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Abstract
Time-dependent transport of both plasma and neutrals is simulated during supersonic molecular beam injection (SMBI) yielding
the evolution of edge plasma and neutral profiles. The SMBI model is included as a module, called trans-neut, within the original
BOUT++ boundary plasma turbulence code. Results of calculations are reported for the realistic divertor geometry of the HL-2A
tokamak. The model can also be used to study the effect of gas puffing. A seven-field fluid model couples plasma density,
heat, and momentum transport equations together with neutral density and momentum transport equations for both molecules
and atoms. Collisional interactions between molecules, atoms, and plasma include dissociation, ionization, recombination
and charge-exchange effects. Sheath boundary conditions and particle recycling are applied at both the wall and the divertor
plates. A localized boundary condition of constant molecular flux (product of density times speed) is applied at the outermost
flux surface to model the SMBI. Steady state profiles with and without particle recycling are achieved before SMBI. During
SMBI, the simulation shows that neutrals can penetrate several centimetres inside the last closed (magnetic) flux surface (LCFS).
Along the SMBI path, plasma density increases while plasma temperature decreases. The molecule penetration depth depends
on both the SMBI flux and the initial plasma density and temperature along its path. As the local plasma density increases
substantially, molecule and atom penetration depths decrease due to their higher dissociation and ionization rates if the electron
temperature does not drop too low. Dynamic poloidal spreading of the enhanced plasma density region is observed due to rapid
ion flow along the magnetic field (parallel) driven by a parallel pressure asymmetry during SMBI. Profile relaxation in the radial
and poloidal directions is simulated after SMBI termination, showing that the plasma returns to pre-SMBI conditions on a time
scale of 60 ms.

Keywords: plasma fueling, SMBI simulation, neutrals transport, penetration depth

(Some figures may appear in colour only in the online journal)

1. Introduction

Plasma fuelling with higher efficiency and deeper injection
is crucial to enable fusion power performance requirements
at high density for next generation devices such as ITER.
There are three major fuelling methods: gas puffing (GP)
[1], pellet injection (PI) [2] and supersonic molecular beam
injection (SMBI) [3]. The fuelling efficiency of GP is low
because its injection depth is usually very shallow and most
molecules are localized outside the magnetic separatrix (last
closed flux surface—LCFS) near the edge of tokamak. Pellets
can be injected much deeper into the core plasma due to their
much higher directed velocities and being large, condensed-
matter objects. However, PI is more costly, requiring more

complex techniques and equipment than GP. Thus, a new
method of plasma fuelling that has higher fuelling efficiency
compared to GP but costs less than PI is highly desirable.
SMBI, which was first developed in the HL-1M tokamak and
then widely applied in many other devices, has already been
shown to be an improvement over conventional GP and also a
comparable fuelling method to PI because of its directed higher
injection speed, smaller angular distribution of particles, and
stronger fuelling intensity than GP. Thus, SMBI enhances the
particle injection depth and fuelling efficiency compared to
GP, and its injection depth is also comparable to a small or
low energy PI but costs less than a PI. There have been many
experimental studies [3–5] to improve the penetration depth
and fuelling efficiency of SMBI in the HL-2A tokamak, such as
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changing from low (magnetic) field side (LFS) injection to high
(magnetic) field side (HFS) injection, varying the injection
speed, temperature, and particle flux intensity. Besides being
a fuelling method, SMBI is also a good tool for plasma density
control [5], L–H transition and confinement improvements [6],
edge localized mode (ELM) mitigation [7], and nonlocal heat
transport [8] studies.

It is critical to understand the physics and transport
dynamics during the plasma fuelling process to guide research
into methods to improve fuelling efficiency and injection
depth. There are many key issues influencing fuelling
particle transport that well understood, such as interactions
between fuelling particles (deuterium and tritium) and the pre-
injection plasma, loss rates of fuelling particles via complex
collision reactions (i.e. ablation, dissociation, ionization,
charge exchange), and influence of the plasma density rise
along the injection path on fuelling particle propagation.
Compared to PI [9], which involves ablation of highly
condensed matter with bound states, SMBI is more like GP but
with a directed high injection speed (i.e. convection dominated
process). SMBI has a directed high injection speed in a
range of 500–1200 m s−1 but a very low temperature (the room
temperature 293 K ≈ 300 K). The transport of molecules
during SMBI is dominated by convection rather than diffusion
(e.g., GP), and SMBI involves interaction of unbound particles
with plasma rather than an ablation and shielding dominated
process (e.g., PI). Thus, SMBI should be modelled differently
from both GP and PI. There are many neutral transport models
of fuelling such as convection-ablation model of PI [9–11]
and diffusion model of GP [12–14], but there is not a model
of SMBI to treat molecule transport properly without being
confused with the models of GP and PI by either ignoring the
convection process or including the complex ablation process.

Here, a practical fluid fuelling model of SMBI including
convection is obtained by reduction of the Braginskii
equations [15, 16] with source and sink terms due to
collisional interactions. It includes transport equations
of three particle species (molecules, atom and plasma),
such as molecule density and radial momentum transport
equations, atom density transport equation and plasma
density, heat and momentum transport equations. Collision
interactions between particles, such as dissociation, ionization,
recombination, and charge-exchange effects, are included in
the model. A boundary condition of molecule particle flux is
applied locally in both poloidal and toroidal directions to model
SMBI, which is more realistic than that of simply giving a
source term in molecule density transport equation. According
to HL-2A experiments, molecules are injected in the radial
direction and transport mainly by convection during SMBI.
Thus, we include a convection dominated molecule transport
equation as well as a diffusion-dominated atom transport
equation into a module, trans-neut, which is included into the
BOUT++ edge plasma code. This model gives reasonable
to describe transport dynamics during SMBI with classical
fluid equations for the following reasons: (i) molecules are
injected with an initial injection speed which is supersonic
relative to its local thermal speed along radial direction, thus
transport of molecules is dominated by convection rather than
diffusion due to collisions; (ii) generation of atoms depends on
where molecules are transported and the rate of dissociation

by electrons, with atom/molecule collisions playing some role;
(iii) inclusion of the trans-neut module in BOUT++ allows
future 3D simulations, though the present modelling is 2D.

In somewhat more details, a number of transport models
based on classical fluid equations have been used in previous
studies. There have been several codes based classical fluid
equations in toroidal tokamak geometry such as B2 [17], EPIC
[14], UEDGE [13, 18], BOUT/BOUT++ [19–22] and TOKES
[23]. The BOUT++ code is a framework for writing 2D and
3D fluid / plasma simulation in curvilinear geometry. Many
applications have been developed in BOUT++ code, including
boundary 3D turbulence simulations and edge-localized modes
(ELMs) [24–30]. Besides turbulence studies on microscopic
scales, BOUT++ has been recently developed to study the
transport dynamics on macroscopic scales. The trans-neut
module modifies the BOUT++ boundary plasma turbulence
code to study the dynamics of neutrals transport and their
interactions with plasma during fuelling by SMBI and it also
provides a framework to study a multi-scale problem of mean
profile evolution and ELM mitigation during the fuelling by
SMBI by coupling with another BOUT++ module, elm-pb.
Here mean profile evolution is on the plasma transport time
scale (∼tens of ms), while ELM events are on Alfven time
scale (∼tens of µs). Several simple 1D analytical tests of the
code have been done against analytical solutions of Burger’s
equation, a diffusion–convection equation and a diffusion
equation with/without spatio-temporal varying sources; show
good agreement, as given in the appendix.

This paper reports simulations of neutrals penetration and
plasma transport during fuelling by SMBI. Neutrals of both
molecules and atoms and their interactions with the plasma are
treated. Particle recycling at both the radial wall and divertor
plates is included. To model SMBI, a specified local constant
flux boundary condition in both radial and poloidal directions
is applied. The physical model is described in section 2. The
numerical implementation of boundary conditions is explained
in section 3. Simulation results are illustrated in section 4.
Finally, the principal results are summarized in section 5.

2. Physical model

In tokamak plasmas, there are many kinds of collision reactions
between particles of molecules, atoms and plasmas during
SMBI. It is difficult to include all of the reactions in a simple
transport model of fuelling. For simplicity, only dominant
reactions are necessary in modelling of particle transport, such
as molecules dissociation, atoms ionization, ion–atom charge
exchange, and electron–ion recombination. This simplifies the
modelling of SMBI fuelling problems to four major particle
species (i.e. hydrogen molecules, atoms, ions and electrons)
and dominant reactions. According to different species of
particles, the equations of the physical model can be divided
into molecule, atom, and plasma transport. Transport of
molecules and atoms are treated separately. A simple seven-
field fluid model of SMBI, which couples plasma density,
heat, and momentum transport equations together with neutrals
density and momentum transport equations of both molecules
and atoms, is obtained by reduction of the Braginskii equations
with source and sink terms. This model captures some basic
transport physics during SMBI such as perpendicular plasma
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density and heat diffusion, parallel plasma density convection
and heat conduction, energy interchange between electron
and ion, parallel ion viscosity, atom diffusion, and molecule
radial density convection. This simple model captures some
basic features of transport during SMBI, but it needs future
improvements, such as electric field and magnetic curvature
drifted velocity, magnetic field shear, turbulent diffusion,
momentum interchange between ion and atom etc. This work
was conducted under the framework of the BOUT++ code [19].
Field-aligned coordinates (xyz) are applied in the simulation,
which are related to the usual flux coordinates (ψθζ ). It is
important to note that the model is developed for 3D simulation
in real tokamak magnetic geometry, although simulations done
in this work are only in 2D of (xy) which are corresponding
to (ψθ ) in flux coordinates. Some 3D simulations have also
been done but will not be presented in this paper.

First, consider the plasma transport equations, including
those for plasma density Ni, ion and electron temperatures
(Ti, Te) and parallel ion velocity V‖i. Plasma quasi-neutral
condition (i.e. Ni = Ne) is applied. The equations are as
follows:
∂Ni

∂t
+ ∇‖

(
V‖iNi

) − Dc
⊥i∇2

⊥Ni = S
p
I − Sp

rec, (1)

∂Te

∂t
− 2

3Ni
∇‖

(
κc

‖e∇‖Te
) − 2

3
χ c

⊥e∇2
⊥Te

= νrecWrec − νI

(
Te +

2

3
WI

)

−2

3
νdiss (Wdiss + Wbind) − 2me

Mi

Te − Ti

τe
, (2)

∂Ti

∂t
+ V‖i∇‖Ti +

2

3
Ti∇‖V‖i − 2

3Ni
∇‖

(
κc

‖i∇‖Ti
) − 2

3
χ c

⊥i∇2
⊥Ti

= (νrec − νI) Ti +
2me

Mi

Te − Ti

τe
, (3)

∂V‖i

∂t
+ V‖i∇‖V‖i − 4

3NiMi
∇‖

(
η0

i ∇‖V‖i
)

= − ∇‖P
NiMi

− (νCX + νI) V‖i, (4)

where Dc
⊥i, χ c

⊥e, and χ c
⊥i are perpendicular classical

diffusion coefficients of density, electron temperature and
ion temperature, respectively. κc

‖e and κc
‖i are parallel

classical thermal conductivity coefficients. For simplicity,
only the classical diffusivities/conductivities coefficients are
considered here. η0

i is parallel ion viscosity. S
p
I is

the atom ionization source, while S
p
rec is ion and electron

recombination sink of plasma density (Sp representing particle
source). νI, νrec, νdiss and νCX are atom ionization rate,
plasma recombination rate, molecule dissociation rate and
ion-atom charge exchange rate, respectively. Wrec is the
fraction of recombination energy re-absorbed by electron
during recombination via some processes (i.e. three body
recombination), while WI and Wdiss are electron energy lost
per ionization and dissociation, and Wbind is the binding energy
between the two hydrogen atoms in a molecule. Actually,
those recombination terms are much smaller than the ionization
terms due to the recombination rate is much lower than the
ionization rate in hot plasma (i.e. νrec � νI) unless three-
body recombination is included for Te < 1 eV. Thus, the
influence of the recombination terms on transport dynamics

can be ignored. P = kNi(Ti + Te) is total plasma pressure,
where k is Boltzmann’s constant. Last terms on right hand side
of equations (2) and (3) represent energy interchange between
electrons and ions. τe is the electron–ion collision time. Since
the electron parallel momentum transport is neglected in this
simple model for simplicity, the electron heat convection term
is also neglected. Even though there are not external heat
source terms in the heat transport equations, there are ad hoc
heat sources applied via flux-driven boundary conditions at
core (as shown in section 3.1) to maintain the temperature
profiles. In equation (4), vCX and vI appear with the same sign
and serve as sink terms in the ion parallel velocity equation.
It is because that there is no initial atom parallel velocity
and the increase of total ion density in the ionization process
leads to the decrease of the ion fluid velocity for momentum
conservation.

In this simple model, only dominant atomic and molecular
reactions are included, such as molecules dissociation,
atoms ionization, ion-atom charge exchange, and electron-ion
recombination. In molecule dissociation processes, an electron
provides enough energy (Wdiss) to break the binding between
the two atoms in a molecule. In the atom ionization processes,
atoms absorb energy (i.e. WI) from electrons. In charge
exchange processes, atoms and ions exchange their energies
and there is no energy exchange if atoms and ions have the same
energy (i.e. Ta = Ti). In recombination processes, electrons
and ions lose energy (i.e. νrecNeTe and νrecNiTi), atoms gain
energy (i.e. νrecTa) which is assumed to be transferred back
to ions due to high charge exchange rate. Besides, it assumes
that there is a fraction of recombination energy re-absorbed by
electron during recombination via some processes (i.e. three
body recombination) (i.e. Wrec), but it can be ignored because
the recombination rate is much lower than the other atomic and
molecular reaction rates (i.e. νI, νdiss and νCX) in a hot plasma
(Te � 1 eV).

The second part of the model is the transport of
atom density Na. One of the simplest models for atom
transport is based on atom diffusion caused by the strong
charge exchange collision rate. Because the charge-exchange
collision frequency is often the largest, the atom and ion
temperature are typically assumed equal, i.e. Ti = Ta. The
atom density transport equation is as following:

∂Na

∂t
− ∇‖

(
Dc

‖a∇‖Na
) − Dc

⊥a∇2
⊥Na = −S

p
I + Sp

rec + 2S
p
diss,

(5)

where, Dc
⊥a and Dc

‖a are perpendicular (to the magnetic
field) and parallel atom diffusion coefficients, and S

p
diss is the

atom source due to molecule dissociation. Both parallel and
perpendicular atom diffusion coefficients are simply calculated
from atom force balance as

Dc
⊥a = Dc

‖a = Dc
a = Ta/

(
Maν

a
CX

)
. (6)

In the atom diffusion process, the charge exchange dominates
because of its larger rate coefficient than the recombination
and dissociation rates. A more detailed atom model could be
used that includes atom parallel momentum transport equation
and the coupling of the parallel atom and ion velocities, but
that this is not done in the present calculations.
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The third part of the model is that for molecule transport,
including molecule density Nm and radial velocity Vxm

transport equations. The equations are as following:

∂Nm

∂t
+ ∇x (VxmNm) = −S

p
diss, (7)

∂Vxm

∂t
+ Vxm∇xVxm = − ∇xPm

NmMm
, (8)

where, Pm = kNmTm is molecule pressure where molecule
temperature Tm is the room temperature (i.e. 300 K). In
the derivation of equation (8) from the molecule momentum
transport equation, the collisions between molecules and
electrons (i.e. dissociation) have been considered, while the
collisions between molecules and atoms have been ignored
due to their lower collision rate than the dissociation rate. The
symbol ∇x represents the radial component of the gradient.
Molecule transport is mainly along the radial direction through
the convection process due to its radial directed injection
velocity during SMBI, while molecule transport is isotopic
during GP. This model can also be used to simulate molecule
transport during GP easily by switching off the local injection
velocity at the wall boundary. A constant particle flux
boundary condition localized in both poloidal and toroidal
directions is applied at the outermost boundary flux surface
with a constant molecule density and velocity, the details of
which are shown below.

Definitions of quantities associated with the sources and
rates due to particle collision reactions are as follows:

Sp
rec = Neνrec, νrec = Ni〈σrecVth,e〉,

S
p
I = NeνI = Naν

a
I , S

p
CX = NiνCX = Naν

a
CX,

S
p
diss = Neνdiss = Nmνm

diss,

νI = Na〈σIVth,e〉, νCX = Na〈σCXVth,i〉,
νdiss = Nm〈σdissVth,e〉,

νa
I = Ne〈σIVth,e〉, νa

CX = Ni〈σCXVth,i〉,
νm

diss = Ne〈σdissVth,e〉,
where Vth,e = √

kTe/Me and Vth,i = √
kTi/Mi are electron

and ion thermal velocity, respectively.
Rate coefficients in 〈. . .〉 above are calculated by empirical

formulas. 〈σrecVth,e〉 is calculated by using the empirical
formulas in [31], while the others are calculated as follows:

〈σIVth,e〉 = 3 × 10−8(0.1TeeV)2/[3 + (0.1TeeV)2] cm3 s−1

〈σCXVth,i〉 = 1.7 × 10−8+1.9 × 10−8

× (1.5TieV)1/3 − (15 eV)1/3

(150TieV)1/3 − (15 eV)1/3 cm3 s−1

〈σdissVth,e〉 = 3 × 10−8(0.1TeeV)2/[3+ (0.1TeeV)2] cm3 s−1.

Here, the rate coefficient of dissociation 〈σdissVth,e〉 is assumed
to be the same as the rate coefficient of ionization 〈σIVth,e〉
because the molecules mainly dissociated in plasma edge
where Te,i ≈ 10 eV and the rate coefficients of dissociation
and ionization are about the same near 10 eV [32].

Definitions of other quantities associated with plasma
physics are as follows:

κc
‖e = 3.2NekTeτe/me, κc

‖i = 3.9NikTiτi/Mi,

η0
i = 0.96NikTiτi.

Figure 1. An SMBI configuration at HL-2A.

The physical quantities are normalized to characteristic
parameters, such as L0 = 2.07 m (the major radius of
the HL-2A tokamak), T0 = 10 eV (a reference plasma
temperature), V0 = √

kT0/Mi (ion thermal velocity at T0),
t0 = L0/V0 (a thermal transport time), N0 = 1 × 1019 m−3

(a reference plasma density at core), M0 = Mp (the mass
of the proton), and B0 = 1.96 T (the maximum of magnetic
field). In simulations, classical diffusion coefficients of plasma
density and temperature are Dc

⊥i = χ c
⊥e= χ c

⊥i = 1 m2 s−1,
energy associated with particle collisions are Wrec = 4.5 eV,
WI = 20 eV, Wdiss = 4.5 eV, and Wbind = 0.5 eV. The
coefficients of plasma parallel thermal conductivity (κc

‖e and
κc

‖i) are flux limited to prevent unphysical large values and
recalculated as following:

κcl
‖j = κc

‖j κ
fl
‖j /

(
κc

‖j + κfl
‖j

)
, (j = ei), (9)

where κfl
‖j = Vth,j qL0Nj , (j = ei), are flux limited thermal

conductivity coefficients, and q is a local magnetic safety
factor. Here we take q = q95 at position ψ = 0.95, i.e. at
the 95% of the normalized flux surface.

Similarly, atom diffusion coefficients (Dc
⊥a and Dc

‖a) are
also flux limited and calculated as:

Dcl
⊥a = Dcl

‖a = Dc
‖aD

fl
‖a/

(
Dc

‖a + Dfl
‖a

)
, (10)

where Dfl
‖a = Vth,aLa, Vth,a = √

kTa/Ma, and La is the gradient
length at the steepest gradient region.

3. Numerical implementation of boundary
conditions

In the HL-2A tokamak, SMBI can be injected from low field
side (LFS) and high field side (HFS). In figure 1, an SMBI
configuration on the LFS of HL-2A is shown to illustrate the
general picture of SMBI fuelling. The real magnetic geometry,
including the X-point, of the HL-2A tokamak is used. The
cross-section of a tokamak geometry with X-point can be
divided into three main regions [20]: the plasma core and edge
region, the scrape-off-layer (SOL) region, the private flux and
divertor plates region as shown in figure 2(a). In the BOUT++
code, the different regions of tokamak poloidal cross-section
are shown in figure 2(b), which is useful for mapping the
simulation results onto the tokamak poloidal cross-section.
The poloidal angle is θ = 0 at the X-point with positive
values corresponding to a clockwise rotation in the poloidal
direction. The divertor plates are located near poloidal angle
θ = 0 and poloidal angle θ = 2π . The separatrix is located at
the normalized magnetic flux ψ = 1. The main-chamber wall
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(a)

(b)

Figure 2. (a) Different regions of tokamak poloidal cross-section.
(b) different regions of the tokamak poloidal cross-section in
BOUT++ code.

is located at the outermost magnetic flux. Different boundary
conditions are applied in the different regions.

Field-aligned coordinates (xyz) [19–21] are applied in
the simulation with BOUT++ code, which are related to the
usual flux coordinates (ψθζ ). In field aligned coordinates,
x is the radial-like coordinate and x = const corresponds
to a fixed flux surface; y is the poloidal-like coordinate and
y = const corresponds to the direction along the magnetic field
line; z is the toroidal-like coordinate in bi-normal direction.
The coordinate Jacobian and metric coefficients are given for
coordinate transformation in [21].

3.1. Radial (x) flux-driven boundary conditions

At the innermost boundary flux surface of core side, Neumann
radial boundary conditions are set for all evolving quantities
except for Ni, Ti and Te, which are given fixed-gradient or
flux-driven boundary conditions as follows:

∂Ni

∂x

∣∣∣∣
core

= −CNi
N0

L2
0B0

, (11)

∂Te,i

∂x

∣∣∣∣
core

= −CTe,i
T0

L2
0B0

. (12)

Where the coefficients CNi = 260 and CTe,i =
140 00 are input parameters and can be calculated
from CNi = �i|core L2

0B0/D
c
⊥i

√
g

11
N0 and CTe,i =

Qe,i

∣∣
core L2

0B0/
2
3χ c

⊥e,i Ni|core
√

g
11

T0 where �i|core and Qe,i

∣∣
core

are inflowing particle and heat fluxes at the innermost bound-
ary flux surface on core side, respectively. The inflowing par-
ticle flux, �i|core = −Dc

⊥i
∂Ni
∂R

∣∣
core

, is poloidally dependent
and is about 9N0 m s−1. The inflowing heat flux, Qe,i

∣∣
core =

− 2
3χ c

⊥e,i Ni|core
∂Te,i

∂R

∣∣∣
core

, is also poloidally dependent and is

about 10 kW m−2. The radial derivatives in flux coordinates
can be converted into real-space coordinates by multiplying

by
√

g
11 = RBθ as ∂f

∂R

∣∣∣
core

= √
g

11 ∂f

∂x

∣∣∣
core

. At the innermost

boundary flux surface in the private flux region, Ni, Ti and Te

are given Dirichlet boundary conditions as Ni|pf = 0.1N0 and
Ti|pf = Te|pf = T0. These flux-driven boundary conditions
at the core represent continuously inflowing particle and heat
fluxes, or ad hoc effective local sources of particle and heat that
are necessary to maintain the plasma profiles at steady state.

At the outermost flux surface in the SOL and private flux
region, Neumann boundary conditions are also used for all
evolving quantities except Ni, Ti, Te and Na. Of these variables,
Ti and Te used Dirichlet boundary conditions, the same as in the
private flux region, while Ni and Na are given particle recycling
boundary conditions shown in the next section.

3.1.1. Wall particle recycling boundary conditions. Neutral
atoms embedded in both the wall and the divertor plates can be
recycled back into plasma and ionized there. Particle recycling
is simulated with a simple model by introducing a recycling
coefficient Rcyc, which gives the ratio between the outward
plasma particle flux at a material surface and corresponding
the inward atom neutral flux. Thus, the particle recycling
boundary condition at the wall or the outermost boundary flux
surface is:

∂ln(N i)

∂x

∣∣∣∣
wall

= − 1
√

g
11

Lw
ni

, (13)

∂Na

∂x

∣∣∣∣
wall

= �w
a√

g
11

Dc
⊥a

, (14)

where the plasma density gradient length at the wallLw
ni = 5 cm

is an input parameter, recycling atom particle flux at the wall
�w

a = Rcyc�
w
i = RcycD

c
⊥iNi/L

w
ni. Particle recycling at the

divertor plates is described in section 3.2.2. In simulations,
the recycling coefficient Rcyc = 1 is used, which means all the
outgoing plasma fluxes have been recycled via the inflowing
atom fluxes at both the wall and the divertor plates.

3.1.2. SMBI localized boundary conditions. In experiments,
SMBI is injected with a constant inflowing molecule particle
flux localized in both poloidal (y) and toroidal (z) directions
at the far SOL boundary of the tokamak. To model this,
a constant particle flux boundary condition is set for both
molecule density and radial velocity at the outermost boundary
flux surface of simulation domain within a local (yz) region
during SMBI. This local constant flux boundary condition is
more realistic for modelling SMBI instead of simply adding
a source term in molecule density transport equation. In the
2D (xy) simulation, it is assumed that the SMBI device is
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toroidal symmetrically injected in the whole range of toroidal
simulation domain and localized within a poloidal range θ0 �
θ � θ1 with a constant density Nm0 and a radial velocity
Vxm0. To avoid numerical instability due to sharp gradient
in poloidal direction, an exponential profile of particle flux is
used. Therefore, the local constant flux boundary condition is
modified as follows:

Nm|edge = Nm0exp
(
− (

θ − θ1/2
)2

/ (wθ/a)2
)

(θ0 � θ � θ1) , (15)

Vxm|edge = Vxm0exp
(
− (

θ − θ1/2
)2

/ (wθ/a)2
)

(θ0 � θ � θ1) , (16)

where the fuelling source centre θ1/2 = (θ0 + θ1)/2, wθ is a
poloidal width of SMBI at the outermost boundary flux surface,
and a is minor radius. In 3D (xyz) simulations, a similar
localized SMBI will be applied in toroidal direction.

The experimental set-up of the SMBI system in the HL-2A
tokamak is shown in [3]. The SMBI lies on the equatorial
plane and is aimed perpendicular to the magnetic axis of
HL-2A. The diameter of the valve for producing the supersonic
molecule beam is about 0.2 mm. The pressure of the beam is
in the range 0.25–3.0 Mpa, its temperature is about 300 K (the
room temperature), and its density at the valve is in the range
6.2 × 1025–7.4 × 1026 m−3. Because the distance between the
valve and the plasma edge is as long as 1.28 m, the molecule
density decreases as the cross-section of the beam increases.
The molecule density at plasma edge is simply calculated as
Nm0 = Nv

mr2
val/r2

edge, where rval = 0.1 mm and redge ≈ 16 cm
are the radii of the beam cross-sections at the valve and the
plasma edge, respectively. A molecule injection speed in
a range of 500–1200 m s−1 is assumed to be same at both
the valve and the plasma edge. In simulations, we choose
Nm0 = N0 = 1 × 1019 m−3, and Vxm0 = −1000 m s−1

according the experiment parameters of SMBI in HL-2A.

3.2. Poloidal (y) boundary conditions

For all the evolving quantities, pseudo-periodic boundary
conditions are applied in y in ‘Edge’ (the outer part of the
closed flux region inside the separatrix). At the divertor plates,
sheath boundary conditions are applied for plasma Ni, Ti, Te

and Vi, and a particle recycling boundary condition is applied
for atom density Na. For simplicity, we assume here that the
poloidal magnetic field is normal to the divertor plates.

3.2.1. Sheath boundary conditions. At the divertor plates,
an electrostatic sheath is formed to reflect all but high-
energy electrons so that the ion and electron particle fluxes
into the divertor plates are equal; thus it also influences
the energy fluxes leaving the plasma. The outgoing sheath
particle flux is �d

i ≡ Nicse where cse = √
k(Ti + Te)/Mi

and the total transmission heat fluxes are Qd
e,i ≡ γe,ikTe,i�

d
i

where γe ≈ 7 and γi ≈ 2.5 are electron and ion sheath
heat transmission factors, respectively. Therefore, the sheath
boundary conditions are the following:

V‖i

∣∣
θ=0 = − cse|θ=0 ; V‖i

∣∣
θ=2π

= cse|θ=2π , (17)

∇‖Ni

∣∣
θ=0 = 0; ∇‖Ni

∣∣
θ=2π

= 0, (18)

∇‖Te,i

∣∣
θ=0 = Qd

e,i/
(
kκc

‖e,i

)∣∣
θ=0

; ∇‖Te,i

∣∣
θ=2π

= − Qd
e,i/

(
kκc

‖e,i

)∣∣
θ=2π

. (19)

Figure 3. Time evolution of total particles:
∫

NidV (black solid
curve) and

∫
NadV (red dashed curve) integral whole volume of

tokamak, and saturation state is reached.

The divertor plates are located near θ = 0 and θ = 2π .
The positive signs in equations above are along the poloidal
direction. Both positive and negative values of the sheath
boundary conditions at θ = 0 or θ = 2π all depend on the
directions of local outgoing particle and heat fluxes which are
varying in both time and space.

3.2.2. Divertor particle recycling boundary condition.
According to sheath boundary conditions of plasma density
and ion velocity, the plasma particle flux onto the divertor
plates is �d

i ≡ Nicse. Recycling atom particle flux from
divertor plates is simply �d

a ≡ Rcyc�
d
i as used at the wall.

∇‖Na

∣∣
θ=0 = − �d

a /D
c
‖a

∣∣
θ=0

; ∇‖Na

∣∣
θ=2π

= �d
a /D

c
‖a

∣∣
θ=2π

.

(20)

4. Simulation results

4.1. Steady states with and without particle recycling before
SMBI

Initial profiles of plasma density and temperatures with linear
variations in x are specified according to the flux-driven
boundary conditions. With particle recycling, a steady state
of the system is reached. As shown in figure 3, the total
particles of plasma and atom are conserved after it reaches
the steady state, which are calculated by integrating plasma
and atom densities over the whole volume of tokamak (i.e.∫

NidV = ∫
NiJdψdθdζ and

∫
NadV = ∫

NaJdψdθdζ ).
Total plasma density decreases at first and then saturates,
while total atom density increases and saturates. The initial
decrease of the plasma density is due to plasma outflows
in the private flux region and SOL region, while the initial
increase in the total atom density is due to atom inflow from
recycling at the divertor plates and the wall. There are a slight
variations (<1% within 30 ms) of the total plasma and atom
number at the steady state. By considering it is plasma fuelling
study of SMBI (much larger density variations within 1 ms),
those small variations are negligible. Plasma density and
atom density profiles at steady state are shown in figures 4(a)
and (b), respectively. To map these surface plots onto 2D
poloidal cross-section, refer back to figure 2(b) for more
details. In figure 4(a), plasma density is plotted at steady
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Figure 4. (a) Ni and (b) Na at steady state with particle recycling, red dash dotted lines representing the separatrix.

Figure 5. Other evolving quantities of (a) Te, (b) Vi, (c) Ti and (d) Nm at steady state with particle recycling, red dash dotted lines
representing the separatrix.

state determined by the boundary conditions of flux-driven
boundary condition, particle recycling boundary condition,
and sheath boundary condition. Inside of the separatrix,
plasma density is nearly linearly proportional to radius due to
the flux-driven boundary condition of plasma density. Outside
the separatrix, the decrease of plasma density is due to the
particle flux outgoing towards both the wall and the divertor
plates. There is a very low plasma density in the private flux

regions (i.e. 0.4 < ψ < 1.1 and 0 rad � θ � 0.39 rad or
5.88 rad � θ � 6.28 rad) due to the private flux boundary
condition. In figure 4(b), atom density is plotted at steady
state and particle recycling at both the wall and the divertor
plates is clearly evident. The steady state of atom density
with particle recycling is determined by the particle recycling
boundary condition (i.e. atom source) and its local ionization
rate (i.e. atom sink).

7
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Figure 6. (a) Ni and (b) Na at steady state without particle recycling, red dash dotted lines representing the separatrix.

separatrix 

(a) 

separatrix 

(b) 

Figure 7. Time evolution of radial profiles: (a) Nm (solid curve) and its dissociation rate νm
diss (dashed curve), (b) Na (solid curve) and its

ionization rate νa
I (dashed curve) plotted at outer mid-plane during inward propagation of SMBI. Neutrals propagate inwards and into the

separatrix for about 4 cm, their front propagating speeds decrease, and the front gradients increase due to the increase of dissociation rate
and ionization rate.

State profiles of Te, Ti, Vi and Nm are shown in
figure 5. Same as plasma density, the steady states of plasma
temperatures (figures 5(a) and (c)) are determined altogether
by the boundary conditions of flux-driven boundary condition,
fixing to a constant value at the outermost boundary flux surface
and sheath boundary condition in the parallel direction. In
figure 5(b), there are both negative Vi at θ = 0 and positive
Vi at θ = 2π which is due to sheath boundary condition of
plasma ion velocity and they all represent outgoing fluxes of
plasma density and heat towards the divertor plates. There is no
initial molecule density before SMBI (figure 5(d)). After the
system reaches its steady state, SMBI is turned on (section 4.2)
to study the transport dynamics of neutrals and plasma during
the fuelling process.

Without particle recycling (i.e. Rcyc = 0 in the divertor
plate and wall boundary conditions), the steady states of Te,
Ti, Vi and Nm are about all the same as those with particle
recycling because particle recycling mainly affects the plasma
density profile (figure 6(a)) and especially the atom density
profile (figure 6(b)). There will be no any atom density without
particle recycling. Plasma density is fixed to 0.1N0 at the
outermost boundary flux surface without particle recycling,
while it is fixed to a constant gradient length at the outermost
boundary flux surface with particle recycling. Because there
is more outgoing particle flux without particle recycling than

with particle recycling at the outermost boundary flux surface,
ion density at ψ = 0.4 without particle recycling (figure 6(a))
is lower than that with particle recycling (figure 4(a)).

4.2. Transport dynamics during SMBI

Transport dynamics with SMBI is studied after the system
reaches its steady state which is set as t = 0 ms. In simulations,
the duration of SMBI is about 1 ms with a constant molecule
density Nm0 = N0 and an inward constant radial velocity
Vxm0 = −1000 m s−1. Transport dynamics in both radial and
poloidal directions are going to be studied during SMBI.

Firstly, it is going to study the dynamics of neutrals and
plasma transport in the radial direction during SMBI. Inward
propagation of neutrals has been observed during SMBI as
shown in figure 7. There are no molecules at t = 0 ms and
there is a small recycled atom density, about two orders lower
than the atom density during SMBI. In figure 7(a), molecules
propagate inwards across the separatrix. In figure 7(b), atom
density is about twice of the molecule density at all times
(i.e. one molecule being dissociated into two atoms) and the
increase of atom density at edge is due to the diffusion of atoms
from the inside of the separatrix. Because the time interval
between different two solid curves are the same in figure 7,
the radial distance between two curves is decreasing, which
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Figure 8. Time evolution of radial profiles: (a) Ni, (b) Te and (c) Ti, plotted at outer mid-plane during inward propagation of neutrals. Local
plasma density increase and temperature decrease are observed.

Figure 9. Time and spatial evolutions: (a) νm
diss, (b) νa

I , (c) Nm and (d) Na, plotted at outer mid-plane during SMBI. It is found that neutral
fronts first propagate inwards continuously and then move outwards step by step due to the increase of dissociation and ionization rates.

means the propagation speed of molecules becomes smaller as
it propagates deeper into the plasma because of the increased
molecule dissociation rate. The molecule density at the leading
edge of the beam is larger than that at source boundary and this
difference increases as the beam propagates into the plasma
due to the decrease of molecule propagation speed. Once
the total molecule dissociation rate Rdiss

m = ∫
Nmνm

dissdV

increases at the beam front to the beam’s injection rate Rin
m =

(Nm VxmSm)|edge, the molecule beam front stops moving
inward. The penetration depth of molecule is about 4 cm
inside of the separatrix. This depth depends on both the local
plasma conditions (i.e. Ni, Te,i) and the molecule injection
rate. It penetrates deeper during SMBI in L-mode, which
has lower plasma density and temperatures resulting in a low
dissociation rate. The penetration depth also increases with
the increase of molecule beam injection velocity. The same is
true for the subsequent atom propagation because its ionization
rate increases during the inward propagation (figure 7(b)).

During inward propagation of neutrals, plasma density is
locally increasing and temperatures are locally decreasing
along the beam path as shown in figure 8. Plasma density
increases dramatically with time in the region, especially near
beam front (figure 8(a)), due to the ionization of atoms.
Electron temperature decreases due to electron energy loss
in the processes of dissociation and ionization, while ion
temperature decreases due to the increase of ion density and
energy interchange between electrons and ions.

During the injection of SMBI, plasma density will keep
increasing which leads to the increase of the dissociation
and ionization rates of neutrals (figures 9(a)–(b)). Once
the total molecule dissociation rate becomes larger than its
injection rate, the molecule propagation front will begin to
move outwards step by step as shown in figure 9(c). The same
is true for the atom propagation front (figure 9(d)). Thus, the
initial inward propagation of the neutral density is arrested and
changes direction at the later stages of sustained SBMI. The
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Figure 10. Time and space evolution of Ni, while the black dashed
line represents the turn-off of SMBI. It is found that the peak of ion
density is moving outwards step by step during SMBI and
continuously after SMBI.

reason for the outward movement is still not quite clear yet,
but it is clearly seen in the result shown in figure 10. We
believe that the outward step by step propagation is due to
the competition between the total molecule dissociation rate
and the injection rate of the molecules, while the threshold
of outward propagation at each step should be determined by
the constant injection rate of SMBI. The physical picture of
these events is: (1) plasma density peak keeps increasing until
that total molecule dissociation rate becomes larger than the
molecule injection rate; (2) plasma density peak then moves
outwards and decreases, which leads to the total molecule
dissociation rate becoming smaller than its injection rate;
(3) the plasma density peak increases, again moving the peak
outward.

Second, dynamics of plasma particle and heat transport
in the poloidal direction is also studied during SMBI. As
shown in figure 11, the poloidal profiles of plasma density
and temperatures are uniform in parallel direction at steady
state before SMBI. Later with SMBI, the plasma density
peaks poloidally in the region of SMBI (figure 11(a)), while
both electron and ion temperatures decrease in the region
of SMBI, which then decreases the nearby temperatures due
to parallel heat conduction (figures 11(b) and (c)). The
discontinuity of the poloidal profiles plotted outside of the
separatrix is due to the sheath boundary condition applied at the
divertor plates, while a periodic boundary condition is applied
inside the separatrix (details in section 3.2). Parallel pressure
gradient drives both positive and negative parallel ion velocities
near the region of SMBI (figure 12(a)). These positive and
negative ion velocities spread the peaked plasma density in
both positive and negative poloidal directions, as shown in
the 1D poloidal plots shown in figure 11(a). Because electron
parallel thermal conductivity (figure 12(b)) is about two orders
larger than ion parallel thermal conductivity (figure 12(c)),
parallel electron (conductive) heat transport is much faster than
ion heat transport. Ion parallel heat transport has comparable
contributions from both conduction and convection. The
difference between the electron and ion thermal transport can
be seen in figure 11(b) (conduction only) and figure 11(c) (both
conduction and convection) that the width of the hole does not

change in figure 11(b) but it spreads out in figure 11(c). This
is because the parallel convection dominates the parallel ion
heat transport rather than the conduction-dominated electron
case as shown in figure 13. Also, the localized heat loss from
dissociation and ionization comes directly from the electron
channel.

As shown in figures 14–16, SMBI acting as both a particle
source and a heat sink will lead to locally peaked plasma
density and reduced plasma temperatures. Before SMBI, both
the plasma density and temperatures are uniform in parallel
direction at steady state. Later, SMBI generates a locally
peaked plasma density blob and temperature holes. Due to
poloidal convection, a plasma density blob (figure 14) and
an ion temperature hole (figure 15) spread both upwards and
downwards in the cross-section of tokamak during SMBI.
Because electron heat convection is not included in this simple
model, electron heat transport depends on parallel thermal
conductivity only. Without the electron convection terms,
electron temperature holes become deeper and deeper but
remain at the same location of SMBI during continuous
injection (figure 16). Both the upward and downward blob
propagation of plasma density have the same poloidal speed
(figure 12(a)) away from the SMBI location. Due to the
symmetry of particle poloidal propagation away from SMBI
location, both upward and downward propagating particle
fluxes reinforce one another and form a plasma density peak
at the inner mid-plane opposite the peak at outer mid-plane
(figures 14(c)–(d)). With the increase of the inner plasma
density peak, the two plasma density peaks are merging
together with one and the other (figure 14(e)). Propagation of
ion temperature hole toward the divertor plate is also observed
(figures 15(b)–(e)). The duration of SMBI is 0.95 ms. After
the cessation of the SBMI, it takes about 2.5 ms for the system
to recover back to the poloidally uniform plasma density
(figure 14(f )), ion temperature (figure 15(f )) and electron
temperature (figure 16(f )), but it is still evolving in radial
direction towards the final steady state determined by the
boundary conditions.

4.3. Relaxation of profiles after SMBI

After SMBI, the remaining molecules and atoms will be
quickly dissociated and ionized. It takes about 2.5 ms for
the system to become poloidally uniform first via poloidal
transport of plasma density and heat. Mean profiles are also
relaxing in the radial direction after SMBI but they need a
long time to reach the steady state, about 60 ms (figure 17).
Overall plasma density and pressure increase (figures 17(a)
and (b)) while both electron and ion temperatures decrease
(Figures 17(c) and (d)) after SMBI. A steeper pressure gradient
region is observed near the separatrix at t = 3.5 ms due to
the increase of plasma density in that region. The radially
localized peaked plasma density spreads out which leads to
the increase of plasma density and pressure in the core-edge
region at t = 7.5 ms. Because the inflowing particle flux at the
innermost boundary flux surface on the core side is smaller
than the outgoing particle flux through both the wall and
divertor plates, plasma density decreases globally, returning
to the initial steady state before SMBI (figure 17(a)). Thus,
plasma pressure profile also decreases, relaxing back to its
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Figure 11. Time evolution of poloidal profiles: (a) Ni, (b) Te and (c) Ti, plotted at normalized ψ = 1.03 during SMBI. Poloidal plasma
density profile is locally peaked while plasma temperatures are dropped at SMBI location. Both upward and downward poloidal propagation
of plasma density and temperature are observed.

Figure 12. Time evolution of poloidal profiles: (a) V‖i, (b) electron thermal conductivity κ‖e and (c) ion thermal conductivity κ‖i. Both
positive and negative ion velocities are driven by SMBI due to parallel pressure gradient. Plasma thermal conductivities are dropped in
SMBI location and also propagate both upwards and downwards in parallel direction.

Figure 13. Time derivative of ion temperature due to convection
term of −V‖i∇‖Ti − 2

3 Ti∇‖V‖i (black curve) and conduction term of
(2/3Ni)∇‖

(
κc

‖i∇‖Ti

)
(blue dashed curve) at t = 0.05 ms during

SMBI, where parallel convection term dominates in ion heat
transport.

initial state (figure 17(d)). Meanwhile, both electron and ion
temperatures are increasing and finally return to the initial
profiles on a time scale of 60 ms. All the steady states of
plasma density, pressure and temperatures are determined by
the boundary conditions only. It is not adiabatic during the
relaxation process after SMBI because there are continuously
inflow of heat via the flux-driven boundary conditions at the
core and outflow of heat fluxes at material interfaces. Because

the heat relaxation times of the temperature profiles back to
their steady states are less than the particle relaxation time
of density profile back to its steady state, there is still large
variation of the density profile while the temperature profiles
are almost constant. These simulations present the complete
transport dynamics for the plasma and neutral components
during the three distinct phases: evolution to steady state before
SMBI, transport during SMBI, and relaxation back to the initial
steady state after SMBI.

5. Summary and conclusions

A plasma fuelling model of SMBI including density,
temperature and momentum transport equations for molecules,
atoms, and plasma is developed. Collisional interactions
between molecules, atoms, and plasma are included, such as
molecule dissociation, atom ionization, atom charge exchange
with ion, and electron and ion recombination. A new module
for SMBI, trans-neut, is developed and added to the BOUT++
code for real tokamak geometry with an X-point. SMBI is
modelled with a constant particle flux boundary condition
localized in both poloidal and toroidal directions at the
outermost boundary flux surface by giving a constant molecule
density and a constant injection speed rather than specifying
a source term in molecule density transport equation. Flux-
driven boundary conditions and sheath boundary conditions
are applied for plasma density and temperatures. Particle
recycling at both wall and divertor plates are also included.
Transport dynamics of plasma and neutrals are simulated for
a complete range of discharge times, including steady state
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Figure 14. Poloidal blob propagation of plasma density due to poloidal convection during a duration of 0.95 ms SMBI plotted in the
cross-section of tokamak at different times. Plasma density is poloidally uniform before SMBI and also about 2.5 ms after SMBI.

Figure 15. Poloidal hole propagation of ion temperature sink due to poloidal convection during a duration of 0.95 ms SMBI plotted in the
cross-section of tokamak at different times. Plasma ion temperature is poloidally uniform before SMBI and also about 2.5 ms after SMBI.

before SMBI, transport during SMBI, and relaxation back
to the initial steady state after SMBI. Principal results are
summarized as follows:

(1) Steady state with and without particle recycling has been
achieved and compared. With particle recycling, atoms
recycled from both the wall and the divertor plates are

clearly observed. Without particle recycling, there is no
atom at steady state before SMBI.

(2) Transport dynamics in the radial direction has been
studied. With a constant injection flux of molecule
density at the outermost boundary flux surface, neutral
molecules and atoms propagate inwards continuously
across the separatrix and penetrate about 4 cm inside
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Figure 16. Poloidal hole of electron temperature sink keeps at the same location where SMB is injected once there is no electron heat
convection, even though there is still parallel electron heat transport via electron thermal conductivity.

Figure 17. Time evolution of radial profiles relaxation after SMBI: (a) Ni, (b) Te, (c) Ti and (d) P , which are plotted at outer mid-plane.
Black dashed curves representing the initial time at steady state and black curves at the time when the system becomes uniform in poloidal
direction.
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the separatrix where the propagating front of molecules
stagnates due to the total molecule dissociation rate
balancing with the molecule injection rate at the SMBI
source. Because the dissociation rate becomes larger as
molecule penetrates deeper into the core of plasma, the
molecular propagation speed becomes smaller and the
propagating density front of molecules becomes steeper.
Both locally peaked plasma density and locally decreased
plasma temperature profiles are formed due to both
particle fuelling and heat sinking effects of SMBI via
neutrals dissociation and ionization. With continued
SMBI, the local plasma density peak keeps increasing,
leading to the total molecule dissociation rate becoming
larger than the molecule injection rate. Subsequently,
the molecular propagating front changes direction and
moves outwards for a small step to reduce the local plasma
density peak and also the total molecule dissociation rate.
After that, the plasma density peak begins to increase
again until the total molecule dissociation rate reaches
the limit of being larger than the molecule injection rate
and the outward movement continues. Thus, it has been
observed that plasma density peak and neutrals fronts
first propagating inwards continuously and then moving
outwards step by step during SMBI. Once there is no
SMBI, plasma density spreads outwards continuously and
no step by step propagation is observed.

(3) Transport dynamics in the poloidal direction has also
been studied. During SMBI, both locally peaked plasma
density and locally dropped temperature profiles are
observed in poloidal direction the same as in radial
direction. Both positive and negative parallel ion
velocities are driven near SMBI region due to parallel
pressure gradient, which provides convection for poloidal
transport of plasma density and ion temperature while
poloidal transport of electron temperature depends on
electron thermal conductivity only. Thus, the poloidal
propagation of plasma density blobs (i.e. source) and ion
temperature holes (i.e. sink) has been observed in both
upward and downward directions in the cross-section of
tokamak due to the convection of ion velocity. However,
electron temperature holes keep at the same location
without propagating poloidally when there is no electron
convection included.

(4) After SMBI, the profiles of plasma density and
temperatures become uniform in poloidal direction first
via rapid poloidal transport while they are still relaxing
in the radial direction towards the steady state. Plasma
density increases while plasma temperatures decrease
overall through the whole simulation domain. It takes
about 2.5 ms for the system to become uniform in poloidal
direction, while it takes much longer time, about 60 ms for
it to relax back to its initial steady state.

These results then suggest several natural extensions of this
work. They are the following:

(i) Further detailed studies of fuelling efficiency and
penetration depth of SMBI by varying the molecule
injection flux of SMBI. The penetration depth simply
depends on the balance of SMBI rate and the total
molecule dissociation rate. If the SMBI flux increases,

the penetration depth should increase. For the same SMBI
velocity and the same plasma conditions (i.e. Ni, Te

and Ti), the penetration depth should increase with an
increase in SMBI density, while the penetration depth
should increase with an increase in SMBI velocity for the
same SMBI density. It should be very interesting to see
the difference of the penetration depths for the same SMBI
injection rates, but with a different injection velocity and
density.

(ii) Further studies of a multi-scale problem of ELM
mitigation during SMBI. Mean profile evolution is on
the plasma transport time scale (∼tens of ms), while
ELM events are on Alfven time scale (tens of µs). It
is a challenge to simulate this multi-scale problem self-
consistently, but it is also significant to understand the
physics of tokamak plasmas occurring simultaneously
on both scales. To do this with the BOUT++ code,
it should couple the new trans-neut module dealing
with neutrals and plasmas transport with another ELM-
peeling/ballooning (elm-pb) module dealing with ELM
dynamics. The previous module provides mean profiles
for the second module while the second module provides
feedback of turbulence to the previous module (i.e.
turbulent diffusivities). The data communication between
these two modules should be on a meso-scale, which
is greater than Alfven time scale but smaller than the
transport time scale.

(iii) Inclusion of additional equations of turbulence intensity
transport [33, 34] and turbulent diffusivities in heat
and particle transport equations to study mean profile
evolutions during SMBI with self-consistent turbulent
diffusivities. Also, the integration of a fundamentally
non-local transport operator [35] into the heat evolution
equation and a study of its impact on non-local [36] heat
transport.
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Appendix

Several simple analytical tests of the code have been done in
1D slab geometry against the analytical solutions of Burger’s
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Figure A1. Normalized density profiles of simulation results (solid
curves) and analytical results (dashed curves) at different times for
1D diffusion equation without source.

equation and diffusion equation with/without spatio-temporal
varying source which are all consistent very well with each
other.

(1) 1D diffusion equation without source
A simple 1D diffusion equation without source with initial
and boundary conditions is




∂Ni
∂t

− D ∂2Ni
∂x2 = 0,

Ni|x0
= U0, Ni|x1

= U1,

Ni|t=0 = f (x) .

(A1)

Its analytical solution [37] is

Ni (x, t) = U0 + (U1−U0) x ′

+
∞∑

n=1

cnsin
(
nπx ′) e−D′n2π2t , (A2)

where cn = 2
∫ 1

0 f (x ′)sin(nπx ′) dx ′ + (2/nπ)((−1)n

U1 − U0)(n = 1, 2, 3 . . .), x ′ = (x − x0)/(x1 − x0)

and D′ = D/(x1 − x0). In simulation, dimensionless
parameters: D = 1, x0 = 0.98, x1 = 1.02 and f (x) =
(x − x0)/(x1 − x0). The simulation result consists very
well with the analytical solution given by equation (A2)
as shown in figure A1.

(2) 1D diffusion equation with source
Another simple 1D diffusion equation with source with
initial and boundary conditions is:




∂Ni
∂t

− D ∂2Ni
∂x2 = C0x

′ cos(t),
Ni|x0

= 1, Ni|x1
= 0,

Ni|t=0 = 1,

(A3)

where, x ′ = (x − x0)/(x1 − x0).

Its analytical solution [37] is:

Ni (x, t) = 1 − x ′ +
∞∑

n=1

cnsin
(
nπx

′)
e−λnt , (A4)

where cn = 2C0 cos(nπ)(eλnt (λn cos(t) + sin(t)) − λn)/

nπ(λ2
n + 1)(n = 1, 2, 3 . . .), λn = D′n2π2 and D′ =

D/(x1 − x0). In simulation, dimensionless parameters:
D = 100 00, C0 = 1, x0 = 0.98 and x1 = 1.02. The

Figure A2. Time evolutions of normalized density of simulation
results (solid curves) and analytical results (dashed curves) at
different positions for 1D diffusion equation with source.

simulation result also consists very well with the analytical
solution given by equation (A4) as shown in figure A2.

(3) Burger’s equation
Consider the Burger’s equation with initial and boundary
conditions: 


∂Ni
∂t

+ Ni
∂Ni
∂x

− D ∂2Ni
∂x2 = 0,

Ni|x=0 = 0, Ni|x=1 = 0,

Ni|t=0 = 1,

(A5)

By the Hopf–Cole transformation

Ni = −2D
∂ω/∂x

ω
. (A6)

The Burger’s equation transforms to linear diffusion
equation 


∂ω
∂t

− D ∂2ω
∂x2 = 0,

∂ω
∂x

∣∣
x=0

= 0, ∂ω
∂x

∣∣
x=1

= 0,

ω|t=0 = Ae−x/2D,

(A7)

where A is an arbitrary constant. The analytical solution
[37] of equation (A7) can be obtained

ω (x, t) = c0 +
∞∑

n=1

cncos (nπx) e−λnt , (A8)

where λn = Dn2π2, c0 = A
∫ 1

0 e−x/2D dx, and cn =
2A

∫ 1
0 e−x/2Dcos(nπx) dx(n = 1, 2, 3 . . .).

Thus, using Holf–Cole transformation in equation (A6),
the exact analytical solution to equation (A5) is
obtained as:

Ni (x, t) = 2D

nπ
∞∑

n=1
cnsin (nπx) e−λnt

c0 +
∞∑

n=1
cncos (nπx) e−λnt

. (A9)

In simulation, dimensionless parameters: D = 10 and
the simulation domain x = [0.98, 1.02] is renormalized
to x = [0, 1] via x = (x − x0)/(x1 − x0) to compare
with the analytical solution. It is found that the simulation
result consists very well with the analytical solution given
by equation (A9) as shown in figure A3.
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Figure A3. Normalized density profiles of simulation results (solid
curves) and analytical results (dashed curves) at different times for
1D Burger’s equation.
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