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Classification of insect species of field crops such as corn, soybeans, wheat, and canola is more difficult
than the generic object classification because of high appearance similarity among insect species. To
improve the classification accuracy, we develop an insect recognition system using advanced multiple-
task sparse representation and multiple-kernel learning (MKL) techniques. As different features of insect
images contribute differently to the classification of insect species, the multiple-task sparse representa-
tion technique can combine multiple features of insect species to enhance the recognition performance.
Instead of using hand-crafted descriptors, our idea of sparse-coding histograms is adopted to represent
insect images so that raw features (e.g., color, shape, and texture) can be well quantified. Furthermore,
the MKL method is proposed to fuse multiple features effectively. The proposed learning model can be
optimized efficiently by jointly optimizing the kernel weights. Experimental results on 24 common pest
species of field crops show that our proposed method performs well on the classification of insect species,
and outperforms the state-of-the-art methods of the generic insect categorization.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

There are over a million species of insects in the world. Manual
categorization and identification of these species is time-
consuming and requires expert knowledge of field crops. Tradition-
ally, insect categorization has mainly relied on manual identifica-
tion by expert entomologists. However, for laymen without a
thorough understanding of the terminology of insect taxonomy
and morphological characteristics, it is hard to discriminate insect
categories at the species level. Therefore, effective identification of
insects is a key issue that needs to be well addressed. Computer
vision techniques play a crucial role in many research fields such
as entomological science (Weeks et al., 1999), environmental
science (Larios et al., 2008), and agricultural engineering (Zhao
et al., 2012). In this case, computer vision methods could be a fea-
sible way of solving the problem of automated insect categoriza-
tion and identification. Although many insect categorization
approaches have been proposed and have shown to be successful
under various scenarios, insect identification is challenging
because the variability of colors, textures, and shapes within a sin-
gle species is very large relative to the variability between species.

There is a rich literature on image or insect appearance model-
ing (Larios et al., 2008; Luis et al., 2011; Yaakob and Jain, 2012).
See an example in Fig. 1. Color histogram is perhaps the simplest
way to represent object appearance in the classification of insect
species. However, it misses the spatial information of object
appearance, making the method sensitive to noise as well as
appearance variations in insect categorization. It is widely under-
stood that instead of using a single feature from insect species, com-
bining complementary features such as color, shape, and texture
information should be more effective to discriminate among
various insect species. An issue is that the performance of
feature-based fusion methods, which depend mainly on simple
feature extraction and fusion, may deteriorate after the reduction
of data dimensionality. In this paper, we propose a robust
insect-categorization model that confronts the aforementioned
difficulties. The novel idea is to use a sparse-coding technique,
which creates global feature descriptors for insects, in combination
with a multiple-kernel learning (MKL) technique. The work flow of
our method can be decomposed into two stages. The first stage
focuses on image or insect object representation. At this stage, glo-
bal color, texture, and shape features of insect images are extracted
using the sparse coding technique. The second stage, which deals
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Fig. 1. Visual representations of insect appearance with color, texture, shape, and histogram of oriented gradients (HOG) features.
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with effective fusion of multiple insect-categorization features,
constructs a kernel-level fusion classifier using all the features.

A novel multiple-task sparse representation of insect objects is
proposed by this work (Fig. 2), motivated by the considerable pro-
gresses made recently in the research area of sparse representation
and coding. For the object representation, multiple over-complete
dictionaries with multiple feature modalities of labeled insect
images is learned first. Then, multiple modalities of local features
are extracted from an insect image, and then the local image
patches of the insect object are represented by their sparse codes
with the corresponding training dictionary. Despite the fact that
insect appearance is modeled using local patches, the global struc-
ture information is necessary for accurate insect identification.
Finally, insect appearance is represented by concatenating the
sparse-coding histograms of all the image patches.

At the second stage, a kernel-level fusion approach with MKL is
exploited to classify insects (Fig. 3). In many real classification
systems for insect species, a single type of feature is too weak to
represent an insect because many features are common to differ-
ent classes with similar colors or shapes, which leads to ambigu-
ousness in insect classification. To ensure greater discriminative
ability, the MKL approach is adopted to combine multiple features
via the sparse-coding histograms. Given a set of positive and
negative insect samples, multiple modalities of local features are
extracted, and then, local image patches of the samples are repre-
sented by their sparse codes using the corresponding training dic-
tionary. Finally, an MKL classifier is constructed by learning the
sparse-coding histograms of the negative and positive samples
for insect categorization and recognition. Compared with existing
algorithms for automatic classification of insect species, our
technical novelties are as follows:

� the highly discriminative and robust insect object representa-
tion with sparse-coding histograms, and

� the combination of multiple complementary features with MKL,
where MKL is a tool that represents each image by the use of
multiple sets of features in object recognition.
2. Related works

Automated insect identification has been intensively studied
over the past two decades, including computer vision-based sys-
tems for the classification of insect species (Weeks et al., 1999;
O’Neill, 2000; Steinhage et al., 2001; Arbuckle et al., 2001;
Wen and Guyer, 2012; Yaakob and Jain, 2012). Weeks et al.
(1999) established the digital automated identification system
(DAISY) to classify wasp insect images using principal compo-
nent analysis. To improve classification accuracy, O’Neill (2000)
applied DAISY to recognize insect images by analyzing their
wing patterns and shapes. Steinhage et al. (2001) developed
the automated bee identification system (ABIS) using linear dis-
criminate analysis (LDA) technique. Instead of using LDA,
Arbuckle et al. (2001) proposed an improved ABIS system using
support vector machine (SVM) and kernel discriminate analysis
based on geometric features of wings (such as length, angle,
and area). Moreover, many literature works have focused on
constructing object appearance models, a key part of object clas-
sification. Generally, based on their appearance models, most
object feature descriptors can be categorized as either global fea-
tures or local features. Russell et al. (2005) adopted global fea-
tures (including color, texture, and geometry) to classify insect
images and obtained good results using high-quality images.
However, because the features are very sensitive to rotation,
scale, translation, and viewpoint changes, this classification
method did not work well on objects with large intra-species
variation or high inter-species similarity. To address these issues,
Wen et al. (2009a) developed a local feature-based insect identi-
fication scheme to account for variations in insect appearance.
Furthermore, Wen and Guyer (2012) devised an image-based
automated insect identification and classification method using
three models: an invariant local feature model, a global feature
model, and a hierarchical combination model. Luis et al. (2011)
extended the LOSS algorithm (Solis-Sánchez et al., 2009) for ana-
lyzing the geometrical characteristics of insects to improve
insect classification. Wang et al. (2012) adopted artificial neural



Fig. 2. Insect object representation of our multiple-task sparse representation approach. Given an insect image, multiple feature modalities are extracted firstly. Each feature
is then represented as a linear combination of the corresponding training feature dictionary. Then, a multiple-task sparse representation with sparse-coding histogram is used
to represent insect image in a joint sparse way over all the features.

Fig. 3. Kernel-level feature fusion with MKL. Given positive and negative insect samples, multiple modalities of features are extracted. Local image patches of the samples are
then represented by their sparse codes using the corresponding training dictionary. Finally, an MKL classifier is constructed by learning the sparse-coding histograms of the
negative and positive samples for insect categorization and recognition.
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networks (ANNs) and SVM as pattern-recognition methods and
designed a new automatic identification system for insect spec-
imen images at the order level. Moreover, Yaakob and Jain
(2012) investigated the use of the moment-invariant technique
in combination with neural networks to classify insect images.
Although the aforementioned insect identification systems have
had great success to some extent, most of them focused on
high-quality images with uniform illumination, consistent posi-
tion, and top view pose. Another drawback is the limited expres-
siveness of these models because insect appearances can only be
represented by hand-crafted descriptors (such as scale-invariant
feature transform (SIFT), HOG, Gabor, and local binary pattern),
which make it difficult to handle significant insect view and
pose changes simultaneously.
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It is well known that natural images can be sparsely repre-
sented (Olshausen and Field, 1997) using a sparse linear combina-
tion of a few elements from a trained dictionary. In contrast to
most existing insect-classification methods that directly operate
on low-level features or cues, sparse coding can learn insect
appearances from raw features to quantify insect appearances by
means of sparsity (Coates and Ng, 2011). Sparse coding on top of
raw patches or features has been applied successfully to face
recognition (Yang et al., 2011; Zhang et al., 2011) and generic
object recognition (Yang et al., 2009a,b; Zhang et al., 2011; Wang
et al., 2010; Ge et al., 2014) to achieve state-of the-art perfor-
mance. These sparse-based appearance models originate from a
pioneering work on face recognition (Wright et al., 2009), which
introduced the discriminative nature of sparse representation to
a classifier for face recognition and achieved higher recognition
rates in constrained experiments. However, Wright’s method can-
not handle appearance variations and misalignment errors owing
to its use of a single feature type, which usually fails to recognize
true objects from complex backgrounds.

Recent studies showed that combining multiple types of fea-
tures can improve recognition performance in visual classification
(Yuan et al., 2012). However, direct application of multiple types of
features to a classifier for object recognition may not yield the
required results because the underlying assumption behind many
multi-feature learning algorithms is that those features are highly
related, and that the related features can deteriorate classifier per-
formance in insect classification. Thus, a key issue is how to fuse
those multiple features. One popular method used in machine
learning is MKL, originally proposed by Scholkopf and Smola
(2001). A number of studies have shown that MKL is a useful tool
for object recognition, where each image is represented by multi-
ple sets of features. One merit of MKL is that it can linearly com-
bine similarity functions between different feature sets such that
the combined learning model yields an improvement in recogni-
tion performance (Yang et al., 2009a,b; He et al., 2014).

This paper proposes a novel robust insect appearance model for
insect classification, which is different from other methods in the
following two aspects. First, for the insect image representation,
our method represents the target appearance with multiple sets
of features. The representation is constructed automatically via
sparse coding rather than using traditional feature descriptors with
hand-crafted formation. The insect image representation created
using our method provides a more flexible mechanism and richer
expressiveness, which help solve the abovementioned problems.
Second, for the issue of multi-feature fusion, sparse coding of insect
images is used to construct training data and the MKL method is
adopted to learn a classifier for insect image classification. Such
an insect-classification model can effectively alleviate manual load
as well as disturbances in natural environments and, therefore, can
yield more robust results than other the conventional categoriza-
tion models, which use raw features of insect images only.
3. Materials and methods

This section presents the details of our insect-classification
algorithm. The proposed method consists of two major compo-
nents: (i) feature-level fusion based on joint sparse coding, and
(ii) a multiple-kernel classifier using sparse-coding histograms.
3.1. Sparse representation: a brief introduction

Sparse representation has attracted a great deal of attention in
recent years and has been used widely in many fields such as visual
classification (Zhang et al., 2011; Wang et al., 2010; Ge et al., 2014).
Given a testing image feature y 2 Rn, it can be represented as a
linear representation of basic elements from a dictionary
D 2 Rn�c , which is a stack of n columns of training image feature
vectors with dimension c. A representation of the testing image
feature y based on dictionary D is any vector x 2 Rc that satisfies

y ¼ Dxþ z; ð1Þ
where the dictionary D is said to be over-complete if n < c, and z is a
noise term with bounded energy kzk2 < e. However, the solution of
x is generally non-sparse with many nonzero elements. To obtain
the sparse coding of the input image feature y, the problem can
be described formally as follows:cx0 ¼ argmin kxk0

subject to ky� Dxk2 < e;
ð2Þ

where k � k0 is the l0 norm, which counts the number of nonzero ele-
ments, k � k2 is the l2 norm, and e denotes the level of reconstruction
error. Because the combinatorial l0-norm minimization is an NP-
hard problem, the l1-norm minimization is used and the problem
is formulated ascx1 ¼ argmin kxk1

subject to ky� Dxk2 < e;
ð3Þ

where the solution ofcx1 is the sparse coding of the input image fea-
ture y.

3.2. Multiple-task sparse coding for insect image representation

The sparse representation model described in Section 3.1 was
originally developed for single feature-based image representation.
In this section, this model is generalized to deal with multiple
feature-based sparse coding for insect image representation and it
is called multiple-task sparse coding. To obtain the multiple-task
insect image representation based on sparse coding, m types of
visual features, such as color, shape, HOG, scale-invariant feature
transform (SIFT), and texture, are used. The widely used global fea-
tures are color and shape. They can be used to describe entire
images. In this work, color histograms (Swain and Ballard, 1991)
and an united moment-invariant technique (Yinan et al., 2003)
are adopted to extract the color and shape features of insect images.
The other three features HOG, SIFT, and texture, are local and are
invariant to scale, rotation, illumination, and partial viewpoint
change. HoG is used to represent the local appearance of an object
based on the local distribution of gradient orientation (Dalal et al.,
2006). SIFTwas introduced by Lowe (2004) to describe local regions
of interest. It calculates local orientation histograms in a local win-
dow, where a 128-element SIFT vector is used to describe the local
neighborhood of each point of interest. The last feature of texture is
very useful for insect recognition and classification. There are many
methods to describe the texture of a region. Local binary pattern
(LBP) (Ojala et al., 2002) is one of the most widely used methods
to extract texture features, and it is adopted in this work.

A training set is considered in which each insect sample is
composed of m different feature modalities (color, shape, HOG,
SIFT, and texture in this paper). For each feature modality k,

Dk 2 Rnk�c denotes the training feature dictionary of the k-th
feature modality and yk is the input insect image feature. Inspired
by Ge et al. (2014), yk can be sparsely represented by a linear

combination of dictionary Dk for each visual feature, that is,bxk
1 ¼ argminkxkk1 subject to kyk �Dkxkk2 < e; k ¼ 1; . . . ;m, wherebxk
1 is the sparse coefficient vector (i.e., sparse code) for reconstruct-

ing the input insect image feature with visual feature yk based on

dictionary Dk. Finally, these sparse codes bxk
1 under different feature

modalities k = 1, . . ., m are collected to represent insect image
appearance for insect classification.
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To make full use of the partial information on an insect image, a
local sparse representation is used to model the appearance of
insect image patches, where a set of sparse codes is collected to

represent the image appearance. Let Pk ¼ fpk
i i ¼ 1 : Tj g denote the

k-th feature modality of an insect image to be coded, where
pk
i 2 Rn is the i-th local image feature extracted from the insect

image. In the dictionary Dk, each pk
i has a corresponding sparse

code ai 2 Rc�1, which can be computed as

bak
i ¼ argmin kak

i k1
subject to kpk

i � Dkak
i k2 < e; k ¼ 1; . . . ;m:

ð4Þ

The sparse codes A ¼ bak
1; bak

2; . . . ; bak
T

� �
of an insect image are com-

puted to represent the insect appearance under different feature
modalities. Similar to Liu et al. (2013), sparse-coding histogram
is introduced to represent sparse code distribution. The coding his-
togram is defined under different feature modalities (e.g., color,
shape, HOG, SIFT and texture in this paper) as the sum of the
non-zero coefficients of basis, as shown below:

HkðqÞ ¼ C0

XT
i

k
Y � ci

h

���� ����2
 !

jakiqj; ð5Þ

where HkðqÞ is the value of the sparse-coding histogram in the q-th
bin for feature modality k, ci represents local feature i at a certain
position in the insect image, Y represents a certain position of the
target, kðÞ is an isotropic kernel function that is applied to assign
smaller weights to local features far away from the insect image
center, C0 is a normalization constant, and ak

iq is the q-th coefficient
of the i-th local feature. The proposed multiple-task sparse repre-
sentation of insect appearance is shown in Fig. 2.

3.3. MKL for insect classification

To obtain effective feature combinations with the correspond-
ing sparse-coding histograms is a key in class-level insect
classification and recognition. In order to combine multiple
complementary features for robust classification, a kernel-level
feature fusion-based MKL scheme is developed, which can linearly
combine similar functions between images.

MKL is a simple yet representative kernel-level fusion method.
Traditionally, training a binary classifier that estimates the deci-
sion function of SVM (Chen et al., 2007) starts from a training data
set with form fðx1; y1Þ; . . . ; ðxN; yNÞg, where yi 2 fþ1;�1g is a binary
label. The decision function of SVM is

f ðxÞ ¼ WTRðxÞ þ b; ð6Þ
where RðxÞ is a mapping of sample x from the input space to a high-
dimensional feature space. The classifier can be trained by solving
the following quadratic optimization problem:

min
W ;b;n

1
2 kWk2 þ C

XN
i¼1

ni;

s:t: yiðWTRðxÞ þ bÞ þ ni � 1; 0 � i � N; ni � 0;

ð7Þ

where W is the normal vector to the hyperplane, ni is the i-th slack
variable, C is the regularization parameter, and b is the bias term.
Here parameters (w,b) are determined by solving the following
equivalent dual optimization problem:

max
XN
i¼1

ai � 1
2

XN
i;j¼1

aiajyiyjhRðxiÞ;RðxjÞi
( )

;

s:t:
XN
i¼1

yiai ¼ 0; 0 � i � N; 0 � ai 6 C;

ð8Þ
where Oðxi; xjÞ ¼ hRðxiÞ;RðxjÞi is a kernel function; Gaussian kernel is
the most commonly used function:

Oðxi; xjÞ ¼ exp �d2kxi � xjk2
� �

; ð9Þ

where d2 is the kernel parameter. When a test sample x is input into
the classifier, the binary decision function can be expressed as
follows:

f ðxÞ ¼
XN
i¼1

aiyiOðxi; xÞ þ b: ð10Þ

To learn kernel-level combination, MKL is adopted instead of
the commonly used single fixed kernel, says Gaussian kernel. The
method learns the optimal convex combination of multiple kernels
by jointly optimizing kernel weights.

Here, the appearance of an insect image with the corresponding

sparse-coding histograms Hk is collected to form the training data
under different feature modalities. It is assumed that there are N
training samples fH1; . . . ;HNg, where each sample j is described
by m types of features, i.e., Hj ¼ fH1

j ; . . . ;H
m
j g, with the correspond-

ing sparse-coding histograms. The associated class labels for all
training samples are represented as an N-dimensional vector y,
and each element of this vector is yj 2 fþ1;�1g; j ¼ 1; . . . ;N. Then
the MKL can be written as follows:

min
fWkg;b;n

1
2

Xm
k¼1

1
xk

kWkk2 þ C
XN
i¼1

ni

s:t:yi
Xm
k¼1

Wk;RkðHk
i Þ

D E !
þ ni P 1;0 6 i 6 N; ni P 0;

Xm
k¼1

xk ¼ 1; xk P 0

ð11Þ

where xk is the weight on the corresponding basic kernel

OkðHk
i ;H

k
j Þ ¼ hRkðHk

i Þ;RkðHk
j Þi. Similar to traditional SVM, a test insect

sample x can be classified by evaluating the binary decision func-
tion of MKL which can be expressed as

f ðxÞ ¼
Xm
k¼1

xk

XN
i¼1

aiyiOkðHi; xÞ þ b: ð12Þ

The kernel-level feature fusion with MKL is shown in Fig. 3.
The flowchart of the proposed insect-classification algorithm

with the key components multiple-task sparse representation
and MKL is shown in Fig.4.

4. Experiments and discussion

The performance of our proposed classification method is rigor-
ously studied on 24 different types of insects. A comparison of our
results with those of the state-of-the-art methods is given at the
end of this section.

4.1. Experimental settings

To meet the need for practical insect image identification, we
collected insect images covering various species across several
common field crops including corn, soybean, wheat, and canola.
Samples of 24 common pest species found in field crops were
collected, such as Cifuna locuples, Tettigella viridis, and Colposcelis
signata. The details of the selected insect species are listed in
Table 1, and some cases are shown in Fig. 5. In this work, insect
sample images were manipulated by hand. Furthermore, image
capture, preprocessing, and region selection also required direct
user interaction. All insect images were captured with a color
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Fig. 4. Flowchart of insect-classification algorithm with multiple-task sparse representation and MKL.
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digital camera (e.g., Cannon, Nikon) at a resolution of 1280 ⁄ 960.
They were oriented, normalized, and rescaled to 300 ⁄ 300 px in
this study for computational efficiency. Furthermore, to achieve
good categorization of insect species, the insect samples were pre-
processed with uniform illumination settings (detailed informa-
tion about the settings can be found in Wen and Guyer (2012))
in field situations. The insect dataset in this paper is available at
our website.

Three data sets were used in this study for comparison. Our
insect dataset contains 24 different types of insects from field-
based insect collection, including about 60 images per species.
Each species is divided into test and training subsets (with approx-
imately 32 images each), as summarized in Table 1. The second
dataset (D1) is from the Butterfly database (Xiao et al., 2012),
and the last one (D2) is a large dataset from Wang et al. (2012).
For our insect-classification method, the method reported in
Nilsback and Zisserman (2008) was employed to extract five differ-
ent types of features, namely, color, texture, shape, HOG, and SIFT.

Moreover, linear, Gaussian, and polynomial kernels were
selected. To determine the appropriate kernel and the parameters
for each kernel, a series of experiments was conducted on our data-

set. For the Gaussian kernel Oðxi; xjÞ ¼ exp �d2kxi � xjk2
� �

; d2 was
set to 10,000 and for the polynomial kernel Oðxi; xjÞ ¼
ðxi � xjÞ þ 1
� �d, d was set to 5. The regularization parameter C was
chosen from the set f0:1;1;10;100;500;1000;1500;2000g. For
MKL, C was fixed at 1000 to obtain the best results. Moreover,
our experiments were implemented in C++ on a 2.5 GHz machine
with 4 GB RAM.
4.2. Parameters analysis

Parameters such as d2, d, and the regularization parameter C
play important roles in the proposed insect-classification algo-
rithm. In this section, the determination of their values and the
corresponding effects on classification performance are described.
First, the effects of various d2 and d values on the classification per-
formance of insect species were analyzed using different datasets
(i.e., our dataset, D1, and D2). To simplify this problem, discrete
values of (0.01, 1, 100, 10,000, 15,000, 20,000) and (1, 3, 5, 7, 9,
11) were selected for d2 and d, respectively. The experimental
results, summarized in Tables 2 and 3, indicate that the method
performs better with d2 ¼ 10;000 and d = 5 than with other param-
eter values. To determine the optimum value of the regularization



Table 1
Details of 24 analyzed insect species.

Species ID Insect names No. of test images Species ID Insect names No. of test images

1 Cifuna locuples 25 13 Eurydema dominulus 27
2 Tettigella viridis 23 14 Colaphellus bowvingi 24
3 Colposcelis signata 27 15 Pieris rapae 26
4 Maruca testulalis 25 16 Eurydema gebleri 26
5 Atractomorpha sinensis 26 17 Erthesina fullo 25
6 Sympiezomias velatus 28 18 Chromatomyia horticola 27
7 Sogatella furcifera 25 19 Eysacoris guttiger 29
8 Cletus punctiger 27 20 Dolerus tritici 25
9 Cnaphalocrocis medinalis 23 21 Pentfaleus major 24

10 Laodelphax striatellua 22 22 Sitobion avenae 26
11 Chilo suppressalis 26 23 Aelia sibirica 28
12 Mythimna separta 24 24 Nephotettix bipunctatus 25

Fig. 5. Sample images for 24 insect species used from field-based insect collection.

Table 2
Effects of d2 on categorization accuracy (%) in three datasets employed herein.

Datasets d2

0.01 1 100 10,000 15,000 20,000

D1 76.1 ± 1.2 85.3 ± 1.6 90.1 ± 0.7 95.1 ± 1.2 92.0 ± 0.8 90.1 ± 0.3
D2 70.0 ± 1.0 80.0 ± 2.0 85.0 ± 1.1 90.0 ± 1.0 87.2 ± 0.5 85.0 ± 1.4
Our dataset 69.5 ± 0.5 80.5 ± 1.7 84.5 ± 1.6 89.5 ± 1.2 87.4 ± 1.0 85.5 ± 1.0

Table 3
Classification accuracy (%) with different kernel parameters (d) in three datasets
employed herein.

Datasets d

1 3 5 7 9

D1 83.2 ± 0.4 87.2 ± 1.0 90.2 ± 1.0 89.2 ± 0.9 87.8 ± 0.9
D2 81.3 ± 1.6 84.3 ± 1.7 87.3 ± 1.4 86.0 ± 0.4 84.3 ± 1.2
Our dataset 80.5 ± 0.5 83.5 ± 0.8 85.5 ± 0.8 84.7 ± 1.1 83.6 ± 0.3

Fig. 6. Categorization accuracy of MKL in three datasets employed herein with
different values of C.

C. Xie et al. / Computers and Electronics in Agriculture 119 (2015) 123–132 129
parameter C, MKL was used to evaluate our database with different
values of C (0.1, 1, 10, 100, 500, 1000, 1500, 2000). The optimum
value of C was determined with respect to categorization accuracy.
From Fig. 6, it can be seen that with our dataset, as the value of C
increases from 0.1 to 1000, the categorization accuracy of MKL
increases; the accuracy decreases for any further increase in the
C value. It is suggested that too high a value of C leads to over-
fitting. This is the case for the other two datasets as well, as in
Fig. 6. Hence, the optimum value of C was set to 1000 in this study.



Table 4
Categorization accuracy (%) with single feature on insect dataset comprising 24 categories.

Feature NSC SVM SC LRSC SCSPM Proposed

Color 61.3 ± 2.7 60.3 ± 1.9 63.4 ± 2.3 68.3 ± 1.5 65.6 ± 2.0 70.2 ± 1.8
Texture 50.9 ± 2.0 56.8 ± 2.6 59.5 ± 1.9 60.6 ± 0.8 59.3 ± 2.7 63.5 ± 2.0
Shape 68.9 ± 1.3 70.5 ± 3.4 74.3 ± 1.8 78.3 ± 2.8 75.4 ± 3.1 80.2 ± 2.1
SIFT 70.6 ± 2.3 71.8 ± 3.4 77.8 ± 1.5 80.9 ± 1.4 79.5 ± 1.9 81.0 ± 2.4
HOG 52.3 ± 1.7 55.6 ± 2.8 61.1 ± 1.3 62.7 ± 0.9 60.1 ± 3.0 64.1 ± 2.5

(a)

(b)     

(c) 

(d) 

Fig. 7. Accuracies on feature combinations of: (a) color + texture + shape; (b) color + texture + shape + hog; (c) color + texture + shape + sift; (d) color + texture + shape + sift
+ hog. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

130 C. Xie et al. / Computers and Electronics in Agriculture 119 (2015) 123–132
4.3. Result analysis

We compare our proposed method with a number of recent
state-of-the-art image classification methods. The compared meth-
ods include SC (Huang et al., 2011), LRSC (Zhang et al., 2013),
SCSPM (Yang et al., 2009a,b), MTJSRC (Yuan et al., 2012), IOIAICM
(Wen and Guyer, 2012), AIICHLAF (Larios et al., 2008), MKL
(Gehler and Nowozin, 2009), as well as two general classifiers,
namely, nearest subspace classifier (NSC) and linear SVM.

Table 4 lists the best results of NSC, SVM, SC, LRSC, SCSPM, and
the proposed method for each individual feature. Statistically, our
method always outperformed the other methods, which use raw
features directly (e.g., color, texture, shape, HOG, and SIFT) as
training samples. Our method using sparse-coding histograms as
training samples achieves higher categorization rates in most
cases than SVM and NSC. Additionally, our classification model of
insect species performs better than the three recently developed
classification methods SC, LRSC, and SCSPM, which use sparse
representation directly.

We then evaluated the performance of our method by combin-
ing the five features and compared the results with those achieved
using the feature combination-based state-of-the-art methods. The
categorization accuracy curves with respect to the combinations of
the five features and on the 24-insect dataset are shown in Fig. 7. In
Fig. 7(a), by combining the color, shape, and texture features, the
proposed method achieves higher categorization rates than the
other state-of-the-art methods such as CTCSP (Gustavo, 2010),
MTJSRC (Yuan et al., 2012), IOIAICM (Wen and Guyer, 2012),
AIICHLAF (Larios et al., 2008), and MKL (Gehler and Nowozin,
2009). By using the features of color, texture, shape and SIFT, we
can see, in Fig. 7(b)–(c), that all methods obtain higher classifica-
tion rates than those using combinations of three and four features.
Finally, all methods using the combination of all five features
performed at their respective best levels, as shown in Fig. 7(d).



Table 5
Categorization accuracy (%) of different methods on two publicly available data sets.

Datasets NSC SVM SC LRSC SCSPM Ours

D1 75.5 ± 2.0 80.1 ± 1.6 85.1 ± 1.7 92.9 ± 1.7 90.8 ± 1.5 97.2 ± 1.0
D2 64.3 ± 1.2 70.0 ± 1.1 79.5 ± 1.7 89.0 ± 1.5 82.3.8 ± 1.3 90.3 ± 1.4

Fig. 8. Recognition accuracy of our approach with different types of kernels on
different data sets of insect species.
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As expected, compared with the five competing methods, by com-
bining the five features, our method consistently outperforms
MTJSRC (Yuan et al., 2012), IOIAICM (Wen and Guyer, 2012),
AIICHLAF (Larios et al., 2008), and MKL (Gehler and Nowozin,
2009), which shows the effectiveness of our method in image
representation and learning of insect appearance model, i.e.,
multiple-task sparse representation and MKL.

To further evaluate the insect image description capability of
the proposed method, 20 samples from the Butterfly dataset
(Xiao et al., 2012) were investigated in this study. The Butterfly
dataset was used because it is quite difficult to classify these
butterflies based solely on their appearances. The appearance
characteristics of butterflies such as shape are very similar across
individuals. The main difference between butterflies essentially
comes from their wing textures. Furthermore, a larger dataset
(Wang et al., 2012) containing 221 insect species from lab-based
insect collection was selected for evaluating the recognition
accuracy of the proposed method. Table 5 summarizes the catego-
rization accuracies of methods on the two datasets. It can be seen
that our method performs better than the other methods on the
two publicly available datasets.

Fig. 8 shows the classification accuracy of our method with
different types of kernels on different data sets of insect species.
It can be seen that the performance of our method is not sensitive
to kernel type.

Although our method yields the best performance in the exper-
iments, it takes longer time to train our method, especially to train
the dictionary for sparse coding, compared with other feature-
combination methods. Thus, a study will develop to enhance the
efficiency of our insect-classification algorithm and to investigate
the insect appearance representation scheme in sparse coding.

5. Conclusions

This paper proposed a novel method for the classification of
insect images. It contains two steps. First, an effective feature
description scheme was proposed to represent insect image
appearance using sparse-coding histograms with multiple feature
modalities. Second, to effectively fuse the features with the corre-
sponding sparse-coding histograms, MKL is adopted to learn the
sparse-coding histograms of positive and negative insect images
for a multiple-class classifier. The classifier decision function was
embedded into an insect-classification system. The proposed
method was rigorously evaluated on 24 different types of insect
datasets and compared with a number of most recent methods.
Experiments on these challenging insect images showed that the
proposed system achieves the state-of-the-art performance.
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