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1.  Introduction

The macroscopic magnetohydrodynamics (MHD) instabili-
ties in core are important for the global confinement of fusion 
plasmas in tokamaks [1]. The well-known instability is the 
sawtooth crash which periodically limits the core pressure [2, 
3], triggers certain kinds of MHD instabilities, such as the neo-
classical tearing mode (NTM) [4, 5], and redistributes ener-
getic particles or impurities etc [6–8]. The sawtooth crashes 
were regarded as self-consistent evolutions of the plasma cur-
rent density, pressure or/and safety factor (q) profiles, peri-
odically modifying the stability boundary of internal kink 
mode around the q = 1 rational surface [9–11]. Depending 
on characteristics of sawtooth crashes, two different mecha-
nisms, such as the magnetic reconnection and quasi-inter-
change models, have been proposed in recent years [12, 13]. 
It was generally assumed that the nonlinear development of 
m/n = 1/1 kink mode (m, n are the poloidal and toroidal mode 

number, respectively) eventually triggered sawtooth crashes 
[14, 15]. In experiments, the active control has successively 
suppressed sawtooth oscillations by means of heating or cur-
rent driving [16–20].

In recent years, a so-called long-lived mode (LLM) of m/n 
= 1/1 which was saturated and did not trigger sawtooth oscil-
lations in MAST [21] was reported. The stability analysis 
indicated that it was an ideal kink mode with a flat q profile in 
core, a q-value near or above unity (i.e. weak or reversed mag-
netic shear) [22]. The above characteristic of q-profile prob-
ably leads to a non-resonant kink mode, meaning the mode is 
not localized at the q = 1 rational surface [22–25]. As far as 
the q-profile relaxes, this LLM resulted in normal sawtooth 
crashes and standard sawtooth behaviors at the later phase 
of the discharges. In addition, there were also experimental 
observations of snake-like kink oscillations, in the cases with 
and/or without sawteeth [26–31]. Until now, two explanations 
were available: the bifurcation of tokamak equilibrium states, 
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and the nonlinear MHD evolution assuming the density sepa-
ration from plasma pressure [32, 33]. However, there are still 
many aspects contradicting each other [34–36].

The kink modes mentioned above may have different desta-
bilizing mechanisms, but the resulting perturbations located 
in the core either refer to sawtooth crashes or to long-lived 
oscillations, or to a seed island triggering NTM. The present 
experiment shows a similar structure of m/n = 1/1 kink mode, 
but it is coupled with the m/n = 2/1 tearing mode. In partic-
ular, it leads to strong sawtooth-like crashes (or big crashes) 
in the core. In what follows we describe a detailed observa-
tion of behavior of perturbations in section 2, then discuss the 
existing models for crashes in section  3 and demonstrate a 
candidate explanation in section 4, and arrange the conclusion 
in section 5.

2.  Observation

MHD perturbations in EAST (R0 ≈ 180 cm, a ≈ 50 cm) show 
a series of novel characteristics. As illustrated in figure 1 (a 
typical shot: 34484), MHD oscillations start just after the 
L–H transition indicated by D-alpha radiation in (a) which 
can be observed in soft x-ray (SX) radiation (a) and Mirnov 
signals (b) almost simultaneously. Particularly, there are two 
sawtooth-like crashes (denoted by ‘big crashes’) in (a) which 
are accompanied by the increasing amplitude of magnetic 

oscillations as indicated by the curves in (b). The relative 
intensity of SX is not regained from the big crashes in contrast 
to the regular sawtooth crashes (ST). In this way, they are sim-
ilar to the well-known minor disruptions, but occurring only 
in the plasma core. On the other hand, big crashes are always 
accompanied by MHD oscillations. This is also different from 
sawtooth cycles with precursor and/or post-cursor oscilla-
tions. Empirically it is difficult to detect the MHD oscillations 
of sawtooth cycles with Mirnov coils because the sensor coils 
are too far from the q = 1 rational surface in EAST. However, 
there are significant magnetic perturbations of Mirnov sensors 
in figure 1(b). Analysis of spatially distributed magnetic sen-
sors indicates that the mode mainly has the m/n = 2/1 helical 
structure.

The evolutions of MHD modes in SX signals during the first 
two big crashes are illustrated in figure 2(a) and figure 2(b), 
respectively. Perturbations exist across a broad space from 
Z= − 2.73 cm to Z = −20.52 cm, and big crashes occur without 
the inversion radius, as indicated by the two vertical arrows. 
This is in contrast to the subsequent regular sawtooth crashes 
in figure 2(c), where the inverse sawtooth appears gradually 
inwards as indicated by the vertical arrows. The inversion 
radius is also expected to evolve in the same way. In addition, 
the superimposed MHD oscillations disappear first within Z 
= −7.8 cm. Figure 3 shows the SX profiles round ST crashes 
(before: circle; after: plus) at several time moments, as indi-
cated by the arrows in figure 2(c). Clearly, the inversion radius 

Figure 1.  The characteristic of core MHD perturbation for the typical shot 34484: (a) the SX radiation in the centre chord (up trace) and 
the D-alpha ray used to indicate the L–H transition (down trace), and (b) the Mirnov oscillations. MHD perturbations are simultaneously 
excited just after the L–H transition (dashed line) on both SX and Mirnov signals. Two strong sawtooth-like crashes denoted by ‘big crash’ 
in (a) are obviously different from the following regular sawtooth crashes (ST) as indicated by vertical arrows. The vertical dashed line 
labels the L–H transition when MHD oscillations are excited.
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changes from Z = −18 cm to about Z = −13 cm. The evolution 
of inversion radius indicates the relaxation of current profile. 
Initial central q is larger than unity but becomes smaller at 
later stage. At this time, the first normal sawtooth appears in 
the plasma. This is a natural result of changes in plasma pro-
files due to the transition to H-mode. It should be emphasized 
that the absence of inversion radius for the big crashes cor-
responds to the center q larger than unity.

The main features of MHD perturbations in the big crash 
(we choose the first one) are illustrated in figure 4. The avail-
able SX measurements in the outer and core chords are shown 
in figure 4(a) and figure 4(b), respectively. Significant MHD 
oscillations begin just at the L–H transition (indicated by the 
decreasing D-alpha radiation), and seriously modify the core 
SX profile, as illustrated in the contour plot in figure 4(c). The 
start point basically coincides with the magnetic perturbations, 

Figure 2.  The evolution of SX signals across major interested region at several time slices: (a) during the first big crash, (b) during the 
second big crash, and (c) with regular sawtooth crashes. One can not find the inversion radius in (a) and (b) while this can be observed in 
(c). In addition, the inversion radius shrinks with time in (c) indicating the change of q = 1 rational surface. However, the q = 1 rational 
surface is absent for the big crashes.

Plasma Phys. Control. Fusion 56 (2014) 125016
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as illustrated by the time frequency spectrum of Mirnov sig-
nals in figure 4(d). However, perturbations seem to be lagging 
a little behind the L–H transition, indicating that the driving 
source comes from the L–H transition, by the change of profile 
such as the current density. It can be further inferred that the 
measured m/n = 2/1 mode is probably the tearing mode. The 
figure 4(e) shows the perturbation magnetic flux. However, it 
is unnecessary to distinguish the tearing mode from the kink 
mode for the m/n = 2/1 perturbations, while the perturbation 
on SX signals belongs to kink modes with m/n = 1/1 and m/n = 
2/2 helical structures. This will be discussed in what follows.

The mode coupling between m/n = 2/1 and m/n = 1/1 is 
clearly seen in figure 5. The m/n = 2/1 mode in figure 5(c) 
is destabilized at almost the moment when the m/n = 1/1 
mode gets measured at Z = 12 cm in figure 5(b). However, 
the perturbation amplitude is obviously larger at Z = 12 cm 
than at Z = 23 cm in figure 5(a). In addition, the m/n = 1/1 
mode has the same frequency as the m/n = 2/1 mode. This is 
strong evidence for the m/n = 1/1 mode coupling with the m/n 
= 2/1 mode. The phase-locked modes grow and destabilize 
the m/n = 2/2 mode in figures 5(a) and (b). As a consequence 
of mode growth, the big crash is eventually triggered, as indi-
cated by the vertical line.

The spatial structures of kink modes identified in figure 6 
are calculated by means of the fast Fourier transformation 
(FFT) over the time before the big crash. It is obvious that 
the profiles for m/n = 1/1 are basically axisymmetric around 
the magnetic axis indicated by the vertical line (we used the 
absolute value of amplitude in plotting to avoid asymmetry). 

The  magnetic axis drifts slightly downward because of the 
down single-none (DSN) equilibrium configuration. The 
appreciable perturbation is within about 6 cm away from the 
magnetic axis, corresponding to r/a ≈ 0.12. However, the m/n 
= 2/2 mode has a bigger width about r/a ≈ 0.22. Evolutions of 
both modes are illustrated in figure 7, where the vertical line 
indicates the big crash. Only with the FFT amplitudes, this is 
clearly due to the fast growth of m/n = 2/2 mode in figure 7(a) 
in comparison to the m/n = 1/1 mode in figure 7(c). However, 
once including the oscillating phase, it becomes difficult to 
determine which mode eventually leads to the big crash, as 
shown in figures 7(b) and (d).

3.  Discussion

It is shown above that the dynamics of m/n = 2/2 mode plays 
an important role for this category of strong crash. The whole 
evolution demonstrates that the q = 1 rational surface is 
absent in plasma during the strong crashes. This means that 
the modes of m/n = 1/1 and m/n = 2/2 are classified as non-
resonant modes. Both modes can deform the magnetic surface 
without reconnection, as shown in figure 4(c). The distortion 
of magnetic surfaces gradually becomes stronger because of 
the m/n = 1/1 mode phase-locked with the m/n = 2/1 tearing 
mode. In particular, the destabilized m/n = 2/2 mode exhibits a 
twice frequency of the m/n = 1/1 mode, implying a secondary 
distortion of the perturbed magnetic surface. There are pos-
sible other high-order modes in braiding magnetic field lines, 

Figure 3.  The profiles of SX radiation in the figure 2(c): data from the averaging relative intensity round the first arrow, during the time 
window round the second and third arrows, as well as the fifth and sixth arrows from upper to down panels, respectively. The change of 
inversion can be clearly seen.
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but they may be too microscopic to be detected due to the 
present spatial resolution of diagnostics. In addition, there is 
no measurable magnetic reconnection event for formation of 
magnetic island in the contour plot of SX signals. This states 
that the reconnection model which generally occurs at the q = 
1 rational surface cannot explain this strong crash. However, 
there is another model, called the quasi-interchange model, 
which is used in explaining sawtooth crash. A broad region 
with q ≈ 1 (q is the safety factor) in the core is necessary, and 
the hot crescent core and cold bubble shall be characterized. 

Although the required time scale (~100 µs much closer to the 
ideal MHD time scale rather than the resistive one) for the 
crash is in the same magnitude as that observed in this experi-
ment, the growth of the m/n = 2/2 mode cannot be predicted 
by this model, and the main feature of a pair of hot-crescent 
and cold-bubble was also not measured.

Actually, the relevance of strong crash with the increasing 
magnetic perturbations indicates the dependence of heat 
transport coefficient (thermal conductivity) on the change of 
magnetic topology. The strong crash shall be the result of 

Figure 4.  The time window for the analysis of the big crash: (a) the available SX signals in the most outside chords (Z ≈ ± 12 cm), (b) 
the core SX signals at Z = 0.23 cm as well as the D-alpha radiation, (c) contour plot of SX signals in interested region, (d) time frequency 
spectrum of Mirnov signals with the raw signals superimposed and (e) the resulting perturbation magnetic flux at edge. The arrows across 
(b) and (c) indicate the strengthening perturbations in core, while the vertical line labels the moment of the big crash.
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promptly enhanced anomalous heat conductivity due to the 
presence of higher-n (n  >  1) modes which braid the mag-
netic field lines. Significant progress in theory and experi-
ments were made on the onset of crash induced by braiding 
magnetic field lines [37, 38]. One theory indicated that the 
thermal conductivity can be enhanced by a factor ~ m m/i e  
in the stochastic (braiding) magnetic topology in comparison 
to the electrostatic limit [37]. The criterion for triggering the 
stochasticity of magnetic field lines requires that a dimen-
sionless parameter of pressure gradient is bigger than the 
magnetic shear. This model seems to agree with observations 
just after the L–H transition and before the first strong crash, 
such as the increasing pressure reflected by the ramping-up 
SX radiation in figure 1(a) and the weak or even a little nega-
tive magnetic shear indicated by the absence of q = 1 rational 
surface. However, it is again difficult to explain the necessity 
of the presence of n = 2 (m/n = 2/2) mode for the strong crash 
in experiments.

The other theory investigated the self-consistent change 
of parallel current density and the perturbed magnetic 

field [39]. The thermal conductivity in strong stochastic case 
is proportional to the product of electron thermal velocity 
and the square of perturbed magnetic field (χ ~ ∼

V b B L( / )e te
2

c,  
Lc is the correlation length of stochasticity), which is large 
enough to predict the crash. The modification of current 
density profile either distorts the magnetic surface or desta-
bilizes other modes, which depends on the sign of the sec-
ondary derivative of perturbed current. The generation of 
higher-n mode is a result of increasing the magnetic energy 
to balance the destabilizing free energy, and braiding mag-
netic field lines with a spectrum of different n-mode which 
leads to a stochastic region. This can explain why the m/n 
= 2/2 mode is destabilized just before the crash. In present 
experiments, the low hybrid wave (LHW) is the unique aux-
iliary heating and current-driving method which largely sup-
ports this explanation.

It should be noted that the phase-locked m/n = 1/1 and 
m/n = 2/1 modes are driven by the change of equilibrium pro-
files (current and/or pressure) when the plasma enters into the 
H-mode phase. The magnetic perturbations induced by the 

Figure 5.  The evolutions of the frequency spectrum for the core SX signals at Z = 0.23 cm (a), the SX signals at Z = 0.12 cm (b), and the 
Mirnov signals (c). The m/n = 1/1 mode in (b) is destabilized nearly simultaneously with the m/n = 2/1 mode in (c) whereas the m/n = 1/1 
mode is measured much later in (a). The vertical solid line labels the moment of the big crash before which the perturbations of the m/n = 
2/2 mode become stronger as illustrated in (a).

Plasma Phys. Control. Fusion 56 (2014) 125016
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m/n = 2/1 mode easily penetrate inwards and interact with the 
m/n = 1/1 non-resonant kink mode since the q = 1 rational 
surface (as the current shielding layer) is absent in plasma. 
This effectively increases the amplitude of m/n = 1/1 mode 
which can further disturb parallel current density. The latter 
can destabilize the m/n = 2/2 mode in terms of the suggested 
model in [39]. Of course, one cannot exclude the contribution 
of plasma pressure in destabilizing the modes and resulting in 
the stochastic region.

4.  Candidate explanation

The absence of a reliable q-profile obliges us to explain the 
above observations in a qualitative way. In this section, we only 
want to demonstrate how the m/n = 2/2 mode changes the mag-
netic topology. Based on the value of q95 = 3.3 and an assump-
tion of q0 = 1.01 as the q = 1 rational surface which is absent in 
plasmas, we can fit a q-profile by the second order polynomial, 
as shown in figure  8(a). The perturbed fluxes for observed 
modes are parametrically plotted in figure 8(b) where ratio of 
the core amplitude for the m/n = 2/1 mode is chosen as seven 
times of the measured perturbed flux at the edge. The m/n = 1/1 
mode amplitude is smaller than the m/n = 2/1 core amplitude 
with a factor of ε = a/R0, and the ratio of the relative amplitude 
of m/n = 2/2 mode to that of the m/n = 1/1 mode is two as the 
measured value. Actually, it is still challenging to obtain the 
exact perturbed fluxes in experimental study. With this input, 
we can use the mapping technique of the Hamiltonian problem 
to investigate the topology of magnetic fields. This method has 

been successfully applied in ASDEX Upgrade [40, 41], HT-7 
[42] etc, which will not be elaborated here.

The Poincare plots as outputs are shown in figure  9, 
where the upper one (figure 9(a)) was calculated with the 
perturbed fluxes of m/n = 2/1 mode and m/n = 1/1 mode. 
The rational surface of m/n = 2/1, according to figure 8(b), 
is at about r/a = 0.65 which is far away from the considering 
core region r/a < 0.22. It is obvious that the m/n = 2/1 mode 
has a robust perturbation forcing the field line to bend a bit 
in the core. However, inclusion of the m/n = 2/2 perturba-
tion flux leads to a significant change of the topology. As is 
shown in figure 9(b), there are a lot of belt-like stochastic 
zones within r/a < 0.14. In particular, there is an island-like 
braiding which connects the inside stochastic region to the 
outside nested surfaces, as indicated by the arrow. According 
to the equilibrium fitting (EFIT) calculation, this scope cor-
responds to a spatial scale within about Z  <  8 cm where 
strong sawtooth-crashes were observed in experiments. To 
illustrate the dependence of stochasticity on the m/n = 2/2 
mode, we sweep its amplitude around the value (A2,2) in 
figure 8(b) and keep other parameters invariant. The result 
is shown in figure 10 where we show four different ampli-
tudes of m/n = 2/2 mode, such as 0.1A2,2 in figure  10(a), 
0.5A2,2 in figure 10(b), 0.75A2,2 in figure 10(c) and 1.25A2,2 
in figure 10(d). It is clear that the stochastic belt is extended 
with an increase of the amplitude of m/n = 2/2 mode, as illus-
trated from figures 10(a) to (c). In particular, as the ampli-
tude is closer to and bigger than the A2,2, a new braiding 
structure is formed around r/a ≈ 0.12, which is similar to an 
island of m/n = 2/2 (ΔWn labels the width) in figure 10(d). 

Figure 6.  The spatial structures to identify the m/n = 1/1 and m/n = 2/2 modes. The reconstructions have used the FFT amplitudes and 
phases of SX signals during the time just before the first big crash.
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It is illustrated that the formation of x-point can be ascribed 
to the increasing amplitude of m/n = 2/2 mode. As a result, 
it short-circuits the inside stochastic and the outside nested 
surfaces in figure 10(d).

With these identifications, we can further check the heat 
conductivity which was derived as follows [39]:

� ⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠χ α= × − V R

q s

r

R N
5 10 ,e

2 te
3 2

2 2

(1)

where q is the safety factor and s is the local magnetic shear. 
α  ≥ 1 is the parameter reflecting the degree of stochasticity 
and N is the maximum of the toroidal mode number (we 
assume N = 2 since the other higher n mode is not mea-
sured in experiments). The electron thermal velocity is 

= × ≈ ×   −V T5.9 10 [eV] 2.3 10 m ste
5

e
7 1 (Te ≈ 1.5 keV). The 

magnetic shear is s ≤ 0.1 round the location (r/a ≈ 0.12) of the 

braiding structure. With these parameters, it is then derived that 
the value of thermal conductivity is at least χe ≥ 0.05 m2 µs−1. 
We can therefore estimate the duration of the strong crash, 
which is assessed as τ = 2πRa/χe ≈  113 µs, by assuming that 
the core energy is fully conducted to the edge. It should be 
indicated that this estimation probably overestimates the real 
duration of crash to some extent, since the real thermal con-
ductivity may be much larger. However, this is in agreement 
with the observed value of ~100 µs, at least in the same order 
of magnitude.

It is important to note that in the present case the tearing mode 
(m/n = 2/1) has its rational surface inside the plasma and there is 
no rational surface inside plasma for non-resonant kink modes 
(m/n = 1/1 and m/n = 2/2). This situation is different from the 
standard sawtooth crash where the q = 1 rational surface is always 
inside the plasma. To demonstrate the dependence of the magnetic 

Figure 7.  The reconstructed evolution with FFT amplitudes (a) and with FFT amplitudes and phases (b) for the m/n = 1/1 mode. The 
corresponding results for the m/n = 2/2 mode is illustrated in (c) and (d), respectively. It is obvious that the m/n = 2/2 mode in (c) grows fast 
just before the crash indicated by the vertical line, and is located within a much wider space.
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Figure 8.  (a) The fitted q-profile according to the value of q95 = 3.3 and the assumed centre safety factor q0 = 1.01. The vertical bars 
marked the location of the resultant q = 2 rational surfaces. (b) The parametric perturbed flux for the m/n = 2/1 mode, the m/n = 1/1 
mode, and the m/n = 2/2 mode. The perturbation at edge is derived from measured perturbed flux before the big crash as illustrated 
in the figure 4(e). The vertical bar labels the position of q = 2. The relative amplitude and location of m/n = 1/1 and m/n = 2/2 are 
determined as shown in figure 7. In addition, the amplitude of m/n = 1/1 is supposed to be smaller by the factor ε = a/R0 than the 
amplitude of m/n = 2/1 mode.
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topology on the center safety factor q0, we show several snapshots 
in figure 11 where figure 11(a) is the repeat of figure 9(b). It is 
observed that the braiding takes shape in figure 11(a), exhibits the 
m/n = 2/2 island structure which is isolated from the stochastic 

region as the center safety factor decreases in figure  11(b), 
and becomes a clear island with the stochastic regions further 
shrinking at q0 = 0.97 in figure 11(c). Furthermore, stochastic 
regions fully disappear when the m/n = 2/2 mode is absent, as 

Figure 9.  The Poincare plots: (a) with the input of the m/n = 2/1 mode and the m/n = 1/1 mode, (b) with the input of m/n = 2/1, m/n = 1/1, 
and m/n = 2/2 modes. There is only a little excursion in (a) while the stochastic zones are pronounced for r/a < 0.14 in (b). In particular, 
there is a braiding as indicated by the arrow, linking the inside stochastic region and the outside nested magnetic surfaces.

Plasma Phys. Control. Fusion 56 (2014) 125016
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seen in figure  11(d). This again illustrates the significance of 
m/n = 2/2 mode for the strong crash. Finally, it should be indi-
cated that scanning the shape of m/n = 2/1 mode in a reasonable 
range does not change the above results.

5.  Conclusion

The m/n = 2/1 tearing mode was destabilized and phase-locked 
with the m/n = 1/1 non-resonant kink mode (the center safety 
factor is larger than unity) during the L–H transitions, and the 
strong crash occurred with further growth of m/n = 2/2 mode. 
Above a critical amplitude of m/n = 2/2 mode, the magnetic 
field lines were converted into significant stochastic region 
which was short-circuited with the outside nested surfaces by 
a braiding of m/n = 2/2 mode. Experimental observation of the 
duration of strong crash (~100 µs) agreed with the prediction 
using the stochastic transport model.

The strong core crash induced by non-resonant kink modes 
of m/n = 1/1 and m/n = 2/2 requires the center safety factor q0 

a little bigger than one, which actually does not occur again 
after regular sawtooth crashes reappearing. It is inferred that 
the future discharge with a flat q-profile (weak magnetic 
shear) in the absence of q0 = 1 surface in plasmas may suffer 
from a similar limit. This may be encountered in H-mode 
experiments for advanced operation scenarios, needing to 
be carefully controlled by optimization of the current den-
sity profile. However, this study is still initial, and we hope 
to use the MSE-confined (motional Stark effect) equilibrium 
reconstruction and high-resolution diagnostics (such as elec-
tron cyclotron emission (ECE)) to investigate the strong core 
crashes on EAST in future.
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Figure 10.  The Poincare plots with the same parameters as those in figure 9 except a varying amplitude of m/n = 2/2: (a) 0.1A2,2, (b) 
0.5A2,2, (c) 0.75A2,2 and (d) 1.25A2,2 where A2,2is the amplitude of m/n = 2/2 mode which is used in figure 8(b). The ΔWn labeled by an 
arrow in (d) indicates the width of a magnetic braiding of m/n = 2/2, which connects the inside stochastic region with the outside nested 
magnetic surfaces.
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