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Abstract In this work we calculated the energy con-

finement time by analytical solution of Grad–Shafranov

equation (GSE) with Lithium limiter for circular cross-

section HT-7 tokamak. A generalized Grad–Shafranov-

type equation has been used. Specific functional forms of

plasma internal energy and current are used. For this, the

Shafranov parameter (asymmetry factor) and poloidal beta

were obtained from by analytical solution of GSE. Than we

can find the plasma energy confinement time. It is

observed, the energy confinement time obtained from the

analytical solution of GSE by using liquid lithium limiter is

longer than that using graphite limiter, which shows that

the plasma performance was improved.

Keywords Energy confinement time � Grad–Shafranov

equation � Internal energy � Liquid lithium

Introduction

In tokamaks the plasma configurations are described in

terms of solutions of the Grad–Shafranov equation (GSE).

In the usual GSE [1, 2], the internal energy of plasma does

not appear, but the internal energy [3] appears as a quantity

to be determined. Analytical solutions of the Grad–Sha-

franov [1–3] equation are very useful for theoretical studies

of plasma equilibrium, transport and magnetohydrody-

namic (MHD) stability. In tokamaks, confinement of hot

plasmas by means of strong magnetic fields is important

research area. Confinement time, one of the main param-

eters of the ignition condition, is limited by thermal con-

duction and convection processes, but radiation is also a

source of energy loss. The maximum energy confinement

time can be determined by the microscopic behavior of the

plasma such as collisions and microinstabilities [4]. This

behavior ultimately leads to macroscopic energy transport,

which can be either classical or anomalous depending on

the processes involved. In the absence of instabilities, the

confinement of toroidally symmetric tokamak plasma is

determined by Coulomb collisions [4]. Since these phe-

nomena require a knowledge of individual particles motion

on short length scales and time scales, they are usually

treated by kinetic models, but including only limited

geometry because of the complexity of the physics. To

achieve the thermonuclear condition (the ignition condi-

tion) in a tokamak (nTsE [ 3 9 1021 m-3 keVs), it is

necessary to confine the plasma for a sufficient length of

time. The global energy confinement time sE, is defined by
R

3=2nðTe þ TiÞ d3x
P

, where n is the plasma density, T is the

plasma particle temperature and P is the total input power

[5–17].

Lots of lithium experiments have been carried out in

tokamaks for the enhancement of plasma. In TFTR [18],

plasmas with peaked density profile, high plasma current

and long energy confinement time were achieved by

injection of lithium pellets into plasma. In CDX-U [19–21],

plasma discharges with lower loop voltage, wall recycling

and edge oxygen and carbon radiation, and higher core

electron temperature was achieved by using a toroidal

liquid lithium limiter. In FTU and T-11 M, some excellent
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results were also obtained by application of liquid lithium

limiters with capillary-pore system (CPS) structure [22–

25].

To deal with lithium as PFMs and to provide databases

for future research of lithium application as first wall, a

movable lithium limiter [25] was designed on circular

cross-section tokamak HT-7. By the first application of

liquid lithium limiter, some positive results are obtained.

In this work we calculated the energy confinement time by

analytical solution of Grad–Shafranov equation (GSE) with

Lithium limiter for circular cross-section HT-7 tokamak [26,

27]. A generalized Grad–Shafranov-type equation has been

used. Specific functional forms of plasma internal energy and

current are used. For this, the Shafranov parameter (asym-

metry factor) and poloidal beta were obtained from by ana-

lytical solution of GSE. Than we can find the plasma energy

confinement time. It is observed, the energy confinement

time obtained from the analytical solution of GSE by using

liquid lithium limiter is longer than that using graphite lim-

iter, which shows that the plasma performance was

improved. Also, the energy confinement time was measured

using the diamagnetic loop [25, 27]. Results of the two

methods are in good agreement with each other.

Extended Grad–Shafranov Equation

Maxwell’s equations together with the force balance

equation from MHD equations, in the cylindrical coordi-

nates (R, Z) reduce to the two-dimensional, nonlinear,

elliptic partial differential equation, or GSE [13]: As in the

linear case, the procedure to derive the GSE can be fol-

lowed obtaining an extended GSE [3]

D�w ¼ l0RJu ¼ �l0ðc� 1ÞR2 duðwÞ
dw

� F wð Þ dFðwÞ
dw

ð1Þ

where D* is

D� ¼ R
o

oR

1

R

o

oR

� �

þ o2

oz2
ð2Þ

The internal energy u(w) in this extended GSE is a function

of w. The u(w) and F(w) are two free functions, and where

l0 and J are the vacuum permeability and plasma current

density respectively.

Energy Confinement Time by the Analytical Solution

of Grad–Shafranov Equation

For circular cross-section HT-7 tokamak [26, 27], which is

the ohmically heated tokamak, the GSE is solved by for-

mally expanding as follows [13, 28]:

wðr; hÞ ¼ w0ðrÞ þ w1ðrÞ cos hþ . . .; ð3Þ

uðwÞ ¼ u2ðw0Þ þ
du2ðw0Þ

dw0

w1 cos hþ . . .; ð4Þ

FðwÞ ¼ RBu ¼ R0½B0 þ Bu2ðw0Þ þ . . .�; ð5Þ

where B0 = const, is the vacuum toroidal field at R = R0,

Bu2(w) is a new free function replacing F(w). In the first

order solution or toroidal force balance approximation and

if plasma were surrounded by a perfectly conducting shell

located at r = b, then first order flux function [13, 28] is:

w1ðrÞ ¼ Bh1ðrÞ
Zb

r

dx

xB2
h1ðxÞ

�
Zx

0

2l0ðc� 1Þy2 du2ðyÞ
dy

� yB2
h1ðyÞ

� �

dy

ð6Þ

where Bh ¼ l0Ip

2pr

If there are external coils to produce vertical magnetic

field, the boundary condition on the flux function is mod-

ified so that we have [13]:

wðb; hÞ ¼ const:þ wvðb; hÞ; ð7Þ

where wv(r, h) = R0Bvr cos h, is the flux function due to

external vertical field coils and therefore the full toroidal

correction to w is [13, 28]:

w1ðtotalÞ ¼ w1TðrÞ cos h

¼ w1ðrÞ þ
bR0Bv

Bh1ðbÞ

� �

Bh1ðrÞ
� �

cos h ð8Þ

The shift of the plasma column center from the geometrical

center of vacuum chamber given by [13, 28]:

DR ¼ �w1TðaÞ
w00ðaÞ

¼ �w1ðaÞ
w00ðaÞ

� DRv ¼ �
w1ðaÞ
w00ðaÞ

� bBv

Bh1ðbÞ
ð9Þ

where Bh1ðbÞ ¼ l0Ip

2pb
.

Therefore, the first relation for plasma position [13, 28]

is

DRAnalytical ¼
b2

2R0

� bp þ
li � 1

2

� �

1� a2

b2

� �

þ ln
b

a

� �

� bBv

Bh1ðbÞ
ð10Þ

where bp is the poloidal beta, li is the internal inductance of

the plasma, and Bv is the average vertical magnetic field

over the vacuum chamber. We can find Bv from saddle sine

coil [27] and expression bp þ li
2

from magnetic coils

measurement [27, 29]:
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bp þ
li

2
¼ 1þ ln

a

b
þ pR0

l0I0

Bhh i þ Bnh ið Þ; ð11Þ

where

Bhh i ¼ Bhðh ¼ 0Þ � Bhðh ¼ pÞ;

Bnh i ¼ Bnðh ¼
p
2
Þ � Bnðh ¼

3p
2
Þ; ð12Þ

We measured these local magnetic fields with magnetic

probes [27] at above angles.

Before we derive the relation for the energy confinement

time, we must determine the volume-averaged plasma

kinetic pressure hpi, and then the plasma thermal energy U.

hpi can be determined directly from the definition of the

poloidal beta [4]:

ph i ¼ bp

B2
hðaÞ
2l0

¼ l0

I2
pbp

8p2a2
ð13Þ

where a is the plasma minor radius. For the measurement

of the plasma thermal energy, we start from the plasma

state equation [4]:

ph i ¼
X

i
niTi ¼

2

3

X

i
Ei ¼

2

3
E; ð14Þ

where subscript ‘i’ indicates the plasma species i and E

indicates the plasma thermal energy density; therefore the

plasma thermal energy U and the plasma temperature are

obtained [4]:

U ¼ 3

2

X

a
naTa

� �
V ¼ 3

2
ph iV ; ð15Þ

where V is the plasma volume. The plasma-specific

resistance in the steady state plasma can be written as [4]

qp ¼
1

rp

¼ A

l
Rp ¼

a2

2R0

VR

Ip

ð16Þ

where rp is the plasma conductivity, Rp is the plasma

resistance and VR is the resistive component of the loop

voltage (the poloidal flux loop).

But the most important of these measurements is

determining the plasma thermal energy confinement time,

which is defined by [4]

dU

dt
¼ POhmic �

U

sE

; ð17Þ

where sE is the plasma energy confinement time and POhmic

is the rate of input heating power. Rearranging Eq. (17), the

ohmic heating power is [4]

POhmic ¼ VRIp �
d

dt

1

2
LI2

p

� �

; ð18Þ

If the plasma is in thermal equilibrium (L
0

= 0 and

I
0

= 0), then from Eqs. (15) and (17), we have

POhmic ¼ VRIp ¼ RpI2
p ¼

U

sE

; ð19Þ

sE ¼
3

8
l0R0

Ipbp

VR

¼ 3

8
l0R0

bp

Rp

; ð20Þ

Also if dU
dt

is not negligible, then from Eqs. (15) and (17),

we have

1

sE

¼ 8

3

Rp

l0R0bp

� 2I0

I
�

b0p
bp

; ð21Þ

Therefore, according to the above discussion, the Shafra-

nov parameter (asymmetry factor) and poloidal beta were

obtained from by analytical solution of GSE. Than we can

find the plasma energy confinement time.

It is observed from Fig. 1, the energy confinement time

obtained from the analytical solution of GSE by using

liquid lithium limiter is longer than that using graphite

limiter, which shows that the plasma performance was

improved. Also, the energy confinement time was mea-

sured using the diamagnetic loop [25, 27]. Results of the

two methods are in good agreement with each other.

Conclusion

We present the calculation of the energy confinement time

by analytical solution of Grad–Shafranov equation (GSE)

with Lithium limiter for circular cross-section HT-7 toka-

mak. A generalized Grad–Shafranov-type equation has

been used. Specific functional forms of plasma internal

energy and current are used. For this, the Shafranov

parameter (asymmetry factor) and poloidal beta were

obtained from by analytical solution of GSE. Than we can

Fig. 1 Energy confinement time, obtained (a) Experimental [25] and

(b) analytical by solution of GSE as a function of line averaged

electron density
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find the plasma energy confinement time. It is observed, the

energy confinement time obtained from the analytical

solution of GSE by using liquid lithium limiter is longer

than that using graphite limiter, which shows that the

plasma performance was improved. Also, the energy con-

finement time was measured using the diamagnetic loop

[25, 27]. Results of the two methods are in good agreement

with each other.
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