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Abstract Fuzzy c-means (FCM) algorithm is a popu-
lar method in image segmentation and image classifi-
cation. However, the traditional FCM algorithm cannot
achieve satisfactory classification results because re-
mote sensing image data are not subjected to Gaussian
distribution, contain some types of noise, are nonlinear,
and lack labeled data. This paper presents a robust
semi-supervised kernel-FCM algorithm incorporating
local spatial information (RSSKFCM_S) to solve the
aforementioned problems. In the proposed algorithm,
insensitivity to noise is enhanced by introducing con-
textual spatial information. The non-Euclidean struc-
ture and the problem in nonlinearity are resolved
through kernel methods. Semi-supervised learning
technique is utilized to supervise the iterative process
to reduce step number and improve classification ac-
curacy. Finally, the performance of the proposed
RSSKFCM_S algorithm is tested and compared with
several similar approaches. Experimental results for

the multispectral remote sensing image show that the
RSSKFCM_S algorithm is more effective and efficient.

Keywords Kernel-FCM . Remote sensing image .

Image classification . Semi-supervised . Local spatial
information

Introduction

Remote sensing image is utilized in various applications
of natural resources inventory and management and
weather services. Image classification plays a key role
in these applications. Many algorithms and approaches
were proposed in the past to classify satellite images.
These algorithms and approaches have achieved huge
progress. Fuzzy c-means (FCM) algorithm is a popular
method in image classification because of its structural
and computational simplicity. The success of FCM is
mainly attributed to the introduction of fuzziness for the
belongingness of each image pixel.

Some of the complications of real-image data, such as
image context spatial information and nonlinear space,
are not considered by standard FCM (Rafael 1997; Liew
et al. 2000; Pham 2002; Chen and Zhang 2004; Tamma
et al. 2011). For example, the traditional FCM
algorithm does not consider the context spatial informa-
tion of the image, indicating that FCM is very sensitive to
noise and outliers. In addition, standard FCM utilizes
Euclidean distance to compute the objective function,
leading to discontented classification results. Many
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authors proposed several approaches and algorithms to
improve FCM’s capability to resolve the aforemen-
tioned problems. For example, Yang et al. (2011)
introduced kernel-FCM (KFCM) algorithms with
spatial constraints (KFCM_S) for image segmentation.
Chen and Zhang (2004) proposed several FCM algo-
rithms with constraints (FCM_S1, FCM_S2, and
KFCM_S1) and utilized mean or median filter to incor-
porate local spatial information with FCM or KFCM in
MR image segmentation. Liu’s studymade use of partial
labeled data-supervised iterative process in KFCM
(Liu et al. 2008). Cai et al. (2007) integrated local spatial
and gray information with FCM in MR image segmen-
tation. The above mentioned approaches have been
proven effective to some extent in specific domains.

Remote sensing images actually have the following
characteristics: 1) they are generally multispectral or
hyperspectral; the nonlinear degree and complication of
data are higher than those of gray images; 2) they are not
subjected to Gussian distribution; 3) they do not have a
single type of noise; they are usually mixed with several
types of noise; and 4) they lack labeled data. These char-
acteristics of remote sensing images make the aforemen-
tioned algorithms and approaches disadvantageous, there-
by reducing their classification accuracy and efficiency.

Considering the characteristics of remote sensing
images, this study proposes a robust semi-supervised
KFCM algorithm incorporating local spatial informa-
tion (RSSKFCM_S). The proposed algorithm aims to

1) utilize FCM to eliminate data fuzziness
2) transform low-dimensional nonlinear input space

into a high-dimensional linear feature space to
resolve complex nonlinear problems linearly with
the well-known kernel theorem.

3) supervise the iterative process with few labeled data;
this procedure can improve classification accuracy
and reduce step number and computation time

4) enhance insensitivity to noise by incorporating
local spatial information.

Traditional FCM and KFCM Algorithm

FCM Algorithm

FCM was first introduced by J. C. Bezdek in 1981. In
the algorithm, X={x1,x2⋯xn}⊂RS denotes an observed

monochromatic intensity field where n is the number of
data, RS is the vector space, and xk is the value of a pixel
at position k.

Mathematically, the standard FCM objective func-
tion for partitioning a dataset X into clusters is

Jm ¼ min
Xc
i¼1

Xn
k¼1

umikd
2
ik ¼ min

Xc
i¼1

Xn
k¼1

umik xk−vik k2

s:t:
Xc
i¼1

uik ¼ 1; 0≤uik ≤1; i ¼ 1;⋯; c; k ¼ 1;⋯; n

8>>><
>>>:

ð1Þ

In the above equation, U is membership function
and uik describes the degree to which xk belongs to
class i. Following bi-element logic, membership has
two values, 0 or 1, indicating that xk is either a member
or not a member of class i. Fuzzy logic allows mem-
bership to have multiple values; thus, xk can belong to
any class to some degree. The last constraint guaran-
tees that U is nondegenerate; thus, the resulting parti-
tion is nontrivial. c is the number of class. m is the
weighted exponent that controls the fuzziness of the
membership function, 1≤m≤∞. m is usually between
2 and 4.5 in most of practical applications (Pal and
Bezdek 1995). dik is the distance measure from xk to
cluster center vi. The value of dik is calculated by
Euclidean distance.

The FCM algorithm searches for optimal partition
U and optimal prototype V by minimizing an objective
function subject to the constraints on U, which can be
solved through the method of Lagrange multipliers as
follows:

Jm ¼
Xc
i¼1

Xn
k¼1

umik xk−vik k2 þ
Xn
k¼1

lk 1−
Xc
i¼1

uik

 !
ð2Þ

where lk s are Lagrangemultipliers.We set ∂
∂uik Jmin ¼ 0

and ∂
∂vi Jmin ¼ 0.

We derive and gain

uik ¼ 1=
Xc
j¼1

dik
.
djk

� �2=m−1

i ¼ 1;⋯; c ; k ¼ 1;⋯; n

ð3Þ

vi ¼
XN
k¼1

umikx j=
XN
k¼1

umik i ¼ 1;⋯; c : ð4Þ
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With Eqs. [3] and [4], U and V can be updated step
by step from an arbitrary partition until the iteration
process converges.

KFCM Algorithm

Kernel method is one of the most researched subjects in
machine-learning domain and has been widely applied in
pattern recognition and function approximation. Kernel
method involves the transformation of low-dimensional
nonlinear input space into a high-dimensional linear fea-
ture space to linearly treat and solve complex nonlinear
problems in the transformed space. Unlike FCM, KFCM
utilizes kernel-induced distance instead of Euclidean dis-
tance; hence, KFCM is more suitable for nonlinear data
than FCM (Liu et al. 2008).

We suppose that x∈X⊆Rl↦Φ(x)∈F⊆Rh(l<<h) is a
nonlinear low-dimensional feature space transformed into
linear high-dimensional feature space (Chen and Zhang

2004) where x=[x1,x2]
T, Φ xð Þ ¼ x21;

ffiffiffi
2

p
x1x2; x22

� �T
.

In F space,

Φ xð ÞTΦ yð Þ ¼ x21;
ffiffiffi
2

p
x1x2; x

2
2

h iT
y21;

ffiffiffi
2

p
y1y2; y

2
2

h i

¼ xTy
� �2 ¼ K x; yð Þ:

In the above formula, K(x,y) is the kernel function.
Several typical kernel functions are available, such as,
Gaussian kernel (RBF): K(x,y)=exp(−‖x−y‖2/σ2),
Sigmoid kernel: K(x,y)=tanh[β<x ⋅y>+γ]; and poly-
nomial kernel: K(x,y)=(xTy+1)d. For the RBF kernel,
K(x,x)=1.

Thus ; d x; yð Þ ¼ Φ xð Þ−Φ yð Þk k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ xð Þ−Φ yð Þð ÞT Φ xð Þ−Φ yð Þð Þ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ xð ÞTΦ xð Þ−Φ xð ÞTΦ yð Þ−Φ yð ÞTΦ xð Þ þ Φ yð ÞTΦ yð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K x; xð Þ þ K y; yð Þ−2K x; yð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−2K x; yð Þ

p
:

The objective function is then changed to

JKm ¼
Xc
i¼1

Xn
k¼1

umik Φ xkð Þ−Φ við Þk k2

¼ 2
Xc
i¼1

Xn
k¼1

umik 1−K xk ; við Þð Þ:
ð5Þ

The conditions of restriction are similar to those in
the FCM algorithm. JKm can be minimized under such

conditions, and U and V can be obtained through
iteration until the maximal iteration step or terminative
condition is reached as follows:

uik ¼ 1−K xk ; við Þð Þ−1= m−1ð Þ=
Xc
j¼1

1−K xk ; v j
� �� �−1= m−1ð Þ

i ¼ 1;⋯; c k ¼ 1;⋯; n:

ð6Þ

vi ¼
XN
k¼1

umikK xk ; við Þxk=
XN
k¼1

umikK xk ; við Þ
i ¼ 1;⋯; c

ð7Þ

Equation [7] shows that V lies in the original
space and is endowed with additional weight K(xk
,vi); thus, computational simplicity of KFCM is
similar to that of FCM. K(xk ,vi) in the RBF
formula measures the similarity between xk and
vi. However, when the distance between the two
is large, K(xk ,vi) is small and the weighted sum of
the data points is suppressed and insensitive to
noise and outliers.

FCM and KFCM can be summarized in the follow-
ing steps:

Step 1: Fix c, m, Tmax, ε, σ, and initialize prototypes
V(0) and U(0) under restriction conditions;
t=0.

Step 2: Calculate K(xk ,vi) for KFCM with RBF.
Step 3: Update prototype matrix V(t) through Eq. [5]

for FCM and Eq. [7] for KFCM.
Step 4: Calculate objective function Jm for FCM and

JKm for KFCM.
Step 5: Update fuzzy partition matrix U(t) through

Eq. [4] for FCM and Eq. [6] for FCM.
Step 6: If ‖uik(t+1)−uik(t)‖≤ε or t=Tmax, then stop;

otherwise, go back to step 2, t= t+1.

The final step in FCM and KFCM is to interpret U,
which is usually a hard cluster, by classifying pixel xk
to class i with the largest uik.

FCM and KFCM Algorithms with Local Spatial
Information

FCM with Local Spatial Information

Ahmed et al. (2002) proposed an approach to eliminate
noise by modifying the objective function by introducing
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a term that allows the labeling of a pixel to be influenced
by the labels in its neighborhood as follows:

J sm ¼
Xc
i¼1

Xn
k¼1

umik xk−vik k2 þ α
NR

Xc
i¼1

Xn
k¼1

umik
X
r∈Nk

xr−vik k2

ð8Þ

where Nk stands for the set of neighbors existing in a
window around xk and NR is the cardinality of Nk. The
effect of the neighbors is controlled by parameter α. The
last term in the formula denotes the effect of local spatial
information and aims to maintain continuity in the neigh-
boring pixel around xk. Jsm can also be minimized while
being subjected to restriction conditions. U and V are
obtained with the following formula:

uik ¼
xk−vik k2 þ α

NR

X
r∈Nk

xr−vik k2
 !−1= m−1ð Þ

Xc
j¼1

xk−v j
		 		2 þ α

NR

X
r∈Nk

xr−v j
		 		2

 !−1= m−1ð Þ

i ¼ 1;⋯; c k ¼ 1;⋯; n

ð9Þ

vi ¼
Xn
k¼1

umik xk þ α
NR

X
r∈Nk

xr

 !
= 1þ αð Þ

Xn
k¼1

umik

 !

i ¼ 1;⋯; c

ð10Þ
Chen and Zhang (2004) utilized x−vik k2 to replace

α
NR

∑
r∈Nk

xr−vik k2 because computing the neighbor- hood

terms consumes more time in KFCM than in FCM. x
can be computed in advance and only once. Chen
utilized mean and median filter to compute x (referred
to as FCM_S1 and FCM_S2, respectively) and modi-
fied the objective function as follows:

J s12m ¼
Xc
i¼1

Xn
k¼1

umik xk−vik k2 þ α
Xc
i¼1

Xn
k¼1

umik xk−vi
			 			2

ð11Þ

Similarly, U and V are obtained with the following
solution by minimizing Js12m.

uik ¼
xk−vik k2 þ α xk−vi

			 			2

 �−1= m−1ð Þ

Xc
j¼1

xk−v j
		 		2 þ α xk−v j

			 			2

 �−1= m−1ð Þ

i ¼ 1;⋯; c k ¼ 1;⋯; n

ð12Þ

vi ¼

Xn
k¼1

umik xk þ αxk
� �

1þ αð Þ
Xn
k¼1

umik

i ¼ 1;⋯; c ð13Þ

This formula is advantageous because it reduces
execution time and improves robustness to Gaussian
noise or salt and pepper noise. The center pixel
and its neighbors have the same prototypes or
segmentation results, thereby guaranteeing pixel
homogeneity.

KFCM with Local Spatial Information

Similar to the derivant of KFCM, Chen et al.
kernelize the objective function of FCM_S and
obtain the following objective function with
kernel-induced distance instead of Euclidean dis-
tance (KFCM_S).

J ksm ¼
Xc
i¼1

Xn
k¼1

umik 1−K xk ; við Þð Þ

þ α
NR

Xc
i¼1

Xn
k¼1

umik
X
r∈Nk

1−K xr; við Þð Þ
ð14Þ

where K(xk ,vi) is RBF. The parameters are consis-
tent with those in FCM_S.

The following iterative formula for U and V is
obtained by minimizing Jksm.

uik ¼
1−K xk ; við Þð Þ þ α

NR

X
r∈Nk

1−K xk ; við Þð Þm
 !−1= m−1ð Þ

Xc
j¼1

1−K xk ; v j
� �� �þ α

NR

X
r∈Nk

1−K xk ; v j
� �� �m !−1= m−1ð Þ

i ¼ 1;⋯; c k ¼ 1;⋯; n

ð15Þ

vi ¼

Xn
k¼1

umik K xk ; við Þ þ α

NR

X
r∈Nk

K xk ; við Þ
 !

xk

Xn
k¼1

umik K xk ; við Þ þ α
NR

X
r∈Nk

K xk ; við Þ
 !

i ¼ 1;⋯; c

ð16Þ
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Similarly, the kernelized objective function for
FCM_S1 and FCM_S2 (refereed to as KFCM_S1
and KFCM_S2, respectively) is

J ks12m ¼
Xc
i¼1

XN
k¼1

umik 1−K xk ; við Þð Þ

þ α
Xc
i¼1

XN
k¼1

umik 1−K xk ; vi
� �� �

:

ð17Þ

The objective function above is minimized with the
following iteration functions:

uik ¼
1−K xk ; við Þð Þ þ α 1−K xk ; vi

� �� �� �−1= m−1ð Þ

Xc
j¼1

1−K xk ; v j
� �� �þ α 1−K xk ; v j

� �� �� �−1= m−1ð Þ

i ¼ 1;⋯; c k ¼ 1;⋯; n

ð18Þ

vi ¼

Xn
k¼1

umik K xk ; við Þxk þ αK xk ; vi
� �

xk
� �

Xn
k¼1

umik K xk ; við Þ þ αK xk ; vi
� �� �

i ¼ 1;⋯; c

ð19Þ

The procedures for FCM and KFCM calculation with
local spatial information can be summarized as follows:

Step 1: Fix c, m, Tmax, ε, σ, β, and NR; initialize
prototypes V(0) and U(0) under the restriction
conditions, set t=0, and compute the mean
or median filtered image.

Step 2: Compute K(xk ,vi) for KFCM_S, and compute
K xk ; við Þ of the mean or median filtered image
with RBF for KFCM_S1 and KFCM_S2.

Step 3: Update V through Eq. [10] for FCM_S, Eq.
[13] for FCM_S1 and FCM_S2, Eq. [16] for
KFCM_S, and Eq. [19] for KFCM_S1 and
KFCM_S2.

Step 4: Calculate objective function Jsm for FCM_S,
Jksm for KFCM_S, Js12m for FCM_S1 and
FCM_S1, and Js12m for KFCM_S1 and
KFCM_S2.

Step 5: Update U through Eq. [9] for FCM_S, Eq.
[12] for FCM_S1 and FCM_S2, Eq. [15] for
KFCM_S, and Eq. [18] for KFCM_S1 and
KFCM_S2.

Step 6: If ‖uik(t+1)−uik(t)‖≤ε or t=Tmax, then stop;
otherwise go back to step 2, t=t+1.

Robust Semi-supervised KFCM Algorithm
with Local Spatial Information

Robust FCM and KFCM Algorithm with Local
Spatial Information (RFCM_S and RKFCM_S)

The approaches presented in “FCM and KFCM
Algorithms with Local Spatial Information” have a com-
mon parameter α, which controls the influence of the
local spatial neighbors. The value of α has a crucial
impact on the performance of the approaches. Setting
the appropriate value is important to obtain relatively
optimal classification image. However, the value of
α is difficult to set because information on noise,
such as its type and intensity, is unavailable. The
value of α should be large enough to eliminate
noise. At the same time, the value should be small
enough to preserve sharpness and details. The value of
α is generally set based on experience or by trial-and-
error experiments.

Cai et al. (2007) modified the expression of local
spatial information in the objective function and a
novel spatial function is defined to eliminate difficulty
in the selection of α and to improve image classifica-
tion performance.

sk ¼
X
j∈Nk

skjx j=
X
j∈Nk

skj ð20Þ

skj ¼ exp
− x j−xk
		 		2
β⋅lk

 !
ð21Þ

lk ¼ 1

NR

X
j∈Ni

x j−xk
		 		2 ð22Þ

where xk is the center of the local spatial window (win-
dow size is 3×3), xj is the jth local spatial neighbors
falling into the window around xk, Nk is the set of all the
neighbors, andNR is the cardinality ofNk. lk is the mean
of the distance between the neighbors of xk and xk. The
value of lk reflects the homogeneity degree of the
local spatial window. The smaller thelk value is,
the more homogenous the local spatial window is.
However, setting the different weighted values for
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different pixels within the window can mitigate the
influence of noise to some extent; the value ofα in all the
approaches presented in “FCM and KFCM Algorithms
with Local Spatial InformationFCM and KFCM Algo-
rithms with Local Spatial Information” is similar in
every pixel. In this study, the values ofλk are
different and can be computed in advance. skj re-
flects the damping extent in the pixel value. Based
on the definition of skj, skj s can change automat-
ically with different pixel values. Furthermore, the
closer the value of the jth neighbors of xk with the
value of xk, the larger skj is. β, the scale factor in
skj function formula, determines the change char-
acteristic. β is robustly insensitive to change in the
value of skj to some extent because of the geomet-
rical implication of skj; hence, selectingβ is much
easier than selecting parameter α.

sk is the weighted means of the homogeneity degree
of the neighbors of xk. Such direct transformation
provides the following benefits: (1) the transfor-
mation makes the algorithm relatively indepen-
dent of prior knowledge on noise; (2) the trans-
formation can automatically be determined based
on local spatial information relationship rather
than by artificial or empirical selection; and (3)
the transformation provides different weighted
values to the local spatial neighbors of every
pixel according to homogeneity degree. The in-
fluence of noise can be mitigated to some extent.

In our algorithm, the objective function is

JRsm ¼
Xc
i¼1

Xn
k¼1

umik sk−vik k2: ð23Þ

U and V are obtained by minimizing JRsm.

uik ¼ sk−vik k2
� �−1= m−1ð Þ

=
Xc
j¼1

sk−v j
		 		2� �−1= m−1ð Þ

i ¼ 1;⋯; c k ¼ 1;⋯; n

ð24Þ

vi ¼
Xn
k¼1

umiksk=
Xn
k¼1

umik i ¼ 1;⋯; c ð25Þ

The kernelized objective function of RFCM_S
(RKFCM_S) is

JRksm ¼
Xc
i¼1

XN
k¼1

umik 1−K sk ; við Þð Þ: ð26Þ

This objective function is minimized through the
following iterations:

uik ¼ 1−K sk ; við Þð Þ−1= m−1ð Þ=
Xc
j¼1

1−K sk ; v j
� �� �−1= m−1ð Þ

i ¼ 1;⋯; c k ¼ 1;⋯; n

ð27Þ

vi ¼
Xn
k¼1

umikK sk ; við Þsk=
Xn
k¼1

umikK sk ; við Þ
i ¼ 1;⋯; c

ð28Þ

Robust FCM and KFCM algorithms with local
spatial information can be summarized as follows:

Step 1: c, m, Tmax, ε, σ, β, and NR; initialize prototypes
U(0) and V(0) under the restriction conditions, set
t=0, and computelk, skj, and sk.

Step 2: For RKFCM_S, compute K(sk ,vi) with RBF.
Step 3: Update V with Eq. [25] for RFCM_S and with

Eq. [28] for RKFCM_S.
Step 4: Calculate objective function JRsm for RFCM_S

and JRksm for RKFCM_S.
Step 5: Update U with Eq. [24] for RFCM_S and

with Eq. [27] for RKFCM_S.
Step 6: If ‖uik(t+1)−uik(t)‖≤ε or t=Tmax, then stop;

otherwise, go back to step2, t= t+1.

Robust Semi-supervised KFCM Algorithm with Local
Spatial Information (RSSKFCM_S)

Remote sensing image classification is a challenging
task in real-world applications because image data are
nonlinear and fuzzy, are not subject to Gaussian distribu-
tion, mingled with a few types of noise, and lack labeled

Fig. 1 Original image
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data. A robust semi-supervised KFCM algorithm incor-
porating local spatial information (RSSKFCM_S) is pro-
posed in this study to improve the performance of remote
sensing image classification methods.

In practical applications that involve large-sized
image data, only few data can be labeled because the
labeling process is usually costly, time consuming, and
requires an experienced human annotator. Given that
labeled training data are expensive, unlabeled data are
readily available in large quantities (Bensaid et al. 1992).
Semi-supervised method, which is learned from both

labeled and unlabeled data, is a trade-off (Bouchachia
and Pedrycz 2006). FCM and its derivants are
unsupervised during clustering. If semi-supervised learn-
ing technique is introduced to the algorithms in “FCM
and KFCMAlgorithms with Local Spatial Information”,
some of the known classes can be utilized as labeled data
to supervise the iterative process. Thus, semi-supervised
FCM or KFCM is useful in remote sensing image clas-
sification where minimal prior knowledge and few la-
beled data are available. In this study, we introduce the
semi-supervised learning technique to RFCM_S and

Fig. 2 Comparison of the eight algorithms results for an actual image. a FCM, b KFCM, c RFCM_S, d RKFCM_S, e KFCM_S1, f
KFCM_S2, g RSSFCM_S, and h RSSKFCM_S. i Color map board of each class
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RKFCM_S and referred to them as RSSFCM_S and
RSSKFCM_S, respectively.

In the algorithm, given the data set X={Xl
nl,Xu

nu}
where Xl

nl is the set of labeled data, Xu
nu is the set of

unlabeled data, nl is the number of the labeled data,
and nu is the number of the unlabeled data, generally,
nl<<nu. Fuzzy partition matrix is set to U={Ul

nl,Uu
nu}

where Ul
nl and Uu

nu are partition matrices correspond-
ing to Xl

nl and Xu
nu, respectively. Xl

nl is the hard-
partition matrix, and its element value is set to 1 or
0. Xu

nu is the fuzzy-partition matrix, and its values are
set the one of {0, 1} (Liu et al. 2008).

In minimizing the objective function, the set ofUl
nl is

utilized to aid and train the set of Uu
nu. Ul

nl holds the
line. U(0)={Ul

nl,Uu
nu
(0)}, V(0) is the clustering center of

the set of Xl
nl. The algorithm can be summarized as

follows:

Step 1: Fix c,m, Tmax, ε, σ, β, andNR; set t=0, initialize
prototypes V(0) and U(0) under the restriction
conditions, and compute lk , skj, and sk.

Step 2: For RSSKFCM_S, computeK(sk ,vi) with RBF.
Step 3: Update V with Eq. [25] for RSSFCM_S an

with Eq. [28] for RSSKFCM_S.
Step 4: Calculate objective function JRsm for RSSFCM_S

and JRksm for RSSKFCM_S.
Step 5: Update U with Eq. [24] for RSSFCM_S and

with Eq. [27] for RSSKFCM_S, and then
modify U(t)={Ul

nl,Uu
nu

(t)}.

Step 6: If ‖uik(t+1)−uik(t)‖≤ε or t=Tmax, then stop; other-
wise, go back to step 2, t=t+1.

The process of defuzzification is similar to that in
the FCM algorithm; hence, the maximum membership
rule is utilized, namely, pixel xk. is classified to class i
with the largest uik.

Experimental Results and Analysis

The experiment is performed with a multispectral re-
mote sensing image acquired by the Japanese ALOS
satellite AVNIR-2 sensor in March 2009. The data is
employed to analyze the statistics of the wheat area in
Huaibei plain. Winter wheat is mainly grown in the
region. Mid-March is the returning green stage of
winter wheat, which is a typical wheat phenology in
the region. Figure 1 shows the original image, which is
a false color composite of three bands: band 2 (520 nm
to 600 nm, green), band 3 (610 nm to 690 nm, red),
and band 4 (760 nm to 890 nm, infrared). Given that
the image pixel is set to X={x1,x2,⋯xn}⊂R3, the
number of pixels is 251×301, the area of experiment
image data is E115°2′39.57″–N33°0′24.5″ to E115°4′
26.20″–N33°0′53.9″. Six types of classes exist, in-
cluding wheat, trees, roads and villages, lakes, other
crops, and bottomlands. The computer hardware work-
bench consists of Pentium dual core (2.01 and 2.0 GHz),

Table 1 Comparison of the evaluating indexes of the eight algorithms for Fig. 1(a)

Class FCM KFCM RFCM_S RKFCM_S KFCM_S1 KFCM_S2 RSSFCM_S RSSKFCM_S

Roads & villages 75.5 % 80.7 % 77.8 % 77.8 % 78.2 % 79.2 % 88.2 % 87.2 %

Wheat 98.5 % 98.5 % 98.6 % 98.6 % 97.8 % 98.3 % 98.7 % 98.8 %

Trees 73.1 % 79.4 % 77.0 % 79.6 % 83.7 % 83.5 % 86.1 % 87.7 %

Other crops 81.6 % 81.8 % 87.8 % 87.5 % 89.1 % 86.7 % 88.4 % 88.1 %

Lakes 97.8 % 97.8 % 99.3 % 99.6 % 99.7 % 99.5 % 99.1 % 99.3 %

Bottomlands 59.7 % 60.2 % 58.4 % 60.2 % 56.1 % 64.2 % 65.1 % 69.7 %

Roads & villages 76.9 % 82.1 % 86.1 % 88.7 % 90.9 % 90.9 % 89.1 % 90.1 %

Wheat 95.0 % 94.8 % 97.5 % 97.4 % 98.1 % 97.3 % 97.3 % 97.2 %

Trees 65.2 % 72.0 % 69.1 % 70.6 % 69.0 % 72.5 % 79.9 % 84.9 %

Other crops 88.9 % 88.9 % 91.5 % 91.8 % 89.5 % 90.6 % 89.1 % 89.6 %

Lakes 91.5 % 91.5 % 85.2 % 86.3 % 84.4 % 87.8 % 92.7 % 91.9 %

Bottomlands 88.3 % 88.3 % 92.2 % 89.1 % 90.4 % 90.7 % 95.0 % 96.3 %

87.6 % 89.0 % 88.8 % 89.4 % 89.1 % 90.2 % 92.2 % 92.7 %

71.2 % 73.8 % 74.0 % 75.0 % 74.5 % 76.6 % 80.2 % 81.8 %

84.1 % 85.9 % 85.6 % 86.4 % 86.0 % 87.5 % 90.0 % 90.7 %
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2 GB memory, Windows XP operating system, and
Matlab R2009a software.

The effectiveness and efficiency of the eight algo-
rithms, namely, FCM, KFCM, KFCM_S1, KFCM_S2,
RFCM_S, RKFCM_S, RSSFCM_S, and RSSKFCM_S,
are compared based on the above image. In the succeeding
experiments, three types of noise are utilized to test the
performance of classification, anti-jamming, and de-
noising, respectively, to be incorporated in the images.
These noises include the salt and pepper noise, Gaussian

noise, and mixed noise. Mixed noise usually occurs
in many practical applications and is a mixture of
Gaussian and impulsive noises. Mixed noise distri-
bution follows

P=(1−η)G+ηS (Cai et al. 2007), where G is
Gaussian noise with zero mean (μ=0) and variance of
σG

2, and S is SαS distribution, namely, symmetric α-
stable (including abuse parameter α (0<α≤2)), location
parameter θ (θ∈(0,∞)), dispersion parameter σ (σ>0),
and index of symmetryβ (−1≤β≤1)) in which θ=0 and

Fig. 3 Comparison of the eight algorithm results for an actual image with 5 % Gaussian noise. a Image with 5 % Gaussian noise; b
FCM; c KFCM; d RFCM_S; e RKFCM_S; f KFCM_S1; g KFCM_S2; h RSSFCM_S; and i RSSKFCM_S
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σ=1 (Xiaorui 2008). Although no uniform function of P
exists, the characteristic function φ(t) of P can be for-
mulated as follows:

ϕ tð Þ ¼ exp jηθt− 1−ηð Þ2 σG

2
t2−ηασ tj jα

� �
ð29Þ

In the formula, η is set to 2/ (2+π) for the
succeeding experiments (Ben Hamza and Krim 2001).

Evaluating Index System

Confusion matrix is selected to compare the accu-
racy of the eight approaches. Confusion matrix
shows the accuracy of a classification result by
comparing a classification result with ground truth
information of the region of interests (ROIs). The
ROIs do not include the labeled data set in the
semi-supervised algorithms. The ROIs of the

Fig. 4 Comparison of the eight algorithm results for an actual image with 9 % salt and pepper noise. a Image with 9 % salt and pepper
noise; b FCM; c KFCM; d RFCM_S; e RKFCM_S; f KFCM_S1; g KFCM_S2; h RSSFCM_S; and i RSSKFCM_S
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experiments is selected as follows: the number of
roads and villages, other crops, wheat, lakes, trees,
and bottomland is 1,187, 855, 2,850, 2,500, 870,
and 540, respectively.

The evaluating index system is based on the
confusion matrix. The evaluating indexes include
user accuracy (UA), mapping accuracy (MA),
overall accuracy (OA), kappa coefficient (PC),
and comparison scores (CS), where CS is defined

through the following formula (Chen and Zhang
2004; Cai et al. 2007):

Sij ¼ Mij∩M int=Mij∪M int: ð30Þ

In the formula, Mij denotes the set of pixels belong-
ing to the jth class found by the ith algorithm and Mint

represents the set of pixels belonging to the ith class in
the ROIs.

Fig. 5 Comparison of the eight algorithm results for an actual image with mixed noise (α=0.5). a Image with mixed noise (α=0.5); b
FCM; c KFCM; d RFCM_S; e RKFCM_S; f KFCM_S1; g KFCM_S2; h RSSFCM_S; and i RSSKFCM_S
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Experimental Results and Comparison

The first experiment is performed to test the perfor-
mance of classification as shown in Fig. 1. In Fig. 2(i)
is the color map board of each class, and (a) to (h) is
the classification results of the eight algorithms.

Trial and error techniques are adopted to select the
parameters of the eight algorithms. The parameters are
c=6, m=2, Tmax=100, ε=10

−4, and NR=8.
In the kernel function of all experiments throughout

this paper, parameter σ=200. In the methods incorporat-
ing local information, α=3.2 and β=1.2. In the semi-
supervised methods, the labeled data number of
roads and villages, other crops, wheat, lakes, trees,
and bottomland is 478, 427, 1,346, 757, 372, and
223, respectively.

Combined with ground information, the pictures
show that the semi-supervised methods are better
than the unsupervised methods. The kernel ver-
sions are better than Euclidean distance methods.

RFCM_S, RKFCM_S, KFCM_S1, and KFCM _S2
are better than FCM and KFCM because neither of
the latter utilized spatial information in both algo-
rithms. RSSFCM_S and RSSKFCM _S are better
than KFCM_S1, KFCM_S2, RFCM _S, and
RKFCM _S because a few labeled data supervise
the classification process. Furthermore, RSSKFCM_S
achieves the best classification results. The results can
be verified by the evaluating indexes. Table 1 shows the
comparison of the evaluating indexes of the eight
methods in Fig. 1.

The improvement of anti-jamming performance of
these algorithms is also discussed. Three types of noises
are incorporated into the above image, namely, the image
is artificially corrupted by mixed noise, Gaussian noise,
and salt and pepper noise. Figures 3, 4 and 5 show the
comparison of the classification results for the image.

Figures 3(b to i), 4(b to i) and 5(b to i) show the
classification results from applying the eight algorithms
in Figs. 3(a), 4(a) and 5(a), respectively. Without loss of

Table 2 Comparison of the evaluating indexes of the eight algorithms for Figs. 3(a), 4(a) and 5(a)

Evaluating index FCM KFCM RFCM_S RKFCM_S KFCM_S1 KFCM_S2 RSSFCM_S RSSKFCM_S

OA 80.0 % 78.6 % 87.6 % 87.5 % 87.4 % 89.8 % 89.7 % 90.7 %

CS 59.7 % 58.0 % 71.7 % 71.8 % 71.5 % 75.5 % 77.0 % 77.8 %

PC 74.5 % 72.9 % 84.0 % 84.0 % 83.9 % 86.9 % 87.1 % 88.1 %

OA 75.1 % 74.1 % 87.4 % 87.3 % 83.9 % 89.6 % 88.7 % 89.4 %

CS 53.9 % 52.8 % 71.6 % 71.6 % 65.7 % 74.9 % 74.9 % 75.3 %

PC 68.4 % 67.2 % 84.0 % 83.8 % 79.5 % 86.6 % 85.4 % 86.4 %

OA 75.2 % 74.6 % 86.3 % 86.6 % 85.2 % 86.8 % 89.0 % 89.1 %

CS 53.9 % 53.6 % 69.3 % 70.2 % 67.2 % 70.5 % 74.0 % 74.6 %

PC 69.7 % 68.1 % 82.5 % 82.9 % 81.2 % 83.1 % 85.4 % 86.0 %
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Fig. 6 Comparison of the ten methods in Fig. 1(a) under different levels of Gaussian noise
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generality, a moderate level of noise is added to the
image, where the level of Gaussian noise is 5 %, the level
of salt and pepper noise is 9 %, and mixed noise param-
eter α is 0.5.

Table 2 shows the comparison of the main evaluating
indexes of the eight algorithms for Figs. 3(b), 4(b) and
5(b). The indexes show overall accuracy (OA), average
comparison scores (CS), and Kappa coefficient (PC).

Figures 3, 4 and 5 and Table 2 show that FCM and
KFCM exhibit poor performance in the presence of any
type of noise. When mixed noise is added, KFCM_S2
performs better than RFCM_S andRKFCM_S. RFCM_S
and RKFCM_S perform better than KFCM_S1, and com-
paratively speaking, RSSFCM_S and RSSKFCM_S pro-
vide favorable results. RSSKFCM_S is the best algorithm.
When Gaussian noise is added, KFCM_S2 performs bet-
ter than RFCM_S and RKFCM_S. RSSFCM_S and
RSSKFCM_S provide satisfactory classification results.
RSSKFCM_S is the best algorithm.When salt and pepper
noise is added, the semi- supervised version algorithms of

these eight algorithms exhibit efficient performance,
where RSSKFCM_S and RSSFCM_S are tolerant of
impulse noise and KFCM_S2 has robust anti-jamming
performance. Overall, RSSKFCM_S provides favorable
classification results and robust anti-jamming perfor-
mance for the three types of noise.

The last experiment is performed to test the effect
of the different levels of the three types of noise added
to Fig. 1(a). Figures 6, 7 and 8 show the relationship
curves for Kappa coefficient as well as the average
comparison scores and the level of noise. Table 3 pre-
sents the values of the main evaluating index with
different noises and concentrations. The pictures and
Table 3 show that the performance of all the methods
is gradually reduced with the increase in the level of
Gaussian and salt and pepper noise but gradually in-
creases with the increase in the value of parameter
α(0<α<1) under mixed noise. Overall, the proposed
RSSKFCM_S algorithm is more flat than the others,
and its anti-noising performance is the best.
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Fig. 7 Comparison of the ten methods in Fig. 1(a) under different levels of salt and pepper noise

(a) (b)

0.3 0.4 0.5 0.6 0.7
40

45

50

55

60

65

70

75

80

C
S

(%
)

0.3 0.4 0.5 0.6 0.7
50

55

60

65

70

75

80

85

90

P
C

(%
)

Fig. 8 Comparison of the ten methods in Fig. 1(a) under different levels of mixed noise

J Indian Soc Remote Sens (March 2014) 42(1):35–49 47



Conclusion

A novel robust FCM framework for multispectral re-
mote sensing image classification was presented in
this paper. Spatial constraint and kernel method in
the objective function of conventional FCM were
employed with both labeled and unlabeled data to
effectively classify images and improve anti-jamming
performance under different types of noise. With ker-
nel method, a kernel-based FCM algorithm can ad-
dress nonlinear separation problems better than a
Euclidean-based algorithm. Incorporating local spatial
information with a novel function into the algorithm,
namely, utilizing weighted means of local neighbors to
replace the value of the pixel, allows the method to
become more robust to noise compared with algo-
rithms without local information. Partially labeled data
utilized to train and supervise the iterative process can
significantly improve classification accuracy. The con-
vergent speed of the objective function is also further
accelerated.

An actual multispectral remote sensing image was
utilized to verify the performance of RSSKFCM_S,
including its classification and anti-jamming accuracy.
The experimental results show that the proposed algorithm

is more efficient in multispectral remote sensing image
classification and more robust to noise than algorithms
without kernel substitution and lacking labeled data.
Therefore, the proposed method can be utilized to
improve the performance of hyperspectral remote sens-
ing images.
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