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Certain n-qubit quantum systems can be faithfully simulated by quantum circuits with only Oð logðnÞÞ
qubits [B. Kraus, Phys. Rev. Lett. 107, 250503 (2011)]. Here we report an experimental realization of this
compressed quantum simulation on a one-dimensional Ising chain. By utilizing an nuclear magnetic
resonance quantum simulator with only five qubits, the property of ground-state magnetization of an open-
boundary 32-spin Ising model is experimentally simulated, prefacing the expected quantum phase
transition in the thermodynamic limit. This experimental protocol can be straightforwardly extended to
systems with hundreds of spins by compressing them into up to merely 10-qubit systems. Our experiment
paves the way for exploring physical phenomena in large-scale quantum systems with quantum simulators
under current technology.
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Simulating quantum systems is one of the most essential
issues in quantum science. However, simulating large-scale
quantum systems with classical computers is unsustainable,
due to the tremendous computational cost which grows
exponentially with the size of the quantum system. By
using quantum computation architecture, a universal quan-
tum simulator only requires resources that grow polyno-
mially with the size of the quantum systems [1,2]. In the
past, quantum simulations of various interesting physical
phenomena in small quantum systems have been well
investigated experimentally, using several different physi-
cal systems [3–9]. Recently, there have been efforts to
engineer the quantum simulator with hundreds of spins
[10]. However, experimental quantum simulations of large-
scale quantum systems are still a great challenge due to the
limitation of controllability and scalability [11,12].
Recently the idea of compressed simulation was pro-

posed [13], showing that a quantum simulator could be
employed to simulate an exponentially larger system in
certain cases. Explicitly, a matchgate circuit (MGC) run-
ning on n qubits could be simulated using Oð logðnÞÞ
qubits. By applying the compressed gates subsequently, the
evolution of the original system is reproduced, which gives
the observation of many quantities, such as magnetization
and correlation functions. Moreover, the compressed sim-
ulation is an exact simulation of the original one without
producing additional errors. Reference [14] proved that a
one-dimensional (1D) Ising model and an XY model with
size up to n ¼ 2m particles can be simulated using only m

qubits. Further theoretical investigations show that the
simulation of several dynamical processes, like quantum
quenching and finite time evolution, could also be com-
pressed [15]. However, to our best knowledge, the exper-
imental realization of compressed quantum simulation
remains elusive.
In this Letter we report an experimental realization of

the quantum simulation of a 25-spin Ising chain by using a
5-qubit NMR simulator. We develop a general quantum
circuit running on logðnÞ qubits to mimic the behavior of an
n-spin Ising model. A 5-spin NMR molecule is employed
to simulate the adiabatic evolution of a 32-spin Ising chain.
The magnetization of the Ising model is obtained by
measuring the expectation value of the fifth qubit of the
simulator. The experimental results are compared to the
exact solution, which has demonstrated their reliability.
This successful experimental implementation implies that
the investigation of a variety of quantum systems with tens
to hundreds of particles is accessible with current
technology.
A quantum circuit running on n qubits could be com-

pressed if it fulfills the following conditions [13]: (i) the
quantum circuit only consists of nearest-neighbor match-
gates (see note [16] for details); (ii) the input state of the
circuit is the computational basis state, and (iii) the output is
the result of a measurement on a single qubit of the
computational basis. Then, the simulation could be imple-
mented by using onlyOð logðnÞÞ quantum qubits. Generally,
a MGC running on n qubits could be compressed to
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R ∈ SOð2nÞ acting on a Clifford algebra C2n with 2n
generators c2k−1 ¼ ðQk−1

i¼1 σ
i
zÞσkx and c2k ¼ ðQk−1

i¼1 σ
i
zÞσky,

where k ¼ 1; 2;…; n and σix;y;z denotes the Pauli operators
for the ith spin.
Consider a matchgate U acting on the qubits (k, kþ 1).

Then we have

U†cjU ¼
X2n

l¼1

Rjlcl; ð1Þ

which holds for j ¼ 2k − 1, 2k, 2kþ 1, and 2kþ 2. R is a
real orthogonal matrix of 2n × 2n associated with U. For a
matchgate circuit U ¼ UN…U1, the compressed quantum
circuit, denoted asW, is then RN…R1, where Ri denotes the
orthogonal matrix associated with Ui. When the final
measurement can be represented by this Clifford algebra,
e.g., the magnetization σkz ¼ −ic2k−1c2k, we have

hσkzi ¼ hΨinijU†σkzUjΨinii ¼ h2k − 1jWSWT j2ki; ð2Þ

where S is a 2n × 2n matrix corresponding to the initial
state jΨinii of the original circuit. Hence, the MGC could be
simulated using Oð logðnÞÞ qubits by mapping the right
hand of Eq. (2) into a quantum circuit.
Here we take the simulation of the 1D Ising chain as an

example. Since the Ising model is solvable, it is a good
example for the experimental validation of the compressed
quantum simulation. The 1D quantum Ising model exhibits
a phase transition when the control parameter is the ratio of
the spin-spin coupling strength and the external magnetic
field strength [17]. At the critical point, the second
derivative of the magnetization is no longer continuous
when the size of the model goes towards infinity. For finite
system with size n, the crossover from paramagnetism to
ferromagnetic order sharpens when n grows, as shown in
Fig. 1. The ground-state magnetizations of the Ising model
for size up to n ¼ 9 have been simulated experimentally
[18–20].

The ground-state magnetization could be measured using
the widely used adiabatic simulation method [21–23]. The
Hamiltonian of the 1D quantum Ising model with open
boundary conditions can be denoted byHðJÞ ¼ H0 þ JH1,
where H0 ¼

P
iσ

i
z, H1 ¼

P
iσ

i
xσ

iþ1
x and J is the spin-spin

coupling strength. The adiabatic evolution was approxi-
mated by L discrete steps. In the range 0 < J ≤ 2, we
utilized the linear interpolation JðlÞ ¼ 2l=L,
ðl ¼ 1; 2;…; LÞ. Thus the propagator for each step is
Ul ¼ e−iHlτ, where τ is the duration of each step, and Hl ¼
H0 þ ð2l=LÞH1 is the intermediate Hamiltonian of the lth
step. In each step, the Suzuki-Trotter expansion is used to
decompose the unitary operation as

Ul ¼
ffiffiffiffiffiffi
V0

p
Vl

ffiffiffiffiffiffi
V0

p
þOðτ3Þ; ð3Þ

with V0 ¼ e−iH0τ and Vl ¼ e−iJðlÞH1τ. The adiabatic con-
dition and the Suzuki-Trotter approximation are satisfied
when Lτ → ∞ and τ → 0.
Starting from the ground state of H0 (i.e., j↑i⊗n), the

ground state jΨJi of HðJÞ could be obtained by applying
Ul successively, from l ¼ 1 to l ¼ JL=2:

jΨJi ¼
�Y

l

Ul

�

j↑i⊗n: ð4Þ

Then the magnetization of the ground state could be
obtained by MðJÞ ¼ P

ihΨJjσizjΨJi=n.
Specifically, the adiabatic evolution of the n-spin Ising

chain could be compressed to m ¼ logðnÞ qubits [14,24].
The corresponding matrix of the initial state j↑i⊗n is
S ¼ −iσmy þ 1⊗m, which equals ρini ¼ 21−m1⊗m−1 ⊗
jþihþj in the m-qubit space, up to an ignorable factor.
Here jþi ¼ ðj0i þ ij1iÞ= ffiffiffi

2
p

, being the eigenstate of σy
with eigenvalue 1. Then we have the magnetization

MðJÞ ¼ −Tr½WðJÞρiniWðJÞ†σmy Þ�; ð5Þ

with

WðJÞ ¼
YJL=2

l¼1

ðUdRlR0Þ; ð6Þ

where R0 and Rl are the compressed counterparts of V0

and Vl in Eq. (3), respectively. Here Ud ¼ 1⊗mþ
ðeiϕl − 1Þj1ih1j⊗m denotes a controlled phase gate. The
magnetization MðJÞ could be obtained by measuring the
expectation value of −σmy .
The compressed gates corresponding to V0 and

Vl are given by R0 ¼ expð−2iτσmy Þ and Rl ¼
½1− cosðϕlÞ�ðj1ih1j þ jnihnjÞ þ cosðϕlÞ× 1⊗m þ sinðϕlÞ×
Pðn=2Þ−1

k¼1 ðj2kih2kþ 1j− h.c.Þ, with ϕl ¼ 2JðlÞτ [24,25].
R0 could be easily realized with a rotation along the y
axis of the mth qubit. For Rl, by using the operators
Tþ ¼ j1ihnj þP

n−1
k¼1 jkþ 1ihkj and T− ¼ Tþ†, we have

Coupling strength 

0 1 2

-0.2

-0.6

-1

=29

=25

=9

=5

2

0.4

M

J

∂
∂

0 4

1.2

0.8

1.6

0

J

J

( )M J

n

n

n

n

FIG. 1 (Color online) (color online). The ground-state mag-
netizationMðJÞ (inset) and its derivative with respect to coupling
strength J in n-spin Ising chain.
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TþRlT− ¼ 1⊗m−1 ⊗ Bl − ðj0ih0j⊗m−1Þ ⊗ ðBl − 1Þ; ð7Þ

where Bl ¼ eiϕlσy is a single qubit gate. The right hand of
Eq. (7) can be realized with a rotation on the last qubit
eiϕlσ

m
y followed by an opposite rotation acting only on

the subspace j0ih0j⊗m−1. The effective decomposition of
compressed quantum circuit is depicted in Fig. 2.
The protocol of compressed quantum simulation is

summarized as follows: (1) prepare the initial state
ρini ¼ 21−m1⊗m−1 ⊗ jþihþj; (2) evolve the system up to
a certain value of J by applying WðJÞ; (3) measure the
expectation value of −σmy , i.e., the magnetization MðJÞ.
Now we turn to the experimental realization of the

aforementioned scheme. With the well-developed control
technology [27], nuclear magnetic resonance (NMR) has
been widely utilized for many of the first demonstrations in
quantum simulation. Here we use a 5-qubit NMR quantum
system that consists of two 1H nuclear spins and three 19F
nuclear spins. The experiments were carried out at 307 K on
a Bruker AV-400 spectrometer. The sample we used is the
1-bromo-2,4,5-trifluorobenzene dissolved in the liquid

crystal N-(4-methoxybenzylidene)-4-butylaniline (MBBA).
The structure of the molecule is shown in Fig. 3. Due to the
partial average effect in the liquid crystal solution, the direct
dipole-dipole interaction will be scaled down by the order
parameter [28]. As a result, the homonuclear dipolar
coupling is much smaller than the difference between the
chemical shifts of related nuclear spins. Therefore, in the
rotating frame, the Hamiltonian for the homonuclear dipolar
interaction reduces to the form of σjzσkz , as well as the
heteronuclear situation. The effective Hamiltonian of this
5-qubit system in the rotating frame is

HNMR ¼
X5

j¼1

πνjσ
j
z þ

X

1≤j<k≤5

π

2
ðJjk þ 2DjkÞσjzσkz; ð8Þ

with the parameters shown in Fig. 3. The deviation density
matrix of thermal equilibrium state is ρeq ¼

P
5
i¼1 γiσ

i
z,

where γi represents the gyromagnetic ratio of each nuclear
spin.
The experimental procedure consists of three parts:

(i) state initialization (preparing the system to σ5y, which
is equivalent to ρini in NMR system), (ii) compressed
simulation of the adiabatic evolution, and (iii) readout of
the expectation value of −σmy , i.e., the magnetizationMðJÞ.
Starting from the thermal equilibrium ρeq, spin-selective

pulses were applied to excite all the spins except for the
fifth. Then a z-direction gradient pulse with length 1 ms
was utilized to average out undesired excitations, leaving

(a)

(b)

FIG. 2 (Color online) (color online). (a) Outline of the adiabatic
simulation process of an n-spin Ising chain using n qubits. The
initial state is prepared to the ground state of H0, and the
magnetization MðJÞ is obtained by measuring the expectation
value of σz for each qubit. (b) The quantum circuit of the
compressed quantum simulation. Here, R0 and Rl are the com-
pressed counterparts of V0 and Vl in (a), respectively. Ud is a
controlled phase gate as defined in main text. X is a NOT gate, and
A ¼ e−2iτσy , Bl ¼ eiϕlσy , D ¼ j0ih0j þ eiϕl j1ih1j. All elementary
gates in this circuit could be realized efficiently [26]. The
magnetization is obtained by measuring the expectation value
of −σlogðnÞy .

1 2 3 4 5 T2* T1

47708 1781.1 45.5 62.1 135.8 1 50ms 0.8s

2393 122.9 10.1 60.9 2 110ms 1.5s

45257 1468.2 323.5 3 50ms 0.6s

2396 1811.2 4 110ms 1.5s

Unit: Hz 37734 5 50ms 0.8s
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FIG. 3 (Color online) (color online). (a) Properties of the
1-bromo-2,4,5-trifluorobenzene molecule. The chemical shifts
νi and effective coupling constants (Jjk þ 2Djk) are on and above
the diagonal in the table, respectively. The chemical shifts are
given with respect to reference frequencies of 376.48 MHz
(fluorine atoms) and 400.16 MHz (hydrogen atoms). (b)(c) Equi-
librium spectra of 19F and 1H nuclear spins. The numbers above
the peaks are the indices of qubits.
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only σ5z. Finally, a π=2 hard pulse along the x axis was
applied to prepare the initial state σ5y.
In the second step, the adiabatic evolution of the Ising

model was approximated by L ¼ 2400 discrete steps. The
propagator Ul for each step is displayed in Eq. (3) with
τ ¼ 0.1. The numerical simulated results are shown in
Fig. 4, showing a reliable approximation accuracy. The
quantum circuit for adiabatic evolution is then compressed
to the unitary operator WðJÞ [Eq. (6)], whose effective
decomposition is shown in Fig. 2. In experiment, we
packed the circuit for each WðJÞ into one shaped pulse
calculated by the gradient ascent pulse engineering
(GRAPE) method [29], with the length of each pulse being
50 ms and the number of segments being 1000. All the
pulses have theoretical fidelities over 98% and are designed
to be robust against the inhomogeneity of radio-frequency
pulses.
Finally, we measured the expectation values of σ5y for

different values of J. The experimental NMR spectra for
J ¼ 0, 1, and 2 are shown in Fig. 4, along with theoretically
simulated spectra. The sum of the intensities of all the
peaks will produce the expectation value of σ5y. In our
experiment, all the peaks suffer an obvious signal attenu-
ation due to the decoherence effect in the process of the
shaped pulses. Here we adopted the approach of Ref. [30]
to characterize the decoherence effect. In the approach, the
NMR experiment is divided into several slices where the
power of the rf pulse is constant in every slice. Then every
segment of slices is modeled by an ideal Hamiltonian
evolution with an external rf field, followed by a phase
damping channel acting on the spins with the same
duration. By simulating the dynamical processes in each
slice sequentially, the overall effect originate from
decoherence could be estimated numerically. Firstly we
measured the relaxation times in independent test experi-
ments, and then utilized this approach to derive the
reduction factor η for each shaped pulse in this experiment.
The derived η was applied to rescale the experimental
results. Figure 4(a) shows the experimentally acquired
ground-state magnetization of the Ising model for various
J values between Jmin ¼ 0 and Jmax ¼ 2.
The theoretical errors of this algorithm originate from the

imperfection of the adiabatic simulation and the approxi-
mation of Trotterization. In our configuration, the adiabatic
condition is well satisfied, and the produced errors are
ignorable. The Trotterization will generate a fluctuation of
magnetization around 0.01. In Fig. 4(a) the red curve shows
the numerically simulated results taking these errors into
account, compared to the exact solution (blue). We note
that the compressed simulation is exactly equivalent to the
original simulation without producing errors in the algo-
rithm. This is also confirmed by a comparison experiment
[24]. The signal attenuation in the experiment is mainly
attributed to the spin-spin relaxation effect of the 1H bath
in the solution. The error originated from the statistic

fluctuation of signal strength is around 0.02. The inhomo-
geneity of magnetic fields is mostly diminished owing to
the robustness of the GRAPE pulses. The theoretical
infidelity of GRAPE pulses of no more than 0.02 will
also contribute to the errors.
In conclusion, we have presented an experimental

realization of a compressed quantum simulation which
could mimic the behavior of an n-spin quantum system
using Oð logðnÞÞ qubits. In this experiment, a 32-spin Ising
chain is successfully simulated by utilizing an NMR
simulator with only 5 qubits. The experimental results
are compared to exact solution and this has demonstrated
the reliability. It is noted that (i) this experimental protocol
could be straightforwardly extended to some other impor-
tant quantum systems, such as the XY model [15] and Ising

(b)

(a)

FIG. 4 (Color online) (color online). (a) The experimentally
detected magnetization of 32-spin Ising chain for different J. The
exact and adiabatic simulated solution are shown in blue (light)
and red (dark) curves. Filled circles show the experimental results
simulated by the 5-qubit NMR simulator, where rescaling was
performed to extract the effect of decoherence. (b) The exper-
imental spectra (blue) of the fifth qubit of final states for J ¼ 0, 1,
2, compared with the simulated spectra (red). The vertical axes
have arbitrary units but the same scale. Phase correction is
performed to ensure that the sum of intensities of all peaks
produces the expectation value of σ5y .
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model with inhomogeneous interactions and magnetic field
strengths, (ii) the simulation is not limited to observation of
magnetization or ground-state properties, and (iii) the
compressed quantum simulation can be applied to several
other important dynamical processes, like quantum
quenching and finite time evolution. Our experiment
implies that by using an exponentially smaller system,
the investigation of a variety of quantum systems with
hundreds of particles or more is accessible by using
current technology. This marks an important step
towards the quantum simulation of quantum systems in
large scale.
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