D �Z
�i ¼

ðt

t�Dt

f �Z
�i
;H0gsds

’ f �Z
�i
; �H0gt�DtDtþ ff �Z

�i
;H0g;H0gt�Dt

Dt2

2
: (B5)

Using Eqs. (B1)–(B5), we have

D �Z
i ¼ D �Z

†i
: (B6)

From Eq. (B6), we can see that the change of the phase-

space position during a short time Dt computed by the new

method is same as the one computed by the conventional

method up to Oð�2
d�

2
t Þ. It is demonstrated that two

methods for computing the gyrocenter orbit in tokamaks are

equivalent.
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