
 

 

  
Abstract—In intensity modulated radiation therapy (IMRT) 

treatment planning, beam angles are usually preselected on the basis of 
experience and intuition. Therefore, getting an appropriate beam 
configuration needs a very long time. Based on the present situation, 
the paper puts forward beam orientation optimization using ant colony 
optimization (ACO). We use ant colony optimization to select the 
beam configurations, after getting the beam configuration using 
Conjugate Gradient (CG) algorithm to optimize the intensity profiles. 
Combining with the information of the effect of pencil beam, we can 
get the global optimal solution accelerating. In order to verify the 
feasibility of the presented method, a simulated and clinical case was 
tested, compared with dose-volume histogram and isodose line 
between target area and organ at risk. The results showed that the 
effect was improved after optimizing beam configurations. The 
optimization approach could make treatment planning meet clinical 
requirements more efficiently, so it had extensive application 
perspective. 
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I. INTRODUCTION 
NTENSITY modulated radiation therapy (IMRT) means the 
radiation beam intensity can be adjusted [1]. With this 

technique, not only target can obtain a relatively uniform high 
dose distribution, but also organs at risk and normal tissues are 
protected. The traditional IMRT planning starts with the 
selection of suitable beam orientations then optimize the 
intensity map of beam or segments shape using inverse 
optimization methods. Finally, analyze whether the dose 
distribution meet clinical requirement. If plan is successful, we 
should to make the dose verification. Otherwise, beam 
orientation should be adjusted, then re-optimize the parameters 
until the dose distribution meet the clinical requirement. In 
IMRT, the selection of optimal beam orientation cannot rely on 
conventional conformal radiotherapy experience. For 
conventional conformal radiotherapy, beam orientation 
generally should avoid direct exposure to organs at risk. 
However, for IMRT, beam orientations do not have to be away 
from organs at risk [2-4]. Therefore, for more complicated cases, 
the selection of optimal beam angles needs several trial and 
error attempts. This research was a part of Advanced/Accurate 
Radiotherapy System (ARTS) [5~13], in precision radiation 
treatment planning and quality assurance system project, 
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developed by FDS team in cooperation with several research 
institute.Ant colony optimization is a new general heuristics 
method, for solving combinatorial optimization problem. The 
method has the characteristics of positive feedback, distributed 
computation and constructive characteristics of the greedy 
heuristic search [14]. It was proposed by Marco Dorigo in 1991 
in his doctoral thesis, and its inspiration was from finding food 
of real ants. Ant colony optimization in solving combinatorial 
optimization problems shows a superior performance, such as: 
routing problem, scheduling problem, a subset of the problem 
and so on.The purpose of this study is to find the optimal beam 
orientation using ant colony optimization, in the case of 
coplanar irradiation and fixed number of beam. The results 
showed that the approach could get the optimal beam 
orientation within the acceptable time, and it had extensive 
application perspective. 

II. METHODS 
Each set of beam orientation has different intensity map, and 

we must calculate to find which set was better. So beam 
orientation optimization has a high-level computational 
complexity, and cannot get the optimal solution in acceptable 
time using traditional optimization methods. In order to 
simplify the optimization process, we treated beam angles and 
intensity map as two independent variables. Beam angles were 
selected by stochastic methods, while the corresponding 
intensity maps were got using deterministic algorithms.  

In this paper, we adopt the strategy above described that was 
the whole optimization process had two nested loops. In the 
outer loop, beam angles were selected by ant colony 
optimization. In the inner loop, the corresponding intensity 
maps were optimized using conjugate gradient method, after 
beam angles were fixed. 

A simplified flowchart of the proposed optimization is 
shown in figure 1.  

Here, we only studied coplanar irradiation, and the method 
could be easily applied to non-coplanar irradiation. The total 
360° gantry angles were divided into equally fixed spaced, such 

as 5° or 10°. These discrete beam angles constituted a candidate 
constitute the search space. In order to improve the 
performance and reduce search space, the user could exclude 
the angles that cannot be implemented. 
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Fig. 1 Flow chart of ACO 

A.  Beam orientation optimization 
Ant colony optimization is an intelligent optimization 

algorithm to find the optimal path in weighted graph. Using 
ACO to solve combinatorial optimization problems, the first 
task is to model the problem into a weight chart, and the 
rationality of the chart affect the efficiency and effectiveness of 
optimization [15]. 

Beam orientation optimization model was a multi-layers 
graph. Removing the top and bottom, the middle layers were 
equal to the number of beams, and nodes in each layer were the 
number of candidate beam. For example, figure 2 was a four 
beams case. In this model each layer had 36 nodes in the 10 ° 
dispersal coplanar illumination. 

Nest

0 10 20 350... 100 110 ...

Food

0 10 20 350... 100 110 ...
0 10 20 350... 100 110 ...
0 10 20 350... 100 110 ...

 
Fig. 2 Beam orientation optimization model 

 
The process of ACO as follows: Firstly, initialized the N 

ants, and then made ants moving from the first layer to the last 

layer. Each ant chose node by kp  according to the side’s 
pheromone, and only chose one node in each layer, at the same 
time, avoided the adjacent beam in the selection process. That 
was, if you selected 20 ° first, you could not choose 10 ° and 30 
° next. Each ant’s path corresponded to a group of beam 
direction. For example, thick lines of the graph II represented a 
group of beam directions of an ant choice: 20 °, 0 °, 100 ° and 
150 °. Then optimized the intensity map of this beam 
orientation by conjugate gradient method, and updated side’s 
pheromone according to the objective function value. 

Probability transfer formulas were as follows:
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In formula (1), τ was pheromone, η  was the importance 
factor of each angle, ( )kJ r  were candidate beam directions, in 

formula (2) , 
PTVN  and 

kOARN represented the number of 

sampling points of the target and k-th organs at risk (OAR) 
respectively.  m  was the number of OAR. α୩  was the 
importance factor of k-th OAR, and its value between 0 and 1. 

Pheromone update formulas were as follows:
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In formula (3), ρ  was evaporation rate, generally taken to 
be 0.3. ( , )k r sτ  was the additional pheromone. In formula (4), 

objF  was the objective function value of k ant. 

To overcome the possibility that ant colony optimization 
falling into the local optimum solution, we used two strategies. 
1) Decreased the value of ρ in the iteration later.  

1 *0.95j jρ ρ −=
 

j  indicated the current number of iterations.  

2) Defined the maximum and minimum pheromone value maxτ  

and minτ  . If the updated pheromone value was greater than 

maxτ , then assigned to maxτ , on the contrary, if the updated 

pheromone value was less than minτ , then assigned to minτ .  

B. Optimize the intensity profiles 
After selecting beam angles, the intensity profiles and the 

fitness value of this set of beam orientation needed to be 
calculated. We were used to divide the beam into units, and use 
pencil beam algorithm to calculate dose contribution of the 
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Nasopharyngeal cancer case contains 13 organs, so 

optimization spent a relatively long time. The optimization 
process converged to the optimal solution in the 
80th-generation and 40 minutes. 

IV. DISCUSSIONS 
In simulation case, the method presented can get the optimal 

solution only in 28 minutes, compared with 5.4 days of 
exhaustive method. Figure 4 suggest the validity of treatment 
planning is improved after beam orientation optimization. 

The time required of beam orientation relate to the number of 
organs and the complexity of cases. The more complex cases, 
the more the number of organs, the longer time needed to 
optimize. 

V. CONCLUSIONS 
Beam orientation optimization is an important issue in 

IMRT. A large number of studies have shown that the choice of 
angles plays a vital role for planning. Beam orientation 
optimization based on ant colony optimization in this paper can 
find the optimal beam orientation within an acceptable time in 
clinic. 

By contrast with the exhaustion method in simulated case, 
the algorithm used in this article can find the optimal solution in 
clinically acceptable time, so this method is effective. 
Nasopharyngeal cancer case showed that the effect has been 
greatly improved after optimization by comparison of the organ 
DVH. Therefore, beam orientation optimization based on ant 
colony optimization meets clinical requirements, which can 
serve as an effective beam orientation optimization method 
applied to IMRT. 
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