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a b s t r a c t

In this paper, we propose a biology-constrained gene expression discretization method based on
class distribution diversity. Inspired by the intrinsic relationship between gene expression and gene
regulation, we constrain gene expression discretization to be of at most three discrete states and locate
cut points using a regulatory states-guided mechanism. To take advantage of class label information, we
define class distribution diversity (CDD) for an interval and devise three supervised discretization rules.
The proposed method is very cost-efficient and simple to implement in practice. In the experiments, we
evaluated the proposed method using four publicly available gene expression datasets involving four
types of cancer: leukemia, prostate, lymphoma and liver cancer, and compared with two previous
methods, Fayyad and Irani's (FI) and EBD. The experimental results show the effectiveness and efficiency
of the proposed method.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the advent of high-throughput biological technology, an
increasing amount of OMICs data are being generated [1,2].
Although the data are rich with information of biological system
and potentially useful for deciphering cancer pathology, they are
typically high-dimensional and noisy, thus posing an unprecedent
knowledge discovery challenge [3]. Gene expression profiles, for
example, have been proven to be more efficient to diagnose and
classify cancer than traditional histological data, provided that
they are properly preprocessed. Among existing data preproces-
sing methods, discretization transforms continuous data to be in a
discrete form by reductionism and tends to yield more concise and
more accurate decision rules [4–7]. On the other hand, useful
information may be wrongly discarded during discretization, and
it is challenging to develop an efficient gene expression discretiza-
tion method that minimizes loss of cancer-related information.

Generally, data discretization can perform in a supervised
or unsupervised manner. They differ in whether or not class
membership information is used in forming discrete intervals.
An unsupervised method does not use such information, and
its two representative examples are equal-width (EW) and

equal-frequency (EF) methods [8]. EW partitions the range of
variables’ values based on a prefixed interval width while EF based
on sample fraction quantity. Although unsupervised methods
are simple and take a relatively low computational cost, they are
vulnerable to outliers and the results obtained are often unsatis-
factory in practice. In contrast, supervised methods tend to be
more sophisticated by incorporating class membership informa-
tion and usually yield classifiers that have superior performance
[8–10]. A supervised discretization method generally consists of
two key steps: 1) scoring the goodness of a set of intervals and 2)
searching for a good-scoring set of intervals in the discretization
solution space. The scoring functions can be derived from statistics
or informatics, such as χ2-based measures [6,11] and entropy-
based scores [12,13]. Besides the dichotomy of superivised or
unsupervised, discretization methods can also be categorized into
dynamic vs static, global vs local, splitting (top-down) vs merging
(bottom-up) or direct vs incremental. Readers can refer to litera-
tures [4,5] for more details.

FI, developed by Fayyad and Irani [10], is one of most com-
monly used discretization methods in practice. The method is
supervised, in which a discretization solution is scored by using
the entropy of the target variable that is induced by the solution
and a recursive partitioning strategy based on minimum descrip-
tion length (MDL) is employed to find optimal discrete intervals in
a greedy manner. The searching greediness often causes FI to trap
at a local minimum and it is not guaranteed to find a globally
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optimal discretization solution. Recently, Boulle [14] introduced
Bayesian theory and developed a Bayesian score to assess the
goodness of a discretization solution. In contrast to the entropy-
based FI score, the Baysian score (BS) incorporates domain knowl-
edge on the predictor variable to assess a discretization solution.
Based on BS, the authors devised a new discretization method
named MODL. However, MODL suffers from the forced assumption
of uniform prior probability distribution over discretization solu-
tions, and is not applicable in many practical cases. To overcome
the assumption limitation, Lustgarten et al. introduced two priors,
structure and parameter priors, to have a flexible calculation of BS.
Specifically, the parameter prior is used to control the multi-
normal distribution of the target variable in each interval and the
structure prior to guide the selection of the number of intervals
and the location of the cut points in a discretization solution. The
improved MODL was named efficient Bayesian discretization
(EBD). In addition to the improved calculation of BS, EBD also
has a lower time complexity of O(n2), where n is the number of
instances, than MODL (O(n3)), which makes EBD more applicable
in practice.

To our knowledge, there exists no method that can exploit a
priori biological knowledge for discretizing gene expression data.
In this paper, we propose a biology-constrained gene expression
discretization method motivated by the intrinsic relationship of
gene's expression and regulation. Biologically, the expression
levels of a gene are often regulated in response to the endogenous
or exogenous stimuli of cells. For simplicity, complex regulatory
activity is often categorized into three states, down-regulated,
non-regulated and up-regulated [15]. In light of the taxonomy of
regulation activity, we argue that gene expression can be discre-
tized to at most three basic intervals that associate with the three
regulatory states. We incorporate this as a biological constraint
into gene expression discretization to not only simplify the
discretization but also make the discretization biologically under-
standable. On the other hand, we follow the supervised line
described above to increase the efficiency of discretization. As a
result, class distribution diversity (CDD) is defined to measure the
discriminative power of an interval and three CDD-based discre-
tization criteria devised. The use of the criteria make the proposed
method free to iterative searches as in most previous methods and
lead to a low computational cost.

The rest of the paper is organized as follows. In Section 2, we
first review related biological knowledge on gene regulation and
expression, and then present our method in detail. In Section 3, we
evaluate the proposed method using four real-world gene expres-
sion data sets and compare it with two previous methods, FI and
EBD. The influences of the parameters on the proposed method
are also discussed in this section. Finally, we conclude the paper.

2. Methods

In order to adapt to and survive in variable environments, cells
often actively regulate their gene expression to maintain a
physiological balance. Therefore, regulatory states largely influ-
ence expression levels in a cell. In genetics, a gene can be in one of
three regulatory states, i.e., down-regulated (DR), non-regulated
(NR) and up-regulated (UR) in a particular cellular status [16,17].
So, we reason that the whole expression range of a gene can be
divided into three natural segments closely related to three
regulatory states, possibly named DR-related, NR-related and UR-
related, and these segments can be located from left to right along
the expression range. Because differential regulatory patterns of a
gene in a cell are deemed to be responsible for different cellular
phenotypes, these segments can guide the seeking for discrete
intervals that are responsible for the distinction of different

phenotypes of interest. The two boundaries between two immedi-
ate neighbor segments would be potential candidates cut points
for a discriminative discretization. Based on the logics, we devise
our biology-constraint gene expression discretization method in
the following sections.

2.1. Definition of class distribution diversity for a half-open interval

For convenience, we consider a binary cancer classification
problem. Note that a multi-class classification problem can be
handled by converting it into multiple binary problems. Let N1

and N2 represent the sample sizes of the two classes, class 1 and
class 2. Given a left-side-half-open interval of a gene predictor,
v¼ ð�1; l�, we define its class distribution diversity (CDD),
denoted by D(v), w.r.t the two classes as

DðvÞ ¼ n1ðvÞ
N1

�n2ðvÞ
N2

ð1Þ

where n1(v) and n2(v) represent the numbers of samples belong-
ing to class 1 and 2 in the interval v, respectively. Note that
a CDD can be positive or negative value, of which the positive
indicate that class 1 dominates the interval and class 2 does
otherwise. When l slides along the range from left to right, a series
of intervals vi can be obtained with the corresponding CDDs Di

calculated by Eq. (1).

2.2. The property of CDD

It can be imagined that for a binary problem, there could be
three representative situations of regulatory state distribution
between the two classes: i) The two classes share a same
regulatory pattern, as shown in Fig. 1A; ii) The two classes have
completely different regulatory patterns, as shown in Fig. 1B; iii)
One class is in non-regulatory state while the other is both
in down-regulatory state and in up-regulatory state, as shown
in Fig. 1C. Assuming that the expression of a gene is normally
distributed under a regulatory state, we simulated the gene
expression distributions in the three regulation situations above.
In each case, we uniformly divided the whole expression range
into m¼50 segments to form 50 left-side-half-open intervals
upper-bounded by the right end of m segments. The CDDs for
the intervals were calculated by Eq. (1) and are plotted in Fig. 1D.

First, for case i, all the intervals have a very small absolute value
of CDDs due to the non-significant difference of class distributions,
as shown in Fig. 1D. One can reason that genes with such kind of
CDD distribution patterns would be non-informative to the class
distinction and the expression range should be discretized into
one state. Second in case ii, in sharp contrast, the CDD curve has a
remarkable peak between the two regulatory states, as shown in
Fig. 1D. It can be reasoned that such genes would be closely
relevant to the class distinction and the expression range can be
discretized into two parts that are separated by the peak. Third,
compared with cases i and ii, case iii has a little complex CDD
distribution, where two turning points appear at the boundaries of
two adjacent regulatory states, as shown in Fig. 1D. The two
turning points correspond to the maximum and minimum values
of CDDs, respectively. We reason that in this case, the gene is also
relevant but not as much as case ii to the class distinction, and the
expression range can be discretized to three parts around the two
turning points.

2.3. Three discretization criteria based on class distribution diversity

Assume that the expression range of a gene is uniformly
divided into m (mZ50) segments. Let li, i¼1,2,…,m, denote the
upper-boundaries of these segments, we can have m half open
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intervals, Vi ¼ ð�1; liÞ, each having a CDD Di calculated by Eq. (1).
Without loss of generality, let Vmax and Vmin, upper-bounded by
Lmax and Lmin, respectively, be the two intervals with the max-
imum and minimum CDDs, Dmax and Dmin, respectively. Given a
discriminative gene, the values of Dmax and Dmin of it will be in one
of the following three cases:

1) Dmax40, Dmin¼0
2) Dmax¼0, Dmino0
3) Dmax40, Dmino0

and the two boundaries, Lmax and Lmin, could be potentially the cut
points for a reasonable discretization solution. To characterize the
overall discriminative power of the gene, we further define a
global CDD Δ as the difference between Dmax and Dmin, i.e.

Δ¼ jDmax�Dminj ð2Þ
The global CDD is actually the CDD for the interval of (Lmax,

Lmin] for LmaxrLmin or that of (Lmin, Lmax) for Lmax4Lmin. The
larger the Δ is, the more discriminative to the class distinction the
gene is. Given a proper constant 0oαo1, if Δoα, the gene can be
said to be non-informative to the classification and consequently,
its expression range can be discretized into one state. Otherwise,
the gene can be said to be discriminative and its expression range
would be discretized into two or three states. Note that the
number of discrete states is biology-constrained to be no more
than three. In this case, if jDmaxj4 jDminj, Lmax would be naturally a
cut point and Lmin can be another cut point if the absolute value of
Dmin is large enough, and vice versa. So, given a proper constant
0oλoα and let

d¼minðjDmaxj; jDminjÞ; ð3Þ
where min means to take a minimum value, we can reason that if
the following equation holds

dZλ ð4Þ

Lmax and Lmin will be two cut points for a reasonable discretiza-
tion solution.

Following the description above, three gene expression dis-
cretization criteria based on CDD can be summarized as follows.

Criterion 1. Given two constants, 0oλoαo1, if Δoα or max
(|Dmax|,|Dmin|)oλ, the expression levels of gene g will have one
discrete state in the whole range. Otherwise, the expression levels
will have two or more discrete states.

Criterion 1 determines whether the expression levels are
discretized into one discrete state or not. A gene being with one
discrete state means that the gene follows a same regulatory
mechanism in both classes. On the other hand, Criterion 1 implies
that genes with enough large Δ are relevant to a class classification
and should be discretized into more than one discrete state. For
such kind of genes, the following two criteria should be applied for
further discretization:

Criterion 2. Given two constants, 0oλoαo1, if ΔZα, max(|Dmax|,|
Dmin|)Zλ and min(|Dmax|,|Dmin|)oλ, the expression levels of gene g
will be discretized into two states in the whole range. The two
corresponding discrete intervals are (�1, a) and [a, þ1),
respectively, where

a¼
Lmax if jDmaxj4 jDminj
Lmin if jDmaxjr jDminj

8<
: ð5Þ

Criterion 3. Given two constants, 0oλoαo1, if ΔZα and min
(|Dmax|,|Dmin|)Zλ, the expression levels of gene g will be discretized
into three states in the whole range. The three corresponding
discrete intervals are (�1, a), [a, b], and (b, þ1), respectively,
where a¼min(Lmin, Lmax), b¼max(Lmin, Lmax).

Remark 1. Following the three criteria, the expression range of a
gene can be discretized so that the gene is empirically most
discriminative to the class distinction of interest.
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Fig. 1. Illustration of the property of CDD. In A, the gene is in a same regulatory state for the two classes and the expression distributions in both classes are N(0,0.5). In B, the
gene is in down-regulatory state for class 1 and is in non-regulatory state for class 2, and the expression distributions in both classes are N(�1,0.5) and N(1,0.5), respectively.
In C, the gene is in non-regulatory state for class 1 and is both in down-regulatory and up-regulatory state for class 2, and the expression distribution is N(0,0.5) in class 1 and
a mixture distribution of N(�1,0.5) and N(1,0.5) in class 2.
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Remark 2. In the three criteria, the parameter α plays a critical
role in the discretization for determining whether the gene is
discretized into one state or more. Too small values of α will over-
discretize a non-informative gene while too large values will
under-discretize a truly differentially expressed gene. Another
parameter λ is used to dichotomize the discretization into two or
three states. The selection of the two parameters is likely data-
dependent and our numeric experiments have showed that value
of α around 0.5 and value of λ around 0.1 can be a reasonable
choice for many practical cases.

In summary, the proposed method can be shown in Fig. 2

3. Experimental results

To evaluate the proposed method, we collected four expression
data sets of different types of cancer, Leukemia [18], Prostate [19],
Lymphoma [20] and Liver [21]. These data sets were widely used
as benchmark data sets for algorithm evaluation in bioinformatics
area. In the Leukemia data, all the samples (72) are categorized
into two classes: 47 acute lymphoblastic leukemia (ALL) and 25
acute myeloid leukemia (AML). In the Prostate data, all the
samples (102) are categorized into 50 normal and 52 prostate
cancer. In the Lymphoma data, all the samples (77) are grouped
into 58 DLBCL and 19 FL. In the Liver data, all the samples (60) are
grouped into 20 non-recurrent and 40 recurrent liver cancer. The
numbers of gene variables in the four data sets are 7129, 7129,
12600 and 7129. In the experiments, we performed 10-fold cross
validation on the whole data 10 times for each data set. In each
run, we learned a discretization model for each gene using 9 folds
as a training set and applied the learned discretization model to
discretize both the training set and the rest fold (test set). For the
proposed method, we set the two parameters to be α¼0.5 and
λ¼0.1 (the settings will be discussed in Section 3.3). For compar-
ison, two previous methods, FI and EBD, were simultaneously
applied to the four data sets. FI is commonly used as a standard
algorithmic benchmark for data discretization in practice while
EBD is a recently developed method which has been proved to
work well for gene expression data discretization [6].

3.1. Distribution of numbers of discrete states

We first statistically summarized the discretized results by FI,
EBD and our method for the four data sets, as shown in Table 1.
When a gene is discretized into one discrete state, it means that
the gene is indiscriminative to the cancer classification. The mean
proportions of gene variables with one state by our method are
0.93, 0.99, 0,92 and 0.97 for leukemia, prostate, lymphoma and
liver data sets, respectively, which are consistently larger than
those by FI (0.89, 0.78, 0.87 and 0.98) and EBD (0.87,0.77,0.75 and
0.97), as shown in Table 1. For genes with 41 discrete states, our
method obtained larger mean numbers of states per gene for all
the four data sets (2.1 for Leukemia, 2.27 for Prostate, 2.13 for
Lymphoma and 2.52 for Liver), as shown in Table 1, suggesting the
better power of discovering more complex expression patterns.
Finally, we compared the mean number of states per gene among
the three discretization methods on each data set, as shown in
Table 1. The number reflects the overall complexity of a discretiza-
tion. From Table 1, it can be seen that our methods obtained the
smallest mean numbers per gene almost for all 4 data set,
confirming the superior performance of our method in distin-
guishing non-informative (one state) and informative (more than
one states) genes.

We also examined the discretized results for individual genes
by three methods. Take the leukemia data as an example. As we
know, it has been previously reported that three genes, DEK, FUS
and HOXA9, are closely related to AML but not ALL [22]. According
to the fact, a reasonable discretization method should discretize
these genes into more than one discrete states. Table 2 lists the
mean numbers of discrete states obtained by our method, FI and
EBD. From Table 2, it can be seen that our method discretized three
genes into 1.91, 1.81 and 2.88 states on an average, respectively,
while both previous methods, FI and EBD, discretized the three
genes into o1.58 states for all the three genes. Obviously, our
methods obtained more reasonable discretizations for the three
truly discriminative genes. In addition to the three leukemia-
relevant genes, Table 2 also reports the discretized results of

Algorithm
Input: a set of n tissue samples and the expression values of a gene 

in the n samples 
Output: Discrete intervals 

BEGIN

Step.1 Initializing m,α and λ

Step.2 Finding the maximum (max) and minimum (min) expression values 
across the n samples; 

Step.3 Uniformly dividing the expression range [min, max] into m 
parts and forming m left-side-half-open intervals; 

Step.4 Calculating the CDDs for the m intervals by Eq.(1) and locating 
the intervals with the maximum and minimum CDDs; 

Step.5 Calculating the global CDD by Eq.(2); 
Step.6 Discretizing the expression range by Criterion 1. If the 

condition for two or more states holds, go to Step 7, and Step.9
otherwise; 

Step.7 Discretizing the expression range by Criterion 2. If the 
condition for 3 states holds, go to Step 8, and Step.9
otherwise; 

Step.8 Discretizing the expression range by Criterion 3; 
Step.9 Outputting the discrete intervals obtained in Step. 6, 7 or 

8. 
END 

Fig. 2. Algorithm of the proposed method.

Table 1
Statistics of the discretized results by our method, FI and EBD for the leukemia,
prostate, lymphoma and liver data sets.

Dataset Mean fraction of
genes with
1 discrete state

Mean # of discrete
states per gene with
41 discrete states

Mean # of discrete
states per gene

Our
method

FI EBD Our
method

FI EBD Our
method

FI EBD

Leukemia 0.93 0.89 0.87 2.1 2.01 2.01 1.07 1.11 1.13
Prostate 0.99 0.78 0.77 2.27 2.13 2.31 1.0 1.25 1.99
Lymphoma 0.92 0.87 0.75 2.13 2.01 2.01 1.08 1.13 1.12
Liver 0.97 0.98 0.97 2.52 2.02 2.02 1.03 1.02 1.01

Table 2
Numbers of discrete states of five individual genes for the leukemia data by our
method, FI and EBD.

Probe sets Gene
symbol

Description Our
method

FI EBD

X64229_at DEK DEK oncogene 1.91 1.5 1.40
X71428_at FUS Fused in sarcoma 1.81 1.5 1.56
U41813_at HOXA9 Homeobox A9 2.88 1.16 1.08
M22898_at TP53 Tumor protein p53 1.67 1.02 1.03
U15131_at ST5 Suppression of

tumorigenicity 5
2.00 1.98 2
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another two generic cancer genes, TP53 and ST5 [23,24] by three
methods. Although FI and EBD worked reasonably well for ST5,
they improperly discretized TP53 to nearly one state on average.
Taken together, these results confirm that our method is powerful
in reliably finding discriminative genes and discretizing gene
expression reasonably well.

3.2. Classification performance of the discretized results

Classification performance is another important index for
evaluating a discretization method. To evaluate the classification
performance of the proposed method, we employed two popular
classifiers, C4.5 and naïve Bayes (NB), which were among the top
10 of data mining algorithms in [25]. In the experiment, we
considered two measures of classification performance, correct
classification rate (CCR) and discretization generalization (DG).
CCR is defined as the proportion of correct class predictions on test
samples by the classifier and DG is defined as the ratio of the CCR
on a test set to that on the training set. Generally, DG evaluates
discretized predictors directly, while CCR provides an indirect
measure of discretization by considering the performance of
classifiers learned from the discretized predictors.

Table 3 shows the mean CCRs for our method, FI and EBD on
the four data sets. From this table, it can be seen that our method
obtained higher mean CCRs for almost all the data sets except the
liver data, regardless of which classifier is used. The liver data
contain fewer samples relative to other three data sets, which is
likely the reason for the relatively low accuracies for the data set.
Table 3 also revealed that given the discretized results by either of
FI and EBD, different classifiers led to a very large disparity of CCRs.
For example, for FI, NB obtained a CCR that is 20.82% higher than
that of C4.5 for the liver cancer data and for EBD, C4.5 obtained a
CCR which is 14.35% higher than that of NB for the leukemia data,
as shown in Table 3. On the contrary, irrespective of which
classifier is used, our method led to similar CCRs for all the four
data sets, suggesting that our method is favorably classification
model-free. Table 4 compares the mean DGs among our method, FI
and EBD on the four data sets. The larger the value of DG is, the
better the generalization of discretization is. From Table 4, we see
that our method obtained the highest DG among the three
methods for all the four data sets, suggesting the better discretiza-
tion generalization of our method. Overall, our method can obtain

more favorable classification performances than the two previous
methods, FI and EBD.

3.3. Influences of the parameters α and λ on discretization
performance

The proposed method has two important tunable parameters, α
and λ, which can influence the discretization performance. We
experimentally examined the influence of the two parameters
using the four gene expression data sets, as shown in Fig. 3.
As described above, the proposed method first uses α to dichot-
omize the expression range into one or more than one discrete
states. We varied α among {0.1, 0.2, 0.3, 0.4, 0.5, 0.7 and 0.9} and
observed the changing curves of CCR (NB classifier), as shown in
Fig. 3A. Note that in order to diminish the effect of another
parameter λ, we tried λ¼{0.01, 0.05,0.1,0.15,0.2,0.3,0.4 and 0.5}
for each value of α and averaged the obtained CCRs. From Fig. 3A, it
can be found that CCRs significantly increase with α for αo0.5 for
all the data sets and almost fix for α40.5. Note that no CCR values
are available when all the genes are discretized with one state. The
decreasing CCRs for small values of α (e.g. αo0.5) should be
because non-discriminative genes were overdiscretized according
to Criterion 1. The observations suggest that a value of α around
0.5 could be an acceptable choice in practice.

We next observed the changing curves of CCR with λ by fixing
α¼0.5, as shown in Fig. 3B. We varied λ¼{0.01,0.05,0.1,0.15,
0.2,0.3,0.4 and 0.5}. From Fig. 3B, it can be seen that CCRs did
not change as much as that in Fig. 3A, and the value of λ around
0.1 could be generally proper in practice.

3.4. Time complexity

Time complexity is often used for evaluating a discretization
method. In particular, fast discretization is especially necessary to
analyze high-dimensional gene expression data in practice. In the
proposed method, the most intensively computational part is
searching for the maximum/minimum gene expression values
across samples, as shown in Fig. 2. The time complexity is right
that of a maximum/minimum searching algorithm, i.e., O(n). As we
know, the time complexities of FI and EBD are O(nlogn) and O(n2),
where n is the number of instances. So, the linear complexity
suggests that our method is far more cost-efficient in computation

Table 3
Mean CCRs and standard error of the mean (%7SEM) of our method, FI and EBD for the leukemia, prostate, lymphoma and liver data sets.

Classification model C45 NB

Dataset Our method FI EBD Our method FI EBD

Leukemia 88.0070.91 95.6770.82 96.6771.10 96.1070.80 80.2871.51 82.3271.17
Prostate 84.1170.80 83.7870.68 81.2170.58 85.0871.10 89.7670.75 83.7670.91
Lymphoma 88.6371.80 71.2571.45 72.4371.32 87.1571.3 85.4571.22 86.2271.41
Liver 61.7672.7 50.0072.03 60.0072.08 67.5071.4 70.8271.49 72.3371.42

Table 4
Mean discretization generalizations and standard error of the mean (%7SEM) of our method, FI and EBD for the leukemia, prostate, lymphoma and liver data.

Classification model C45 NB

Dataset Our method FI EBD Our method FI EBD

Leukemia 86.5371.02 80.5871.42 83.5871.34 97.7670.79 95.8970.92 97.7671.12
Prostate 89.4771.4 82.6570.57 79.3870.57 97.7271.70 91.8170.83 88.9170.72
Lymphoma 89.8572.0 77.1771.79 73.1771.66 94.9472.4 84.1171.38 92.5771.39
Liver 62.1572.1 55.1172.06 55.5072.16 68.1073.4 71.6771.43 70.9471.48
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than FI or EBD. On the other hand, our method does not employ
any greedy-searching or dynamic programming process as in most
of traditional discretization methods including FI and EBD. It is
notorious that such iterative procedures can lead to a very heavy
computational burden. So, the lack of them can also speed up our
method. Table 5 reported the CPU times of our method, FI and EBD
for four data sets, Leukemia, Prostate, Lymphoma and Liver. All the
programs were in R codes and run on personal computer with
window XP system with Intel (R) CPU @2.19 GHz and Ram 2.0 GB.
Table 4 clearly reveals that our method can be faster by orders of
magnitude than the two previous methods.

4. Conclusions

In this paper, we have proposed a biology-constrained gene
expression discretization method based on class distribution
diversity and evaluated it on four benchmark gene expression
data sets, Leukemia, Prostate, Lymphoma and Liver cancer. There
exists no method that can exploit a priori biological knowledge for
discretizing gene expression data. Inspired by the tri-state para-
digms of gene regulation, the proposed method constrains gene
expression to be discretized into at most three states and locates
discrete intervals through maximizing class distribution diversity
in association with gene regulation property. Two adjustable
parameters are provided to users, which make the proposed
method flexible to various data scenarios. Another advantage of
the proposed method is the linear time complexity of it, which
makes the proposed method very cost-efficient and especially
favorable for analyzing high-dimensional OMICs data in practice.
The experimental results on four real-world data sets showed the
effectiveness and efficiency of the proposed method.

No method always performs best in any data scenario. The
proposed method obeys this law. Because the current calculation
of CDD is only applicable to binary classification problems, our
method is currently not applicable to multi-class data scenarios
straightforward. On the other hand, the tri-state regulatory

scheme adopted is a simplified assumption about gene regulatory
activity. So, our method is not guaranteed to deal with more
complex regulatory patterns.

It is well-known that a discretization process can reveal
intrinsic properties of the variable and can lead to a knowledge-
level representation. Because the proposed method naturally
relates discrete intervals to the tri-states gene regulatory activity,
the discretized results can provide potential clues about gene
regulatory mechanisms underlying gene expression data. There-
fore, the proposed method can help to recover gene regulatory
networks from gene expression data. In future work, we will
extend the proposed method to gene regulatory network analysis.
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