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The local nonlinear forces induced by radio frequency (rf) waves are derived in inhomogeneous

magnetized plasmas, where the inhomogeneity exists in the rf fields, in the static magnetic field as

well as in the equilibrium density and temperature. The local parallel force is completely resonant, but

a novel component dependent on those inhomogeneities is obtained as the result of the

inhomogeneous transport of parallel resonant-absorbed momentum by the nonlinear perpendicular

drift flux. In the local poloidal force, the component induced by the inhomogeneity of rf power

absorption is also confirmed and it can be recognized as the residual effect from the incomplete

cancellation between the rate of the diamagnetic poloidal momentum gain and the Lorentz force due

to the radial diffusion-like flux. The compact expression for radial force is also obtained for the first

time, whose nonresonant component is expressed as the sum of the ponderomotive force on particles

and the gradients of the nonresonant perpendicular pressure and of the nonresonant momentum flux

due to the finite temperature effect. Numerical calculations in a 1-D slab model show that the resonant

component dependent on the inhomogeneities may be significant when the ion absorption dominates

the resonant wave-particle interaction. A quantitative estimation shows that the novel component in

the parallel force is important to understand the experiments of the ion-cyclotron-frequency mode-

conversion flow drive. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4882864]

I. INTRODUCTION

Plasma current and flow can benefit the confinement and

the stability of magnetized plasma in tokamak.1–3 The use of

radio frequency (rf) power to drive plasma current and/or

flow is therefore of general interest. In the last decade, there

was a rapid growth of the experiment discoveries about the

rf-driven flows4–10 besides the intrinsic flow affected by rf

heating and current drive.11–18 Although there is no widely

accepted theory for rf-driven flow experiments, previous

analyses showed that the wave momentum deposition and

the momentum redistribution induced by rf waves might

play an important role in the magnitude and profile of the

flows driven by ion cyclotron range of frequency (ICRF)

waves via mode conversion (MC)5,8,19 and lower hybrid

waves (LHW).20,21 Therefore, a complete analysis of rf-

induced local forces including these effects is required in

order to establish a more credible theory to understand the

experiments and to improve the precision of rf-driven flow

and current profiles.

There are three basic mechanisms by which an rf wave

exerts local forces on bulk plasma or selected particles.22

First, the resonant wave-particle interaction can produce a

dissipative force, by which the wave deposits the momentum

on resonant particles in analogy with the well-known process

of photon absorption; therefore, we may call it direct drive

force (DDF) or fundamental dissipative force. Second, the

inevitable inhomogeneity of rf fields exerts the well-known

nonresonant ponderomotive force (RPF) in the direction of

the inhomogeneity. Third, the inhomogeneity of resonant

wave-particle interaction can redistribute the momentum of

resonant particles and then induce a shear force. This force is

proportional to the gradient of rf fields but perpendicular to

the direction of the inhomogeneity; therefore, may be called

as RPF23 or resonant momentum redistribution force.22

Among the above three mechanisms, of particular interest

is the component of RPF, since there is a steep gradient of rf

fields in the direction perpendicular to the flux surface in a

toroidal confinement equipment, which may play a key role in

driving shear flows in both the poloidal and toroidal direction.

The theoretical study of this component was started with the

pioneering work on shear flows driven by the poloidal rf

force.24,25 However, the local ponderomotive effect in the flux

surface was not correctly formulated until the kinetic stress

was completely calculated in the second-order rf kinetic

theory developed by Berry, Jaeger, and Batchelor.26,27 A local

resonant momentum redistribution force in the poloidal direc-

tion was then correctly recognized in Ref. 28. The perpendi-

cular ponderomotive effect (including the off-diagonal stress)

was also obtained from the guiding-center formulation of non-

linear rf kinetic theory by Myra, Berry, D’Ippolito, and Jaeger

(MBDJ).29 Besides the research on the perpendicular force,

there are also a number of kinetic theoretical works on the

toroidal force, or the parallel force in a slab model.30–32 Using

the complete kinetic stress calculated from the second-order rf

kinetic theory, a local parallel force was reached to clear up

the long-standing dispute on the toroidal current drive by non-

resonant forces (see Ref. 33 and references therein). Recently,

the complete parallel force due to the perpendicular inhomo-

geneity of rf fields was formulated and then discussed in the

picture of a single particle, a fluid element, and a kinetic

plasma, respectively.23a)Electronic mail: chen@ipp.ac.cn
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In this paper, the calculation of rf forces is extended to

the cases with inhomogeneous equilibrium magnetic field,

density, and temperature. In the previous derivations of par-

allel and poloidal RPFs, an inhomogeneous rf fields is con-

sidered but the inhomogeneities of the equilibrium

parameters are neglected. Although the gradients of these

equilibrium parameters are usually small, they might induce

large gradients of other quantities in the local resonance

zone. For example, it is well known that the small gradient

of magnetic field is indispensable for the highly localized

power deposition for cyclotron resonance. For another exam-

ple, the gradient of the parallel resonant velocity vl
ðresÞ

� x� lXð Þ=k== may contribute as greatly as that of rf fields

to the parallel RPF given in Eq. (4). For cyclotron resonance

(l 6¼ 0), the gradient is mainly due to the inhomogeneity of

magnetic field B0, but is usually much larger than the gradi-

ent of B0, i.e.,

r?vl
ðresÞ

vT

����
���� � l

LBk==q

����
����� 1

LB
; (1)

where LB represents the characteristic length of B0 and q rep-

resents the gyro radius. This gradient of vl
ðresÞ was neglected

in previous works. Another conclusion is confirmed in the

present paper that there is no nonresonant parallel force even

if the equilibrium and the rf field are both perpendicular

inhomogeneous.

The physic pictures of the rf forces are discussed in the

present paper. Especially, the diamagnetic flow and the

diffusion-like flow due to the gyro-harmonic heating are

found to be concomitant to the poloidal RPF and might be

more important than it in future analysis for the rf-driven

flow.

The paper is organized as follow. In Sec. II, the compact

expressions of rf forces for quick references are presented as

well as the discussion of mechanisms involved. In Sec. III,

an extension of the guiding-center formulation is described

and it is used to derive the rf forces given in Sec. II. The

extension mainly modifies the manipulation of vl
ðresÞ and

then influences the rf forces. In Sec. III C, the derivation

from guiding-center formulation to the parallel force is

given, which was not considered in any previous research.

Numerical calculations are given in Sec. IV to estimate the

RPFs compared to the DDFs. A discussion on the role of the

parallel RPF in ICRF MC flow drive is given in Sec. V. This

is followed by a summary in Sec. VI. The detailed deriva-

tions for the energy absorption and the forces are presented

in Appendixes A and B, respectively. In Appendix C, the

general wave-momentum conservation equation (MCE) is

given to be compared against the nonresonant ponderomo-

tive force.

II. LOCAL NONLINEAR RF FORCES AND
COLLISIONLESS FLUXES

This section provides a quick reference about the

expressions of the local nonlinear rf forces from the guiding-

center formulation of rf-kinetic theory. Perpendicular to the

static magnetic field are the inhomogeneities of the rf fields,

of the static magnetic field, and of the equilibrium density

and temperature. However, the magnetic shear is neglected

for simplicity. The rf forces are calculated to the first order

in q=L?, where L? represents the shortest characteristic

length of the inhomogeneities and q is the gyroradius.

A. Expressions of rf forces

The whole nonlinear local force F2 consists of two parts

as

F2 ¼ Fk þ Fr; (2)

where Fk is the DDF and Fr is the so-called ponderomotive
force with explicit spatial dependence. The DDF is resonant

as

Fk ¼
1

2
Re
X
k;k0

ei k0�kð Þ�r kþ k0

2x

X
l

Wl k; k0ð Þ; (3)

where Wl k; k0ð Þ � E�k �Wl
ðextÞ k; k0ð Þ � Ek’ represents the

energy absorption due to the lth cyclotron resonance34 and

Wl
ðextÞ k; k0ð Þ is the extended W matrix given in Eq. (A9).

The parallel (to the static magnetic field B0) component

of Fr is resonant (and is thus the parallel RPF) as

b � Fr ¼ �
1

2
Rer? �

X
k;k0

ei k0�kð Þ�r

�
X

l

x� lXð Þk� b

xXk==
Wlðk; k0Þ; (4)

where x� lXð Þ=k== is just the parallel resonant velocity

v
resð Þ

l and b � B0=jB0j. The perpendicular component is

Frð Þ? ¼
1

2
Reb�r?

X
k;k0

ei k0�kð Þ�r
X

l

l

2x
Wlðk; k0Þ

� 1

2
Rer?

X
k;k0

ei k0�kð Þ�rt
X

l

lX
x

Wlðk; k0Þ þ Fnr: (5)

When the inhomogeneities exist only in the radial direction

(in tokamaks), the first term at RHS of Eq. (5) is the (reso-

nant) poloidal force (i.e., the poloidal RPF) and the other

terms constitute the radial force. The third term at RHS of

Eq. (5) is the only nonresonant component in F2, which can

be expressed as

Fnr ¼ �
1

2
Re
X
k;k0

ei k0�kð Þ�r
X

l

k0 � kð Þ
2x

Wl k; k0ð Þ

� 1

2
Rer?

X
k;k0

ei k0�kð Þ�r
X

l

ilX
2x

@Wl k; k0ð Þ
@x

� 1

2
Rer?

X
k;k0

ei k0�kð Þ�r
X

l

ik?
2x
� @Wl k; k0ð Þ

@k?
; (6)

and it reduces to the conventional fluid ponderomotive force

in the cold plasma limit.35

The expression forms of RPFs in Eqs. (4) and (5) are

indeed the same as those in the homogeneous medium limit
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 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

202.127.206.120 On: Thu, 23 Jul 2015 03:02:23



which were obtained by directly calculating the moments of

the 2nd order velocity distribution function f2 (see Refs. 23

and 28 for the poloidal and parallel components, respec-

tively). The complete expression of the nonresonant compo-

nent even in the homogeneous limit has not been published

elsewhere, but it is also consistent with the result by directly

calculating the moments of f2.36 The mechanism of the pon-

deromotive force Fr will be elaborated in the following

subsections.

B. Mechanisms of the parallel RPF

The parallel and poloidal components of Fr are almost

the same as the results in the homogeneous equilibrium23,28

except that the W matrix and the gyro-frequency X here are

space dependent. As for the mechanism, both these two com-

ponents do not appear in the force in the single-particle pic-

ture, but result from the momentum transport through a fluid

element. In contrast to the force on a single particle, the force

on a Eulerian fluid element includes the components due to

the stress and polarization but exclude that due to the dis-

placement of a particle. Hence, the RPFs can still be

obtained based on the analysis of the particle motion only if

these differences were properly treated. More discussion

using this particle-fluid approach has been given in Ref. 23.

We directly describe the mechanism of every component of

Fr as below.

The k� bWl= xXmð Þ in Eq. (4) for parallel RPF is

indeed the resonant-particle drift to balance the resonant

wave-momentum absorption (proportion to k?=x). This drift

is a second-order (in E1) response and transports the zero-

order (in E1) parallel momentum of the “resonant particles,”

mvl
ðresÞ. The inhomogeneous transport of parallel momentum

generates the parallel component of Fr as a distributed par-

allel force without providing an integrated force over a

plasma volume. In the derivation using the particle-fluid

approach, the parallel component comes from the term

�r � mv2v0;==ð Þ, which is directly recognized as the momen-

tum transport by the resonant drift as v0;== ¼ vl
resð Þ.23

The result in the present paper emphasizes that the gra-

dient of mvl
ðresÞ may contribute as greatly as that of rf fields

to �r � mv2v0;==ð Þ for cyclotron resonance, which can be

perceived as follow. For cyclotron resonance (l 6¼ 0), the

gradient of energy absorption in Eq. (4) can be estimated as

rWl

Wl

����
���� 	 rfl

fl

����
���� 	 1

fl

r?vl
ðresÞ

vT

����
����; (7)

where Eq. (1) has been used and fl � ðx� lXÞ=ðk==vTÞ is

the crucial argument for evaluating the plasma dispersion

function Zl flð Þ.

C. Mechanisms of the poloidal RPF

The poloidal RPF in Eq. (5) is also a distributed force

and has been analyzed several times since Jaeger et al.
obtained the compact expression in 2000.22,28,37 However,

its physics might be clearer from the following analysis of

the collisionless perpendicular momentum balance equation

(MBE).

For simplicity, the system (including the rf waves) here

is assumed to be homogeneous along the symmetry direction

y and z, where x, y, and z refer to the radial, poloidal, and to-

roidal coordinates. The perpendicular flux nV?ð Þ2 contains a

diffusion-like flux along x-direction. The diffusion-like flux

is due to the inhomogeneous expanding of the gyroradius

and can be perceived by using the particle-fluid approach as

follow. The radial flux in a Eulerian element is related to the

quantities of a single particle (or in a Lagrangian element) as

nvð ÞEu;2x ¼ n0v2x � n0r � hr1v1xit þ v0xhn2 � r1 � rn1it;
(8)

where the numbers in subscripts represent the order in E1, hit
represents the averaging over the fast varying scale and the

linearized continuity equation is used. Noting �n0r � hr1v1xit
¼ � n0=2ð Þ@xdthx1

2it, neglecting the finite gyroradius effect

(i.e., v0? ¼ 0) and assuming the linear perpendicular pertur-

bation is isotropy (i.e., hx1
2it ¼ hy1

2it ¼ hq1
2it=2), we obtain

�n0r � hr1v1xit ¼ � n0=4ð Þ@xdthq1
2it which produces the

diffusion-like flux.

From the second-order kinetic theory,38 the complete

expression of collisionless perpendicular flux nV?ð Þ2 is

nV?ð Þ2 ¼
1

qB
Fk � bþ 1

qB
Fnr � b

þ êy
1

2qB
Re

@

@x

X
k;k0

ei k0�kð Þ�rt
X

l

lX
x

Wlðk; k0Þ

� êx
1

2qB
Re

@

@x

X
k;k0

ei k0�kð Þ�r
X

l

l

2x
Wlðk; k0Þ: (9)

The first two terms at the RHS of Eq. (9) are the drifts due to

DDF and the nonresonant ponderomotive force, respectively;

the third term is the diamagnetic drift due to inhomogeneous

gyro-harmonic heating; the last term is the diffusion-like flux.

Now, the radial and poloidal MBEs can be discussed

with the use of nV?ð Þ2 in Eq. (9). The time derivative of

nV?ð Þ2 is zero except its poloidal component @ nVyð Þ2=@t
due to the diamagnetic drift, so the radial and poloidal com-

ponents of MBE become, respectively

�qB0 nVyð Þ2 ¼ F2;x; (10)

m
@

@t
nVyð Þ2 þ qB0 nVxð Þ2 ¼ F2;y: (11)

For the case of ky ¼ 0, Fkð Þy ¼ 0 and the ratio of the terms

in Eq. (11) is

m
@

@t
nVyð Þ2 : qB0 nVxð Þ2 : F2;y ¼ 2 : �1 : 1: (12)

The causal relations between the collisionless flux and the

perpendicular forces are different in consideration of the

MBEs. From Eq. (10), the poloidal flux can be viewed as the

drift caused by the radial rf force. In contrast, the poloidal

RPF can be viewed as the residual effect due to the incom-

plete cancellation between the rate of the diamagnetic poloi-

dal momentum gain and the Lorentz force due to the radial
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diffusion-like flux in consideration of Eqs. (11) and (12).

Thus, the diamagnetic drift and the diffusion-like flux should

be considered prior to the poloidal RPF as the direct response

to the rf heating in the analysis of the rf-driven flow.

D. Mechanisms of other components

The radial component of rf force in Eq. (5) includes the

radial DDF, a secular (/ t) pressure gradient due to inhomo-

geneous gyro-harmonic heating, and a nonresonant pondero-

motive force Fnr given in Eq. (6). The first term of Fnr just

represents the ponderomotive force in the single particle pic-

ture, the second term represents the gradient of nonresonant

perpendicular pressure, and the last term is due to some finite

temperature effect which becomes zero in the cold plasma

limit. Since the kinetic stress is neglected in the derivation of

the wave-momentum conservation equation,39 Fnr here can-

not be described just as “photon reflection.” This may con-

trast to some conventional but unproved ideas on the relation

between the nonresonant/reactive ponderomotive force and

the analogy of photon reflection.31,40 This also indicates that

the ponderomotive effect cannot be obtained just based on

the wave kinetic equation. More details about the general

wave-momentum equation are summarized in Appendix C.

The inhomogeneities bring about some first-order (in

q=L?) corrections in Fk as well, but these corrections, in

contrast to the RPFs, can contribute to the integrated force.

They may come from the additional resonant interaction cor-

responding to the mixture of different electric field compo-

nents without changing the basic physics of resonant

momentum absorption.23

III. EXTENDED GUINDING-CENTER FORMULATION
FOR RF FORCES

In general, the nonlinear rf forces require the velocity

distribution function to the second order in the wave ampli-

tude, i.e., f vð Þ � f0 þ f1 þ hf2it. The distribution function f
is determined by the Vlasov equation

f vð Þ � f0 þ f1 þ hf2it; (13)

where a � q=mð Þ E1 þ v� B1ð Þ, E1 and B1 are the applied rf

fields. Since only the slowly varying part of f2 is needed for

the calculation of rf forces, the notation hit for the time aver-

age on nonlinear quantities will be suppressed where no con-

fusion arises, e.g., f2 � hf2it. The following abbreviation will

frequently be used:

hA1B1it ¼
1

2
Re
X
k;k0

ei k0�kð Þ�rA�kBk0 : (14)

In this work, the rf forces and the energy absorption are

calculated to the first order in f2 � hf2it, so quantities acted on

by the gradient operatorr are required only to the zero order.

There are three kinetic methods to derive the rf forces.

The second-order rf kinetic theory developed by Berry,

Jaeger, and Batchelor requires the explicit solution of f2 and

manipulations on triple products of Bessel functions to

obtain the rf forces.27 It is much more tedious to extend this

method to consider the inhomogeneous magnetic field. The

particle-fluid approach previously used by us requires the so-

lution of particle motion equations.23 Although this method

is convenient to reveal the mechanisms, it is also tedious to

be applied here. The guiding-center formulation developed

by MBDJ can obtain the forces without the explicit expres-

sion of f2, and thus is convenient to be extended to consider

the inhomogeneities of equilibrium parameters although it

was developed originally under the assumption of homoge-

neous equilibrium.29 Therefore, the following derivation will

be based on the extension of guiding-center formulation.

A. Manipulation of energy absorption

The most significant modification due to the inhomoge-

neities of equilibrium parameters is on the resonant energy

absorption, which should be separated from hJ1 � E1it.
For further derivation, we assume the static magnetic

field as rB0 ¼ r?B0ð Þb (i.e., retaining the inhomogeneity

of magnetic-field amplitude but neglecting the magnetic

shear and the magnetic curvature). For perpendicular inho-

mogeneous plasma, the equilibrium distribution function f0

is not a Maxwellian with zero mean velocity. Assuming the

gradients of density and temperature are in the same direc-

tion ênT , we take f0 as

f0 ¼ fM 1þ R � ênT en þ eT
v2

v2
T

 !" #
; (15)

where fM is the homogeneous Maxwellian, v2
T � 2T=m,

rlnT ¼ eT ênT , and rlnn ¼ en þ 3eT=2ð ÞênT .

We first solve the linearized Vlasov equation in the

guiding-center coordinate system for the calculation of J1,

and then evaluate hJ1 � E1it to the first order in q=L? (more

details are given in Appendix A). In the derivation, we adopt

another assumption k== � 1=LB, which indicates that the

Doppler broadening dominates over the broadening due to

the gradient of magnetic field for the cyclotron reso-

nance.41,42 Although there are some cases of practical inter-

est beyond this assumption, it is valid for the numerical

examples given in the present article. The final expression

for hJ1 � E1it is

hJ1 � E1it ¼ S�r �Q; (16)

where the energy absorption rate S is

S ¼ � q2

2XT
Re

ð
d3vKrfM

X
k;k0

ei k0�kð Þ�r E�k � v
� �

�eiH k;r;vð Þ
ð/

�1
d/0e�iH k0;r;vð Þ v � Ek0ð Þ;

(17)

and the energy flow Q is

Q ¼ m

2
Re
X
k;k0

ei k0�kð Þ�r
ð

d3vq v � a�k
� �

fk0 : (18)

By selecting fM as the zero-order (in q=L?) distribution func-

tion at r, the inhomogeneity factor Kr in Eq. (17) is

062506-4 J. Chen and Z. Gao Phys. Plasmas 21, 062506 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

202.127.206.120 On: Thu, 23 Jul 2015 03:02:23



Kr r; vð Þ ¼ 1þ 1

2Xx
k � b� enTð Þ envT

2 þ eTv2
� �

: (19)

The integration of gyro-angles in Eq. (17) is further eval-

uated in Subsection 2 of Appendix to yield a W matrix,

which is similar to that in Ref. 29 but includes the contribu-

tion from inhomogeneities.

The expressions about hJ1 � E1it given by Eqs. (16)–(19)

are the main results of our extension on the guiding-center

formulation. Neglecting the spatial dependence of X xð Þ and

taking Kr r; vð Þ � 1, the expressions reduce to those given in

the original guiding-center formulation, i.e., Eqs. (A10),

(A20)–(A22) in Ref. 29. However, the spatial dependence of

X xð Þ is significant for the evaluation of the gradients of

energy absorption and rf forces due to the cyclotron-

harmonic resonance. It should be noted that the gradients of

the equilibrium parameters (in the energy absorption) were

also retained in Ref. 28 by appealing to the argument of the

global momentum conservation, and its contribution is usu-

ally larger than that from the gradient of the rf fields.43

It is critical to separate the pure resonant component S
from hJ1 � E1it not only for distinguish the resonant energy

absorption from the energy flux but also for recognizing the

mechanism of the rf forces. The S given in Eq. (17) just repre-

sents the resonant energy absorption since it is a symmetric

bilinear form on Ek (or Ek0). Therefore, S kþ k0ð Þ=2x is just

the DDF corresponding to the resonant momentum absorption.

B. The guiding-center formulation for rf forces

In this subsection and Appendix B, we briefly summa-

rize the derivation of rf forces in Ref. 29 including our exten-

sion in Sec. III A. The rf force on each plasma species is the

sum of the nonlinear electromagnetic (EM) force and the

gradient of the kinetic stress, i.e., F2 � FL �r �P2. The ki-

netic stress can be separated as P2 ¼ P/ þPCGL, where

P/ ¼ m

ð
d3v vv� hvvi/
� �~f 2; (20)

PCGL � m

ð
d3vhvvi/hf2i/; (21)

hf2i/ and ~f 2 are, respectively, the gyrophase independent part

and gyrophase dependent part of f2. The detailed expressions

of P/ and PCGL are given in Eqs. (B2) and (B8), respectively.

The nonlinear EM force FL � hqn1E1 þ q nVð Þ1 � B1it can

be rewritten as29

FL ¼
1

2
Re rE�ð Þ � D½ 
 � r �PDE; (22)

where PDE ¼ Re DE�ð Þ=2, D represents
P

k0 iJk0=xð Þexp

ik0 � rð Þ and E� represents
P

k Ek
�exp �ik � rð Þ. Noting

rE�ð Þ � D ¼
X
k;k0

ei k0�kð Þ�r k

x
E�k � Jk0 ; (23)

and using Eqs. (16)–(8) and (18) for the manipulation of

E�k � Jk0 , we obtain

1

2
Re rE�ð Þ � D½ 
 ¼ Fk þ Fr �r �Pw; (24)

Fk ¼
1

2
Re
X
k;k0

ei k0�kð Þ�r kþ k0

2x

X
l

Wl k; k0ð Þ; (25)

Fr ¼ �
1

2
Re
X
k;k0

ei k0�kð Þ�r k0 � kð Þ
2x

X
l

Wl k; k0ð Þ; (26)

Pw ¼
m

2
Re
X
k;k0

ei k0�kð Þ�r
ð

d3vfk0qv � a�k
k

x
: (27)

Then, the total rf force is obtained as F2 ¼ Fk þ Fr, where

Fr ¼ Fr �r � Pw þPDE þP/ð Þ � r �PCGL: (28)

Fk in Eq. (25) is a symmetric bilinear form on Ek (or Ek0 )

and thus only includes resonant terms. This conclusion on Fk

is the main result on rf forces from the extension of guiding-

center formulation, since the calculation for Fr needs only

the zero-order modification [i.e., Kr � 1 but retaining the

spatial dependence of X xð Þ].
In conclusion, the present article confirms the frame-

work by MBDJ.29 In their work, the perpendicular compo-

nent of Fr was considered. The correct poloidal RPF was

obtained but the radial nonresonant force was wrong.

Nevertheless, most of their derivation is still valid here and

is summarized in Subsection 2 of Appendix B, where our

modification is also pointed out (especially, there was a mis-

take in the Ref. 29 in the calculation for the nonresonant

force). Since the parallel force was not considered in the

original MBDJ’s work, we will present the derivation for it

in the following subsection.

C. Parallel rf forces due to perpendicular gradients

Restricting the derivation to the case with only perpen-

dicular gradients, we obtain from Eq. (28) the parallel force

F== ¼ Fk � b�r? � Pw þPDE þP/ð Þ � b; (29)

where Fk � b is the parallel DDF and the remainder compo-

nents will give the parallel RPF as follow. Combining Eqs.

(27), (B1), and (B2) for the stress terms, we have

�r? � P/ þPDE þPwð Þ � b ¼ �r? �
m

X

ð
d3v a1 � bv==
� �

f1

� �
t

� 1

2
Re
X
k;k0

ei k0�kð Þ�r in0q

xB
b� Ek0E

�
k;==

" #
; (30)
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where the second term in the square bracket was omitted in

the original MBDJ work but it is necessary to cancel the non-

resonant terms in the first term.

Substitute the lowest-order fk0 from Eq. (A5) into Eq.

(30) to obtain the same result we obtain the parallel RPF as

�r? � P/ þPDE þPwð Þ � b

¼ � 1

2
Rer? �

X
k;k0

ei k0�kð Þ�r
X

l

vl
ðresÞk� b

xX
Wl k; k0ð Þ:

(31)

Another derivation without using the solution of fk0 is given

in Subsection 3 of Appendix B.

IV. NUMERICAL COMPARISON BETWEEN DDF AND
RPF

In order to estimate the magnitude of the RPF compared

to the DDF, we use a perpendicular stratified, one-

dimensional slab plasma model, where (x, y, z) might refer to

the radial, poloidal, and toroidal coordinates in a tokamak,

respectively.27 Assuming that the scale length of power depo-

sition is Lrf 	 L?, the ratio of the parallel RPF to the parallel

DDF is approximately FRPF=FDDF � kyqTv
ðresÞ
l =ðkzLrf vTÞ. It

implies that for nearly perpendicular propagating wave the

effect of the RPF might be significant. Furthermore, Lrf is

expected to be small for the cyclotron damping (i.e., l 6¼ 0)

and can be estimated as Lrf 	 flLBkzqT=l, where Eq. (7) has

been used and LB is roughly the major radius R0 in tokamaks.

Then the ratio becomes FRPF=FDDF � lky=ðflkz
2R0Þ, and thus

shows a strong sensitivity on kz. In the following numerical

examples, it is thus expected that the ratio for ECRF is much

smaller than that for ICRF, since kz is much larger in the for-

mer case. Similarly for the poloidal force, the ratio of RPF to

the DDF becomes FRPF=FDDF � l=ðflkyqTkzLBÞ. It is also

expected that the ratio for ECRF is much smaller than that for

ICRF.

Now, we present numerical examples to estimate the

RPFs in comparison against the DDFs. Neglecting the mag-

netic shear we consider a 1-D slab tokamak plasma with

major radius R0 ¼ 0:67m, minor radius a ¼ 0:22m, and the

magnetic field on axis denoted as B0. Fig. 1 presents

the normalized parameter distributions with central density

and temperature, respectively, as ne;0 ¼ 1:2� 1020m�3

and Te;0 ¼ Ti;0 ¼ 3:5keV. Given the frequency and parallel

wave-number for an rf wave, the perpendicular wave-

number is calculated according to the local dispersion rela-

tion from the cold plasma model. The wave experiences the

collisionless damping according to the energy absorption

given in Eqs. (A8) and (A11). To explore the RPFs with a

nonzero poloidal wavenumber ky, we artificially set ky ¼ kx

in the calculation for the forces. We also present the

calculation of poloidal forces. It should be noted that the

special cases for ky ¼ 0 in ICRF have been presented in

Ref. 27, but without considering the DDFs as the compari-

son. All the forces are calculated with the condition that

1 MW power is absorbed by the corresponding particle

species.

Fig. 2 shows the rf forces (actually, the force density in

the unit Nm�3) on the minority hydrogen ions for a case of

ICRFs. The frequency is chosen such that the second har-

monic resonance of hydrogen dominates the power absorp-

tion of fast wave. The red solid line shows the DDF density

Fk, and the black dotted line shows the RPF density Fr.

The asterisk line shows the composite force density

F2 ¼ Fk þ Fr. For both the parallel and poloidal forces, the

RPFs dominate at the place with a large gradient of the

DDF, and are able to change the direction of the composite

force.

Fig. 3 shows the forces on electrons for a case of first

harmonic resonance for O-mode electron cyclotron wave

(ECRF). Since kz=LB is much larger than the wavenumber

ratio k?=kz and 1= kyqTð Þ, the RPFs are negligible to the total

forces both in the toroidal and poloidal direction.

Fig. 4 shows the forces on electrons for a case of LHW.

Although the lower hybrid wave propagates nearly perpen-

dicularly, k?=kz is not large enough to offset q=Lrf . The

RPFs are negligible to the total forces. It should be noted

that the parallel wavenumber kz (or refractive index nz) is set

large enough to make the wave damp greatly before propa-

gating out of this 1-D slab model. It may be possible that the

parallel RPF has a considerable effect if ky becomes large

while kz stays small. However, the mechanisms causing the

poloidal wavenumber varying are still controversial at

present.44–49

From these examples, it is conjectured that the parallel

PRF might be significant for the ion Bernstein wave (IBW).

The IBW has a large perpendicular wave vector k?qi 	 1

and a rather low parallel wave vector ck===x 	 1. In fact, in

the case of the mode-converted IBW, the parallel wave vec-

tor actually vanishes as it flips sign.50 Then, one has

FRPF=FDDF � c2=ðx2qiR0Þ, which is much large in typical

IBW experiments. Therefore, the RPF is expected to play a

key role in the scheme of IBW flow drive.

FIG. 1. Normalized equilibrium magnetic field, density and temperature pro-

file for 1-D tokamak plasma with R0 ¼ 0:67m, a ¼ 0:22m.
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V. DISCUSSION OF THE PARALLEL RPF IN ICRF MC
FLOW DRIVE

For rf heating, the RPFs could dominate since the DDFs

almost cancel due to the symmetric wave-vector spectrum. It

is more subtle for the parallel RPF which is proportional to

êw � k� b=k==, where êw denotes the unit vector perpendicu-

lar to the flux surface. Here, k== ¼ khêh � bþ k/ê/ � b, where

êh and ê/ denote the unit vectors along the poloidal and to-

roidal direction, respectively. For the mode-converted ICW

and IBW19 k== � khêh � b� k/, so êw � k� b=k== �
êh � b� êw=êh � b and the parallel RPF is independent to the

symmetry of the k spectrum. In contrast, the parallel wave-

vector satisfies k== 	 khêh � b 	 k/ for the ICRF via minority

heating (MH), and, therefore, the parallel RPF might be

dependent on the k spectrum and greatly reduce if the spec-

trum at the resonance is highly symmetric. These features

might account for the experimental observation that the rf-

driven toroidal flow plays a significant role in ICRF via MC

but not in ICRF via MH.51

In order to estimate the flow driven by the parallel RPF

in ICRF via MC in Alcator C-Mod, we use the information

about the power deposition from TORIC52 simulation pub-

lished in Ref. 51. For ICRF MC heating, the power deposition

to the minority 3He ions is mainly through the MC ICW. The

maximum of its profile after averaging over flux surface is

Pmax 	 7:5MW=m3 at r 	 0:4a and its characteristic length

for the interior region (specifically 0:1 < r=a < 0:4) is about

0:3a, where the small radius is a ¼ 0:22 m. The ICW is about

4 cm on the high field side of the 3He fundamental resonance

layer, which is at about R 	 70 cm. The wave frequency is

50MHz, while the absolute values of the parallel and

FIG. 2. The parallel forces (top) and poloidal forces (bottom) on the minor-

ity hydrogen ions when the second harmonic resonance on hydrogen domi-

nates the power absorption of fast wave; nH=ðnH þ nDÞ¼0:1, B0 ¼ 3:6T,

f ¼ 100MHz, and kz ¼ 10m�1; Fk , Fr, F2 are the DDF, the RPF, and the

composite force, respectively.

FIG. 3. The parallel forces (top) and poloidal forces (bottom) on the elec-

trons for O-1 mode of electron cyclotron wave; B0 ¼ 5:3T, f ¼ 140GHz,

and the parallel refractive index nz ¼ 0:1; Fk , Fr, F2 are the DDF, the RPF,

and the composite force, respectively.
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perpendicular wavenumbers are, respectively, jkjjj 	 45m�1

and jêw � k� bj 	 500m�1. The parallel RPF from Eq. (4) is

roughly FRPF;jj 	 0:23N=m3 along the concurrent direction in

the interior region. For simplicity, one may ignore the details

of toroidal momentum transport but consider that the

rf-driven toroidal flow would relax in the toroidal momentum

confinement time s/ if the rf power is shut off. Neglecting

the momentum flux through the boundary for simplicity, the

zero dimensional toroidal angular momentum equation for

the interior region is approximately20

@thR2r/ � nimiuii þ
1

sf;i
hR2r/ � nimiuii ¼ hR2r/ � Fwi;

(32)

where hi denotes the magnetic flux surface average and the to-

roidal momentum confinement time is s/;i 	 80ms. In the

following discussion, we apply the steady state assumption

@t ¼ 0. The electron density is ne 	 1� 1020m�3 and n3He=ne

	 10%, so the effective mass density is nimi 	 3:2
�10�7kg=m3. The toroidal rf force is approximately Rr/ �
Fw 	 FRPF;jj where the DDFs are neglected due to the sym-

metry of k spectrum and the poloidal RPF is neglected due to

Bh=B/ � 1. With the above parameters, the change of toroi-

dal velocity due to ICRF via MC in the interior region is

	60km=s which roughly equals the difference between the

MC and MH driven flows in the experiment.

Before concluding this session, we should point out that

the parallel RPF is essentially an rf-induced stress which can

transport the concurrent toroidal momentum inward across

the broad MC ICW deposition region, and is independent to

the gradient and the value of the toroidal velocity. Although

the parallel RPF is dipole-like, the enhancement of toroidal

momentum transport would change the global toroidal mo-

mentum like other stress (e.g., turbulent stress and collisional

stress).

The above applications of the rf forces are nevertheless

preliminary estimation. More calculations are ongoing

including the direct calculation using a 2D RF code (like

TORIC) to produce the rf forces and applying a more realis-

tic transport model for toroidal momentum transport.53

VI. SUMMARY

In this paper, we extend the guiding-center formulation

developed by MBDJ to obtain the rf kinetic forces including

the effect of perpendicular inhomogeneities in the rf fields,

in the static magnetic field, and in the equilibrium plasma

density and temperature. It is proved that the decomposi-

tion, hJ1 � E1it ¼ S�r �Q, is still valid and the local

energy absorption is completely resonant if the resonance

broadening is dominated by the Doppler broadening due to

finite k==.
The local parallel force is completely resonant, but it

consists of two parts: one is the DDF (direct drive force, aka

fundamental dissipative force) due to resonant parallel mo-

mentum absorption; the other is the RPF (resonant pondero-

motive force, aka resonant momentum redistribution effect)

due to the radial inhomogeneities of the poloidal momentum

absorption and the resonant velocity, which is given in Eq.

(4). The RPF is an actual nonlinear force in thermal plasmas,

and originates from the inhomogeneous transport of parallel

momentum of resonant particles by the nonlinear perpendic-

ular drift flux. The poloidal RPF reported previously by

Jaeger et al.28 is confirmed again and re-understood as a re-

sidual effect due to the incomplete cancellation between the

rate of the poloidal momentum gain and the Lorentz force

due to the radial particle flux. The poloidal momentum gain

is just the diamagnetic drift by the inhomogeneous perpen-

dicular heating, and the radial particle flux is a diffusion-like

flow due to the gyroradius expanding of “resonant particles.”

The radial force composes of the DDF, the secular resonant

pressure gradient, and the nonresonant ponderomotive force.

The nonresonant force is further expressed as the sum of the

ponderomotive force on particles, the gradients of the

FIG. 4. The parallel forces (top) and poloidal forces (bottom) on the elec-

trons for lower hybrid wave; B0 ¼ 5:3T, f ¼ 4:6GHz, and the parallel re-

fractive index nz ¼ 5; Fk , Fr, F2 are the DDF, the RPF, and the composite

force, respectively.
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nonresonant pressure and of the nonresonant momentum flux

due to finite temperature effect.

The numerical comparison in a slab rf model shows that

the RPFs in both the parallel and poloidal directions are

comparable to the DDFs when ion absorption dominates

(e.g., in ICRF) but negligible when electron absorption dom-

inates (e.g., in ECRF and LHW). For ICRF MC flow drive,

the parallel RPF is independent to the symmetry of k spec-

trum and its significance is demonstrated by a preliminary

quantitative estimation. More detail for the flows driven by

rf forces will be explored in upcoming works.
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APPENDIX A: MANIPULATION FOR ENERGY
ABSORPTION

1. The linearized velocity distribution function

The transformation from lab coordinates r; vð Þ to guid-

ing center coordinates R;Vð Þ is given by

r ¼ Rþ q R;Vð Þ; q R;Vð Þ � b Rð Þ
X Rð Þ

� V v ¼ V: (A1)

Thus, the transformed linearized Vlasov equation including

the first-order inhomogeneity effect of B0 is54

@

@t
þ V==r== � Xþ q � rRXð Þ@/ þ q � rRXð ÞV? � r?

� �
f1

¼ �a � rVf0 �
1

X
a � b�rRf0: (A2)

Using Eq. (15) and the Fourier representation of a as

a ¼
P

k0 ak0e
ik0 �r, the RHS of Eq. (A2) becomes

KnT k0;R; vð Þ � 2fM

v2
T

ak0 � v 1þ R � ênT en � eT þ eT
v2

v2
T

 !" #

� fM

X
ak0 � b� ênT en þ eT

v2

v2
T

 !
: (A3)

We expand the linear response in the Fourier representation55

f1 ¼
X

k0
fk0e

ik0 �r ¼
X

k0
fk0e

ik0 �qeik0 �R; (A4)

and use the local approximation to keep the spatial depend-

ence of equilibrium parameters which is supposed to vary

much slowly than the linear rf-induced perturbation. Then,

the solution of Eq. (A2) is obtained as

fk0 ¼ �eiH k0;R;Vð Þ
ð/
�1

d/0jRe�iH k0;R;V0ð Þ KnT k0;R; v0ð Þ
X 1�r � q0ð Þ ; (A5)

where q0 � rX ¼ �Xr � q0 is used and the lowest-order H is

H0 k0;R;Vð Þ ¼ � x� k0==v==
� �u

X
� q � k0?: (A6)

The higher-order terms in H correspond to the cyclotron-

harmonic coupling and hence can be neglected since k?q
� LB=q for most cases of practical interest. More discussion

about this argument can be found in the work by Chen and

Tsai about the gyrokinetic formulism for arbitrary frequency

waves.56

2. The energy absorption

Making use of Eq. (A5) (to evaluate J1), we obtain

hJ1 � E1it to the first order in q=L? as

hJ1 � E1it ¼ �
1

2
Re

ð
d3v
X
k;k0

ei k0�kð Þ�Rq v � E�k
� �

eiH k;R;vð Þ

�
ð/

�1
d/0jRe�iH k0;R;vð Þ KnT k0;R; v0ð Þ

X 1�r � q0ð Þ : (A7)

Then, we expand the integrand at R ¼ r under the assump-

tion that the parallel wave number is large enough, i.e.,

k== � 1=LB. Then, Eqs. (16)–(19) are obtained.

Completing the integration over the gyro-angle /0, the

energy absorption rate in Eq. (17) becomes

S ¼ 1

2
Re
X
k;k0

ei k0�kð Þ�r
X

l

Wl k; k0ð Þ; (A8)

where Wl k; k0ð Þ � Ek
� �Wl

ðextÞ k; k0ð Þ � Ek0 ,

Wl
ðextÞ k; k0ð Þ � q2

T
eil hk0 �hkð Þ

ð
d3vKrfM

i

�xl
Hl kð Þ�Hl k0ð Þ;

(A9)

Hl kð Þ � k̂?v?
l

kk
Jn kkð Þ þ b� k̂?v?iJ

0
l kkð Þ þ vzJl kkð Þẑ;

(A10)

�xl � x� lX� k==v==, kk � k?v?=X, k̂? is the unit vector

along the perpendicular wave vector, and Jl kkð Þ is the Bessel

function of order l.
Compared with the W matrix in Ref. 29, the most signif-

icant modification in the energy absorption is that the gyro-

frequency here is space dependent. In contrast, the effects

due to the gradients of the density and temperature can be

neglected except for drift wave range of frequency. Thus tak-

ing Kr � 1 and completing the velocity integration yields

Wl k; k0ð Þ ¼ TEk
† �W 0ð Þ

l k; k0ð Þ � TEk0 ; (A11)

where the same Cartesian coordinate system (x, y, z) as

that in Sec. IV is used, TEk � e�ihk Eþ; e
ihk E�;Ez

� �
,

hk � arcsin ky=k?
� �

,
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W
0ð Þ

l ¼ �i
e0x2

p

2kzvT
e�

�CZ flð Þ �
ð1� �CÞIl�1 þ ~CI0l�1 ðCk0 Il�1 þ CkIlþ1Þ=2� ~CIl flðk0?Il�1 � k?IlÞq

ðCkIl�1 þ Ck0 Ilþ1Þ=2� ~CIl ð1� �CÞIlþ1 þ ~CI0lþ1 flðk?Il � k0?Ilþ1Þq
flðk?Il�1 � k0?IlÞq flðk0?Il � k?Ilþ1Þq 4f2

l Il

0
BB@

1
CCA; (A12)

x2
p � nq2=ðe0mÞ, fl � x� lXð Þ=kz, Ck ¼ k?vT=Xð Þ2=2,

~C � k?k0?k0?=2, �C ¼ Ck þ Ck0ð Þ=2, Il
0 ¼ dIl

~Cð Þ=d~C, and

Il ¼ Il
~Cð Þ is the modified Bessel function of order l. When

hk ¼ hk0 ¼ 0, Wl k; k0ð Þ in Eq. (A11) reduces to E�m �Wl � En

in Ref. 28 and is used as the resonant energy absorption

which induces the collisionless damping of the model wave

in Sec. IV.

APPENDIX B: MANIPULATION FOR RF FORCES

1. Stresses in the guiding-center formulation

In this appendix, we summarize various stress terms in

the guiding-center formulation. The electromagnetic stress is

PDE ¼
q

2X
Re
X
k;k0

ei k0�kð Þ�r
ð

d3vfk0b� v 1� k0 � v
x

	 

E�k

þ 1

2
Re
X
k;k0

ei k0�kð Þ�r Dk0;==E
�
k;== �

in0q

xB
b� Ek0E

�
k;==

	 

;

(B1)

where we retain the term b� EE�== in the second bracket,

which was neglected in Ref. 29 by appealing to the argument

of the species summed quasineutrality. The off-diagonal

pressure tensor is29

P/ ¼
m

X

ð
d3v

1

4
v?a� bþ a?v� bð Þf1

� �
t

þ m

X

ð
d3v v==a� bþ a==v� b
� �

f1

� �
t

þ tr; (B2)

where tr indicates the transpose of all the preceding terms.

The diagonal pressure tensor for the general electromag-

netic wave was given in Eq. (B4) in Ref. 57 as

@

@t
PCGLð Þ?? ¼ m

ð
d3vhf1a1 � v?I? þ 2f1a1 � v==bbit: (B3)

2. Perpendicular forces due to perpendicular
gradients

For the perpendicular forces due to perpendicular gra-

dients, combining Eqs. (27), (B1), and (B2) can yield29

� r? � Pw þPDE þP/ð Þ½ 
? ¼ �r?Xr þ b�rXd; (B4)

where

Xr ¼
m

2X

ð
d3vb� v � af1

� �
t

Xd ¼
m

2X

ð
d3vv? � af1

� �
t

:

(B5)

Here, Xd is resonant and is evaluated to be _w?= 2Xð Þ by using

the lowest-order f1 in Eq. (A5), where _w? obtained in Ref. 29

is

_w? ¼
1

2
Re
X
k;k0

ei k0�kð Þ�r
X

l

lX
2x

Wl k; k0ð Þ: (B6)

Thus, the poloidal RPF in Eq. (5) is obtained from b�rXd.

Xr can be recast as

Xr ¼
1

2
Re
X
k;k0

ei k0�kð Þ�r

� 1

2
i
k?
x
� @

@k?
W k; k0ð Þþi

q

2

ð
d3v

Ek?
� � v

x

	 

fk0

( )

� Xr;k? þ Xr;?; (B7)

where Xr;? was missed in Ref. 29 but it is needed to cancel

PCGL;E? given in Eq. (B8) below. The operator @=@k in Eq.

(C12) in Ref. 29 might be mistaken with @=@k? in Eq. (C14)

there.

Substituting the lowest-order f1 into Eq. (B3) and using

the slowing-ramped-field correction for the time integra-

tion,58 we obtain

PCGL;?? ¼ I?
1

2
Re
X
k;k0

ei k0�kð Þ�rt
X

l

lX
x

Wl

þ I?
1

2
Re
X
k;k0

ei k0�kð Þ�r
X

l

ilX
2x

@Wl

@x

� I?
1

2
Re
X
k;k0

ei k0�kð Þ�r iq

2

ð
d3v

Ek?
� � v

x

	 

fk0

� PCGL;sec þPCGL;@x þPCGL;E?: (B8)

Thus, the secular radial pressure gradient, the second term in

Frð Þ? in Eq. (5), is obtained from �r �PCGL;sec. The sec-

ond term in Eq. (B8) PCGL;@x may be viewed as the nonreso-

nant pressure.

The nonresonant force Fnr in Eq. (6) can be obtained by

collecting all the nonresonant components in Eqs. (B7),

(B8), and (26).

3. The parallel RPF due to perpendicular gradients

The zero-order (in q=L?) a�k � b can be recast as

a�k � b ¼ q

m
E�k � b 1� k0 � v

x

	 

þ k

x
� b

q

m
E�k � v

	 

; (B9)

where the difference between k and k0 is omitted. Taking the

v== moment of the lowest-version of the linearized Vlasov

equation, we have
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i x� k0 � vð Þv==fk0 ¼ rv � v==v� bXfk0
� �

þrv � v==ak0 f0
� �

� q=mð Þ E==k0 þ v� Bk0ð Þ==
h i

f0: (B10)

By using these two identities and noting f0 � fM v2ð Þ to the

lowest order in q=L?, the first term at the RHS of Eq. (30)

becomes

�r? �
m

X

ð
d3v a1 � bv==
� �

f1

� �
t

¼ � 1

2
Rer? �

X
k;k0

ei k0�kð Þ�r in0q

xB
b� Ek0E

�
k==;

�r? �
q

2X
Re
X
k;k0

ei k0�kð Þ�r
ð

d3v
k

x
� b E�k � v
� �

v==fk0 : (B11)

The first term at the RHS of Eq. (B11) just cancels the sec-

ond term at the RHS of Eq. (30). The expression of the sec-

ond term at the RHS of Eq. (B11) is similar to hJ1 � E1it
except an additional factor v==. Noting that this term is a

symmetric bilinear form on Ek (or Ek0 ) to the lowest order

in q=L? and thus is totally resonant, we can set v== as

vl
resð Þ ¼ x� lXð Þ=k== to obtain the final result in Eq. (31).

APPENDIX C: MOMENTUM CONSERVATION FOR A
MONOCHROMATIC WAVE

The MCE for a monochromatic wave propagating in ho-

mogeneous plasma can be obtained by the similar approach

as that for the energy conservation equation (ECE) (aka

Poynting’s theorem for plasma waves). The approach for the

ECE is, in principle, recasting the linear current by the dot

product of the conductivity and the electric field in Fourier

representation and substituting it to the general Poynting’s

theorem for EM waves.59 The general MCE for EM waves is

@

@t
e0E1 � B1ð Þ þ r

� e0jE1j2 þ
1

l0

jB1j2
	 


I� e0E1E1 �
1

l0

B1B1

� �

¼ �FEM; (C1)

which is obtained by using Maxwell’s equations to replace

the linear current in the definition of the EM force

FEM ¼
X

j

nj;1qjE1 þ Jj;1 � B1ð Þ; (C2)

where the index j indicates the species number.

Assuming the envelope of rf fields slowly varying in

space and time, i.e.,

E1 r; tð Þ ¼
1

2
Es r; tð Þeik0�r�ix0t þ c:c:
h i

; (C3)

recasting Jj;1 in Fourier representation as

Jj;k ¼ rj k;xð Þ � Es r; tð Þ � i
@r
@k
� @Es

@r
þ i

@r
@x
� @Es

@t
(C4)

and using the linearized continuity equation to cancel nj;1,

the EM force becomes

FEM ¼
1

2
Re

k

x
E� � r � Eþr � I E� � ir

2x
� E

	 

� @

@k
E� � ir

2x
� E

	 

k� ir

x
� EE�

� ��

þ @

@t

k

x
E� � ir

2x
� E

	 

þ @

@x
E� � ir

2
� E

	 

k

x
� k

x
� ir
x
� EE�

� ��
; (C5)

where r �
P

j rj and the subscript s is suppressed. Then, the

whole MCE can be obtained by substituting FEM into Eq.

(C1). Introducing the action density JA and the action flux

density CA as follows,

JA �
e0

2
E� � @Mh

@x
� E; (C6)

CA ¼ �
@

@k
E� � e0

2
M � E

	 

; (C7)

then the whole MCE is recast into a compact expression con-

sistent with the wave kinetic equation as

@

@t
kJAð Þ þ r � CAkð Þ ¼ �kE� � ea � E; (C8)

where M � kk� k2Ið Þ=k0
2 þ e=e0, Mh � MþM†ð Þ=2,

e � e0Iþ ir=x, ea � e� e†ð Þ=2i, and the Fourier represen-

tation of the Helmholtz equation, M � E ¼ 0, is used.

The nonresonant ponderomotive force Fnr in Eq. (6) is

quite different from these expressions for the change of

wave momentum. The root cause is that the nonlinear kinetic

stress P2 is neglected in the MCE.
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