
A new continuum approach for nonlinear kinetic simulation and transport analysis
Zongliang Dai, Yingfeng Xu, Lei Ye, Xiaotao Xiao, and Shaojie Wang 
 
Citation: Physics of Plasmas 22, 022301 (2015); doi: 10.1063/1.4906051 
View online: http://dx.doi.org/10.1063/1.4906051 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/22/2?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Vlasov simulations of kinetic Alfvén waves at proton kinetic scales 
Phys. Plasmas 21, 112107 (2014); 10.1063/1.4901583 
 
Effects of q-profile structure on turbulence spreading: A fluctuation intensity transport analysis 
Phys. Plasmas 21, 092509 (2014); 10.1063/1.4896059 
 
Characterizing turbulent transport in ASDEX Upgrade L-mode plasmas via nonlinear gyrokinetic simulations 
Phys. Plasmas 20, 122312 (2013); 10.1063/1.4858899 
 
On the multistream approach of relativistic Weibel instability. III. Comparison with full-kinetic Vlasov simulations 
Phys. Plasmas 20, 082111 (2013); 10.1063/1.4817752 
 
Fully kinetic description of the linear excitation and nonlinear saturation of fast-ion-driven geodesic acoustic
mode instability 
Phys. Plasmas 19, 022102 (2012); 10.1063/1.3680633 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

210.73.19.217 On: Thu, 25 Jun 2015 03:44:34

http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/364089271/x01/AIP-PT/PoP_ArticleDL_062415/1_AIP-ALLstatic1640x440-umbrella.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Zongliang+Dai&option1=author
http://scitation.aip.org/search?value1=Yingfeng+Xu&option1=author
http://scitation.aip.org/search?value1=Lei+Ye&option1=author
http://scitation.aip.org/search?value1=Xiaotao+Xiao&option1=author
http://scitation.aip.org/search?value1=Shaojie+Wang&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.4906051
http://scitation.aip.org/content/aip/journal/pop/22/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/21/11/10.1063/1.4901583?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/21/9/10.1063/1.4896059?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/12/10.1063/1.4858899?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/8/10.1063/1.4817752?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/19/2/10.1063/1.3680633?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/19/2/10.1063/1.3680633?ver=pdfcov


A new continuum approach for nonlinear kinetic simulation and transport
analysis

Zongliang Dai,1,a) Yingfeng Xu,2 Lei Ye,2 Xiaotao Xiao,2 and Shaojie Wang1

1Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
2Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031, China

(Received 4 November 2014; accepted 5 January 2015; published online 2 February 2015)

A numerical code based on the I-transform approach is developed to solve the nonlinear Vlasov

equation and carry out the transport analysis. The numerical results given by the I-transform

approach agree with the conservative semi-Lagrangian approach in the Landau damping case and the

bump-on-tail instability case. The diffusivities induced by the random fields and the quasilinear

transport are also successfully demonstrated by using the new approach. It is found that the nonlinear

transport in the one-dimensional Langmuir turbulence cannot be well-described by a simple diffusion

model, due to the strong particle trapping at the nonlinear stage. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4906051]

I. INTRODUCTION

Plasma transport is an important and difficult problem in

tokamak physics. The neoclassical transport theory1,2 and

the quasilinear transport theory (QLT)3 have made great

progress, but still the anomalous transport cannot be fully

explained.4 Nowadays, it is believed that the nonlinear

micro-turbulence leads to the anomalous transport. The

turbulence transport can be investigated by solving the non-

linear Vlasov equation.

Due to the nonlinear coupling between the particle

motion and the fields, theoretical analysis is difficult.

Numerical simulations now play a major role in the investiga-

tion of the low-frequency plasma turbulence.5 Two classes of

numerical methods are widely used in the gyrokinetic simula-

tion: the particle-in-cell (PIC) method and the continuum

method. The PIC method, which is the most widely used

numerical method, calculates the evolution of the system by

following the orbits of a huge number of particles in the

phase space. However, the sampling noise in the course of a

simulation by the PIC method makes it difficult to precisely

describe the low density regions.6 When the random walk

model is used, the diffusivity can be directly obtained by

computing the mean square displacement (MSD).7 Another

numerical method is the continuum method, which describes

the plasma by the distribution function F in the phase space

on a fixed grid. There are two approaches, the Eulerian

approach and the semi-Lagrangian (SL) approach in the con-

tinuum method. The Eulerian approach solves the Vlasov

equation by using the usual numerical scheme such as the

finite difference method or the finite element method. The

high order finite difference schemes can reduce the numerical

dissipation, but it will cause unphysical oscillations. On the

other hand, if the explicit time integration is applied, the max-

imum time step will be limited by the Courant-Friedrichs-

Lewy (CFL) stability condition.5 In the semi-Lagrangian

approach, the value of F at grid points is obtained by

interpolation at the foot of the orbit. The CFL restriction is

removed in the SL approach. The high order interpolation

scheme is less dissipative; however, it can also lead to

unphysical oscillations. Time operator splitting method can

be applied to avoid the high dimensional interpolation, but

the conservation laws are not well-satisfied when using the

splitting methods.8 Note that in the continuum approach, it is

difficult to explicitly compute the transport coefficients.

Recently, a new formulation, the I-transform (IT)

approach,9–14 of the nonlinear gyrokinetic Vlasov equation

has been proposed, which decouples the stochastic motion

from the regular motion by using the Lie-transform perturba-

tion method.15,16 The Vlasov equation has been formulated

in the Fokker-Planck form, which explicitly represents the

diffusion and convection in the phase space. The prediction

of diffusivity by the I-transform has successfully demon-

strated the result of the QLT.10 In this work, a continuum

code based on the I-transform approach is developed to sim-

ulate the one dimensional Vlasov-Poisson (VP) system. Two

numerical examples are given to verify the new code; for the

transport analysis, the diffusivities explicitly computed by

the new code are compared with the results computed in dif-

ferent ways.

The remaining part of this paper is organized as follows.

In Sec. II, the basic equations and two numerical approaches

of the I-transform method are presented. In Sec. III, two

numerical tests are given to validate the new approach. In

Sec. IV, the diffusion coefficients are computed in different

perturbation fields with different methods. In Sec. V, the

main results are summarized and discussed.

II. BASIC EQUATIONS AND NUMERICAL
APPROACHES

A. One-dimensional VP system and the I-transform
approach

The one-dimensional VP equations are written as

ð@t þ v@x þ dE@vÞF ¼ 0; (1a)a)E-mail: liangliang1223@gmail.com
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@xdE ¼
ð1
�1

Fdv� 1; (1b)

where F(x, v, t) is the electron distribution function and

dE(x, t) is the electric field. In this paper, time is normalized

to the inverse electron plasma frequency x�1
pe , space is nor-

malized to the Debye length kD, and velocity is normalized

to the electron thermal speed VTe
¼ kDxpe. Ions are assumed

to be static, and their only role is to provide a uniform,

neutralizing background.17

The characteristic lines of Eq. (1a) are equivalent to

the trajectories of particles, which can be described by the

following equations of motion:

_x ¼ v; (2a)

_v ¼ dE: (2b)

The distribution function Fðxi; vj; tnþ1Þ ¼ Fðx0i; v0j; tnÞ. Here,

(x0i; v
0
jÞ is the phase-space coordinate of a particle at tn, and

(xi, vj) is the coordinate at tnþ1 computed by Eq. (2). Either

the two dimensional interpolation or the operator splitting

method can be used to calculate Fðx0i; v0j; tnÞ in the semi-

Lagrangian approach. The I-transform approach transforms

the perturbation into the Lie transform generating fields,

which is similar to the modern gyrokinetics for decoupling

the fast gyromotion. The new approach does not evolve the

real system, which shall be referred to as “P0,” but evolves a

simpler image system, which shall be referred to as “P1.”

The fundamental one-form C and the extended

Hamiltonian H in the four-dimensional extended phase

space Z ¼ ðv;�w; x; tÞ is expressed as

C � CidZi ¼ vdx� wdt�Hds; (3a)

H � H0 þH1 ¼
1

2
v2 � wþ d/; (3b)

with w the total energy of the particle, s the independent

parameter, d/ the electrostatic potential perturbation, and

dE ¼ �@xd/ the electrostatic field perturbation. Equation

(1a) can be written in the form

fF;Hg ¼ 0: (4)

The gauge function Sn’s is used to remove the perturbation

dependence of the extended Lagrangian, so that the equation

of motion in P1 is unperturbed, which are simply

_x ¼ v; (5a)

_v ¼ 0: (5b)

The transformed Lagrangian is formally same as the unper-

turbed one, that is, �Ci ¼ C0i; �H ¼ H0; �C1 ¼ �C2 ¼ 0;
�H1 ¼ �H2 ¼ 0.10

Then, we can obtain expressions of the gauge functions

S1 and S2 by the Lie-transform perturbation method

fS1;H0g ¼ H1; (6a)

S2;H0f g ¼ � 1

2
Gi

1@iH1; (6b)

where {,} is the Poisson bracket, and the generating vector

fields Gn’s can be calculated by

Gi
n ¼ fSn; Z

ig: (7)

The transformations of the variables between P0 and P1

are explicitly written as

�Z
i ¼ Zi þ Gi

1 þ Gi
2 þ

1

2
Gj

1@jGi
1; (8a)

Zi ¼ �Z
i � Gi

1 � Gi
2 þ

1

2
Gj

1@jGi
1; (8b)

with �Z the coordinate in P1, Z the coordinate in P0. The gov-

erning equations of the I-transform approach are

�F ¼ F� Gi
1@iF� Gi

2@iFþ
1

2
Gj

1@jGi
1@iF; (9a)

@t
�F þ v@x

�F ¼ 0; (9b)

@tS1 þ v@xS1 ¼ d/; (9c)

@tS2 þ v@xS2 ¼
1

2
Gx

1dE; (9d)

Gx
n ¼ �@vSn; (9e)

Gv
n ¼ @xSn; (9f)

F ¼ �F þ Gi
1@i

�F þ Gi
2@i

�F þ 1

2
Gj

1@jGi
1@i

�F; (9g)

with �F the distribution function in P1 and F the real distribu-

tion function in P0.

B. Transport analysis, the single-step transform

The solution of Eq. (9c) can be computed by using the

characteristic method,

Sðxi;vj;tnþ1Þ¼Sðx0i;v0j;tnÞþ
ðtnþ1

tn

d/ðxðt0Þ;vðt0Þ;t0Þdt0; (10)

with xðt0Þ; vðt0Þ computed by Eq. (5). Equations (9b) and

(9d) are also solved in a similar way. Note that the explicit

time-dependence of d/ðx; v; tÞ can be treated by using the

prediction-correction algorithm, when (tn, tnþ1) is set as the

minimal computation time step.

For the convenience of simulation, the initial values of

gauge functions are Snðt0Þ ¼ 0, which means that the initial

transformation is the identical transformation, the initial state

of P1 is equal to the state of P0 and the transformed distribu-

tion function is also equal to the untransformed one,
�Fðt0Þ ¼ Fðt0Þ. After that, �F of P1 is evolved according

Eq. (9b), �Fðx; v; t0 þ tÞ ¼ �Fðx� vt0; v; t0Þ ¼ Fðx� vt0; v; t0Þ.
S; G; d/, F are evolved by solving Eqs. (9c)–(9g) and (1b).

The initial transformation is used only one time, so that the

above solution based on the I-transform approach is called a

single-step transformation (SST). The SST is schematically

shown in Fig. 1.

If the perturbation field is random or the deviation

between the perturbed and the unperturbed system is weak,

the transport equation and the turbulence scattering term can

022301-2 Dai et al. Phys. Plasmas 22, 022301 (2015)
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be found by using the SST.12,14 Note that Gn’s are incom-

pressible flows in phase space10

@iGi
n ¼ 0: (11)

Substituting Eq. (11) into Eq. (9g), we have

F ¼ �F þ @i Gi
1 þ Gi

2 þ
1

2
Gi

1G
j
1@j

� �
�F: (12)

Note that

�Fðxþ vs; v; tþ sÞ ¼ �Fðx; v; tÞ ¼ Fðx; v; tÞ: (13)

Using Eqs. (12) and (13), one finds

d

ds

� �
0

F x;v; tð Þ

¼ F xþ vs;v; tþ sð Þ�F x;v; tð Þ
s

¼�@i ai
T xþ vs;v; tð Þ�

1

2
dij
T xþ vs;v; tð Þ@j

� �
F x;v; tð Þ: (14)

The phase space convection vector aT and the symmetric

diffusion tensor dT are given by

ai
T � �

Gi
1;s

s
�
Gi

2;s

s
; (15a)

dij
T �
Gi

1;sG
j
1;s

s
: (15b)

It has been proved that the diffusivity calculated by the

turbulence scattering term agree with the prediction of the

QLT.10

C. Simulation scheme, the multiple-step transform

Since the I-transform approach is based on the Lie trans-

form perturbation method, if a large deviation between the

real orbit and the unperturbed orbit occurs, the results will

not be accurate for a SST. Therefore, it is not accurate to pre-

dict the long-time behavior of a system with a strong pertur-

bation by applying a SST. To avoid this secular problem, the

multiple-step transform (MST) is proposed as a simulation

tool,14 which is adopted in this work.

Note that the initial push-forward transformation can be

applied at any time, so that the transformation and P1 system

can be redefined at any time in the simulation. In other

words, the SST can be used in a step by step way: F(x, v, tn)

is evolved for only one time step Dt by using a SST to com-

pute F(x, v, tnþ1). This is called a MST. Fig. 2 shows the

physical picture of the SST and the MST to calculate the par-

ticle orbit, which is similar to the computation of the distri-

bution function.

III. NUMERICAL RESULTS

In this section, the numerical results of the I-transform

approach by using the MST will be shown. To verify the

new code, the code based on the operator splitting method18

and the conservative semi-Lagrangian approach19 is used as

a benchmark in the following numerical examples.

The VP model preserves some physical quantities with

time. First of all, it preserves the total particle number N,

NðtÞ ¼
ð ð

Fðx; v; tÞdxdv: (16)

The total energy is also constant in time,

E tð Þ ¼ Ek tð Þ þ Ee tð Þ ¼
ð ð

1

2
v2F x; v; tð Þdxdvþ

ð
1

2
E2 x; tð Þdx;

(17)

where Ee and Ek denote the electric and kinetic energy,

respectively. The relative error of the particle number DN
and the total energy DE are defined as

FIG. 1. F is the real distribution function in P0 and �F is the transformed dis-

tribution function in P1. The evolution of P1 is simpler than the one of P0.

FIG. 2. The SST and the MST to compute the particle orbit.
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DN tð Þ ¼ N tð Þ � N 0ð Þ
N 0ð Þ

; (18a)

DE tð Þ ¼ E tð Þ � E 0ð Þ
E 0ð Þ : (18b)

The first test is the Landau damping. The initial condition

associated with the VP model is

F t ¼ 0ð Þ ¼ 1ffiffiffiffiffiffi
2p
p exp � v2

2

� �
1þ a cos kxð Þ;

x 2 0; L½ �; v 2 �6; 6½ �; (19)

where L¼ 2p/k. The grid numbers of phase space are

(Nx, Nv)¼ (129, 513). The parameters (k, a) can be chosen as

(0.5, 0.05) to simulate the linear Landau damping, and (0.5,

0.04) to simulate the nonlinear case.20 In the linear case, the

time step Dt¼ 0.1 and the number of iterations T¼ 600; in the

nonlinear case (Dt, T)¼ (0.1, 1000). After that, the parameters

are chosen as (k, a; Dt, T)¼ (0.5, 0.8; 0.01, 10 000) to test the

application of the new code in the strong perturbation case.

From Fig. 3, one concludes that the results by the

I-transform code agree well with the results by the semi-

Lagrangian code. The conservations of particle number and

total energy are similar for both codes. In Fig. 4, we also plot

the ensemble averaged distribution functions for the linear

and the nonlinear Landau damping cases, with the ensemble

average defined as

hFi ¼ 1

L

ð
L

Fdx: (20)

It is clear to see that the negative gradient slop in the ensem-

ble averaged distribution function appears in the nonlinear

Landau damping, but it does not appear in the linear case.

Although the I-transform approach is based on the per-

turbative method, the strong perturbation case can also be

treated, as is shown in Figs. 3(3a), 3(3b), and 3(3c).

Actually, if the time step is kept small enough, the deviation

between the perturbed system and the unperturbed one can

also be kept small enough, which makes the MST method

applicable.

The second test is the Bump-on-tail (BOT) instability.

The initial distribution function is

F¼ hFiþ ~F; x2 0;
2p
kmin

� �
; v2 �15;15½ �;

hFi ¼ 0:7ffiffiffi
p
p exp � vþ 5

1

� �2
( )

þ 0:3

5
ffiffiffi
p
p exp � vþ 5� 5

5

� �2
( )

;

~F ¼ dffiffiffiffiffiffiffiffi
100
p

X100

i¼1

cos kix�uið Þ; (21)

FIG. 3. Numerical results of the Landau damping. (1) The linear Landau damping case (k, a; Dt, T)¼ (0.5, 0.05; 0.1, 600). (2) The nonlinear Landau damping

case (k, a; Dt, T)¼ (0.4, 0.05; 0.1, 1000). (3) The nonlinear Landau damping for large perturbation (k, a; Dt, T)¼ (0.5, 0.8; 0.10, 10000). (a) Time history of

the electric energy, which are normalized to C. (b) Relative error of the particle number, which are normalized to C. (c) Relative error of the total energy. IT:

Results of the I-transform approach. SL: Results of the semi-Lagrangian approach.
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with ~F the initial perturbation, d¼ 10�4, ki¼ ikmin,

kmin¼ 0.01, the grid number of phase space (Nx, Nv)¼ (1025,

1025), time step Dt¼ 0.01, and the number of iterations

T¼ 30 000. From Figs. 5 and 6, it is clearly seen that both of

the codes predict the same electric field and ensemble aver-

aged distribution function. The electric field and the ensem-

ble averaged distribution function will be used in Sec. IV for

discussing the transport analysis.

The results show good agreement between the two codes

in different numerical cases, which clearly demonstrates that

the I-transform approach is valid for solving the nonlinear

Vlasov equation.

IV. TRANSPORT ANALYSIS

In this section, the diffusion processes in the velocity

space caused by different perturbed electric fields are dis-

cussed. The transport process in the velocity space can be

described by

@thf i þ @vc ¼ 0 (22)

with c the flux in the velocity space, which will be computed

in different ways and compared with each other. The first

method for calculating the flux is to integrate Eq. (22)

directly

cI ¼ �
ðv

�1

hf v0; tf
	 


i � hf v0; tið Þi
tf � ti

dv0: (23)

Calculating the diffusivity D is another way to obtain the

flux. In the PIC method, the diffusion coefficient D can be

obtained by computing the MSD.

DMSD ¼
1

2

v� hvið Þ2

tf � ti

* +
; (24a)

cMSD ¼ DMSD@vhf i: (24b)

However, it is difficult for a traditional continuum code to

explicitly compute the diffusivity. In the I-transform

approach, the transport coefficients are explicitly given by

Eq. (15). Using the SST, one can compute the flux and the

diffusivity through

DSST ¼
1

2

Gv
1Gv

1

tf � ti

� �
; (25a)

cSST ¼ DSST@vhf i: (25b)

In the following part of this section, transport fluxes and par-

ticle orbits computed in different ways are compared with

each other.

First, the diffusion of the test particle in a pseudo ran-

dom phase field is computed. The perturbed field is

expressed in the following form:

/ðx; tÞ ¼
X100

i¼1

di cosðkixþ uran;iÞ; (26)

with di ¼ 0:1 exp f�16ðki � 0:5Þ2g; ki ¼ 0:01, and uran;i the

random number. The phase space grid number (Nx, Nv)

¼ (513, 513), time step Dt¼ 0.0001, and the number of itera-

tions T¼ 10 000. The value of uran;i will be reset per

s0¼ 100Dt. The distribution function of the test particle is

F x; v; 0ð Þ ¼ 1ffiffiffiffiffiffi
2p
p exp � v2

2

� �
: (27)

FIG. 4. Ensemble averaged distribution function at t¼ 60. (a) Linear Landau damping case. (b) Nonlinear Landau damping case.

FIG. 5. Numerical results of the BOT instability. (a) Time history of the electric energy. (b) Relative error of the particle number, which is normalized to C.

(c) Relative error of the total energy, which is normalized to C.
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It can be seen from Fig. 7(a) that the diffusivity in the veloc-

ity space caused by the random phase field is well described

by the turbulence scattering term. On a short time scale,

Gv
1Gv

1 is proportional t2, as is shown in Figs. 7(b) and 7(c).

However, on the time scale longer than the random time

scale, Gv
1Gv

1=t tends to a constant, and the diffusion in veloc-

ity space can be well described with this constant.

Next, the quasilinear (t � [100, 150]) and nonlinear

(t � [250, 300]) diffusivity of the Langmuir turbulence

excited by the BOT instability will be computed by using the

self-consistent fields computed in Sec. III. It can be seen

from Fig. 8 that the quasilinear diffusion computed in differ-

ent ways agree well with each other. However, the nonlinear

diffusion obtained by different ways does not give the same

results, which is shown in Fig. 9.

To analyse the reason of the disagreement at the nonlin-

ear stage, the particle orbits in the nonlinear fields are com-

puted by using both the 2nd-order Runge-Kutta method and

the SST. The process of evolving particle orbits is the same

as the process of evolving the distribution function. From

Fig. 10, it can be seen that the orbits computed by the SST

do not agree with the results by the traditional Runge-Kutta

method at the nonlinear stage. The orbit analysis at the linear

stage is shown in Fig. 11, which indicates that the SST accu-

rately predicts the quasilinear behaviour.

Note that the large error of the SST (Fig. 10(c)) occurs

in the plateau region of the ensemble averaged distribution

function at the nonlinear stage, which implies that the effects

of nonlinear field on the particles in the plateau region (Fig.

6(c)) are quite different. To figure out the difference in this

region, the phase velocity Vp(k, t) of different wave number

k is diagnosed

Vp k; tð Þ ¼ � 1

k

d

dt
arg Ekð Þ � �

1

k

arg Ek tþ Dtð Þ � arg Ek tð Þ
Dt

:

(28)

This equation will be discussed in Appendix A. It is found

that the electric field components with the constant phase ve-

locity really exist, as is shown in Fig. 12. Further, the con-

stant phase velocity is almost the same as the plateau region.

Actually, the SST is inaccurate to treat the long-time

resonance problem, as is shown in Fig. 13. The test particle

FIG. 6. (a) and (b) The ensemble averaged distribution function and the energy spectrum of the electric field at linear stage (t¼ 120). (c) and (d) The ensemble

averaged distribution function and the energy spectrum of the electric field at nonlinear stage (t¼ 300).

FIG. 7. (a) Flux in the velocity space in random field, which is normalized to C. Black line is the flux cI computed by integral; Red line is the flux cMSD is computed

by the MSD; Blue line shows the flux cSST computed by the SST. (b) Time history of Gv
1Gv

1 at v¼ 0, which is normalized to C. (c) Time history of Gv
1Gv

1=t at v¼ 0.
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motion in a given electric potential /0 is computed by the

SST.

/0ðx; tÞ ¼ d cos ðkðx� v0tÞ � xtÞ; (29)

where k¼ 0.25, x¼ 0.75, v0¼�5. The phase velocity of the

field is x/k þ v0¼�2. d is chosen according to Figs. 6(b)

and 6(d) to simulate the linear and the nonlinear stage. At

the nonlinear stage, the amplitude of field is much larger

than the one at the linear stage, so that the bounce time at the

nonlinear stage is much shorter than that at the linear stage,

which can also be seen from Figs. 13(c) and 14(c). The reso-

nance problem is much important at the nonlinear stage.

Unfortunately, the most part of the energy of the electric

field at the nonlinear stage deposits in these components, and

the perturbative method is going to collapse in a long time.

Therefore, neither the SST nor the conventional

random-walk model (the flux cMSD shown in Fig. 9) can be

used to describe the transport in the nonlinear stage of the

FIG. 8. (a) The quasilinear flux (t � [100, 150]) in the BOT instability. Black line: the flux cI computed by the integral; Red line: the flux cMSD computed by

the MSD; Blue line: the flux cSST computed by the SST. (b) Time history of Gv
1Gv

1 at v¼ 0. (c) Time history of Gv
1Gv

1=t at v¼ 0.

FIG. 9. The nonlinear flux (t � [250, 300]) in the BOT instability. Black

line: the flux cI computed by the integral; Red line: the flux cMSD computed

by the ensemble averaged diffusion coefficient; Blue line: the flux cSST com-

puted by the SST.

FIG. 10. Time history of particle velocity at the nonlinear stage. Red lines: the results of I-transform by the SST; Black lines: the results of the 2nd-order

Runge-Kutta method.

FIG. 11. Time history of particle velocity at the linear stage. Red lines: the results of I-transform by the SST; Black lines: the results of the 2nd-order Runge-

Kutta method.
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one dimensional Langmuir turbulence. The nonlinear trans-

port cannot be well-described by a simple diffusion model,

due to the strong particle trapping in the nonlinear stage.

V. SUMMARY AND DISCUSSIONS

In conclusion, a unified numerical approach, the I-

transform approach based on the Lie-transform perturbation

method, has been verified for the nonlinear kinetic simula-

tion and transport analysis. The new approach evolves the

perturbed system by using the evolution of the well-

understood unperturbed system. For numerical cases, such as

the Landau damping and the BOT instability, the results of

the new approach agree with the well-established conserva-

tive semi-Lagrangian approach. For the accuracy of numeri-

cal simulation, the deviation between the perturbed and the

unperturbed system should not be too large, the MST is used

in simulation to avoid the large deviation. The information

about the turbulence transport is involved in the generating

vector fields computed by the SST. The transport properties

of random walk model and the quasilinear transport are well-

described by the turbulence scattering term, which can be ex-

plicitly computed by the SST. It is also found that the nonlin-

ear transport in the one-dimensional Langmuir turbulence

cannot be well-described by a simple random-walk model,

due to the strong particle trapping in the nonlinear stage.
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APPENDIX A: NUMERICAL DIAGNOSIS OF THE
PHASE VELOCITY

In this Appendix, Eq. (28) is discussed in detail. The

electric field is defined in the laboratory coordinates

E¼E(x, t). In the Fourier space, the coordinate transforma-

tion can simply be carried out by using

FIG. 12. The time history of phase velocities corresponding to different k.

FIG. 13. The time history of particle velocity, with d¼ 0.1. Red lines: the results of I-transform by the SST; Black lines: the results of the 2nd-order Runge-

Kutta method.

FIG. 14. The time history of particle velocity, with d¼ 0.003. Red lines: the results of I-transform by the SST; Black lines: the results of the 2nd-order Runge-

Kutta method.
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Eðx; tÞ ¼
X

k

EkðtÞeikx ¼
X
k;x

Ek;xeiðkx�xtÞ; (A1)

we have

EkðtÞ ¼
X
x

Ek;xe�ixt: (A2)

The explement of complex amplitude Ek can be computed by

using

arg Ekð Þ ¼ arctan
Im Ek

Re Ek
: (A3)

Substituting Eq. (A2) into Eq. (A3), we have

arg Ekð Þ ¼ arctan

Im
X
x

Ek;xe�ixt

Re
X
x

Ek;xe�ixt
¼ arctan

X
x

jEk;xj sin hk;x � xtð ÞX
x

jEk;xj cos hk;x � xtð Þ
; (A4)

here the relation of Ek;x ¼ jEk;xjeihk;x is used.

If the electric field can be written as

Ek ¼ E0;ke�ix0t þ E1;ke�ix1t; (A5)

with � ¼ jE1;kj=jE0;kj � 1. To Oð�Þ,

Vp kð Þ ¼ � 1

k

d

dt
arctan

jE0;k;x0
j sin hk;x0

� x0tð Þ þ jE1;k;x1
j sin hk;x1

� x1tð Þ
jE0;k;x0

j cos hk;x0
� x0tð Þ þ jE1;k;x1

j cos hk;x1
� x1tð Þ

¼ � 1

k

d

dt
arctan

sin hk;x0
� x0tð Þ þ � sin hk;x1

� x1tð Þ
cos hk;x0

� x0tð Þ þ � cos hk;x1
� x1tð Þ

¼ � 1

k

d

dt
hk;x0

� x0tþ �U tð Þ
	 


¼ x0

k
� �

k

d

dt
U tð Þ;

(A6)

with UðtÞ¼sinðhk;x1
�x1tÞ�tanðhk;x0

�x0tÞcosðhk;x1
�x1tÞ.

It means that Vp oscillates around the phase velocity of the

single frequency wave x0/k; If E1;k vanishes, Vp is exactly

equal to the x0/k.
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