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Abstract: Since systematic direct measurements of refractive index structure constant (C2
n) for

many climates and seasons are not available, an indirect approach is developed in whichC2
n is

estimated from the mesoscale atmospheric model outputs. In previous work, we have presented
an approach that a state-of-the-art mesoscale atmospheric model called Weather Research and
Forecasting (WRF) model coupled with Monin-Obukhov similarity (MOS) theory which can
be used to estimate surface layerC2

n over the ocean. Here this paper is focused on surface layer
C2
n over snow and sea ice, which is the extending of estimating surface layerC2

n utilizing WRF
model for ground-based optical application requirements. This powerful approach is validated
against the corresponding 9-dayC2

n data from a field campaign of the 30th Chinese National
Antarctic Research Expedition (CHINARE). We employ several statistical operators to assess
how this approach performs. Besides, we present an independent analysis of this approach per-
formance using the contingency tables. Such a method permits us to provide supplementary
key information with respect to statistical operators. These methods make our analysis more
robust and permit us to confirm the excellent performances of this approach. The reasonably
good agreement in trend and magnitude is found between estimated values and measurements
overall, and the estimatedC2

n values are even better than the ones obtained by this approach over
the ocean surface layer. The encouraging performance of this approach has a concrete practical
implementation of ground-based optical applications over snow and sea ice.

c© 2016 Optical Society of America

OCIS codes: (010.0010) Atmospheric and oceanic optics; (010.1300) Atmospheric propagation; (010.1330) Atmo-

spheric turbulence.
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1. Introduction

Atmospheric turbulence is the major reason for serious decline of imaging quality of the ground-
based optical applications (e.g., astronomical observation, laser communication and target detec-
tion). The intensity of atmospheric turbulence is usually described by refractive index structure
constant,C2

n (m−2/3) [1]. Antarctic Plateau has become a potential great interest of astronom-
ical site, as its extremely low temperature, dryness, typical high altitude, and joint to the fact
that the optical turbulence seems to be concentrated in a thin surface layer (e.g., [2]). How-
ever, systematic direct measurements ofC2

n for many climates and seasons are not available,
especially in severe environment, and it varies considerably from location to location. In many
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cases, it is impractical and expensive to deploy instrumentation to characterize the atmospheric
turbulence, making simulations a less expensive and convenient alternative. Over the years, on-
ly a handful of studies documented the characteristics of surface layer atmospheric parameters
with a Mesoscale Non-hydrostatic (Meso-Nh) model above the sites of interest for astronomy:
at Roque de los Muchachos (surface layer temperature, [3]); MOSE (Modelling ESO Sites)
project that aims to prove the feasibility of the forecast of the atmospheric parameters above
the two European Southern Observatory (ESO) ground-based sites Cerro Paranal in Chile and
Maidanak in Uzbekistan (surface layer wind speed, [4-7]). An extended review of alternative
methods for calculating surface layerC2

n using European Center for Medium Range Weather
Forecasts (ECMWF) model products over climatologically distinct sites in western Europe can
be found in Cheinet’s paper [8], and this method forecast some essential aspects of surface layer
C2
n. Even though there is considerable diversity among the reported results, quasi-universality of

the simulated surface layerC2
n with a mesoscale model is not clearly discernible. Each existing

approach has its own merits and limitations, but none of them is known to be superior.
MOS theory provides a rigorous scientific basis to estimateC2

n from routine meteorological
parameters in the surface layer (refer to [9-18] and the references therein). In previous work,
we have presented an alternative approach that WRF model coupled with MOS theory which
can be used to estimateC2

n over the ocean surface layer [19]. On account of the various ground-
based optical application requirements, the purpose of this paper is to present a marked result
of estimating surface layerC2

n over snow and snow-covered sea ice with a atmospheric model
and expand on the analyses in several ways. In this study, we have analysed the performance of
this approach in reconstructing surface layerC2

n over snow and sea ice by comparing estimated
values with the correspondingC2

n data from a field campaign of the 30th CHINARE, in January
2014.

We have analysed the results of the bias, root mean square error (RMSE), bias-corrected
RMSE (σ) and correlation coefficient (Rxy) between estimated values and in-situ measurements
of C2

n. It is worth noting that in spite of being fundamental statistical operators and providing
key information to evaluate the model simulation, the bias, RMSE,σ and Rxy do not provide
the necessary information we would like to have in terms of this approach performance. To
investigate the quality of model estimation, a method widely used in the atmosphere physics,
as well as other fields such as economy and medicine, consists of constructing and analysing
contingency tables [20-22]. From these tables, it is possible to derive a number of different
parameters that describe the quality of this approach performance. A contingency table allows
for analysis of the relationship between two or more categorical variables. From the temporal
evolution, correlation and cumulative distributions and contingency tables for values estimated
and in-situ measurement, the results are very encouraging and remarkable. This approach may
be applied to the ground-based optical applications over snow and sea ice.

In Section 2, we present the in-situ measurement system and model configuration. In Section
3, the theoretical basis is described. In Section 4, the temporal evolution ofC2

n for estimation
and in-situ measurement are presented, together with the statistical analysis used in the study.
In Section 5, we discuss the uncertainties and the possible improvement room for this approach.
Finally, conclusions are drawn in Section 6.

2. Measurement system and WRF model configuration

2.1. In-situ measurement system and the principle of micro-thermometer

Antarctic Taishan Station (76◦58′E, 73◦51′S, altitude 2621 m) is located in Princess Eliza-
beth Land between Chinese Antarctic Zhongshan and Kunlun stations. In 2013, a mobile at-
mospheric parameter measurement system was designed and constructed to measureC2

n and
meteorological parameters in Antarctic Taishan Station [23, 24], which is close to the cen-
ter grid point (76◦58′E, 73◦51′S) of simulation domain. The Antarctic Taishan Station mo-
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bile atmospheric parameter measurement system includes a data collector (CR5000), ultrasonic
anemometer (CSAT3), micro-thermometer, temperature and humidity probe (HMP155), wind
monitor (05103V), barometer (CS106), communication module, power module and a 3-meter
tower, which is shown in Fig. 1. Two levels (0.5 m and 2 m above ground) of air temperature,
relative humidity, wind speed and one level (2 m) of air pressure and atmospheric turbulence
intensity can be measured at the same time. We observedC2

n in the surface layer for the first
time at Antarctic Taishan Station using the micro-thermometer and three-dimensional ultra-
sonic anemometer simultaneously from 30 December 2013 to 10 February 2014 in the 30th
CHINARE. This paper presents our part results from 11 January to 19 January in 2014.C2

n

values measured by micro-thermometer are used to validateC2
n values simulated by this ap-

proach.

Fig. 1. Mobile atmospheric parameter measurement system over snow and sea ice at Antarc-
tic Taishan Station.

The refractive index structure constantC2
n is connected with the temperature structure con-

stantC2
T

of the micro-thermometer field variations which mainly produce fluctuations in the
refractive index at optical wavelengths [25, 26]. The relationship betweenC2

n andC2
T

is given
as follow:

C2
n = (79× 10−6 P

T2
)2C2

T , (1)

whereT is air temperature (K), andP is air pressure (hPa). TheC2
T

is defined as the constant
of proportionality in the inertial subrange form of the temperature structure functionDT (r).
The process for calculatingC2

T
involves the measurement of the square and average of the

temperature difference given by two probes which are separated by a known distancer in the
inertial region. For a Kolmogorov type spectrum,C2

T
is related to the temperature structure

functionDT (r) as below:

DT (r) = 〈[T (~x) − T (~x + ~r)]2〉

= C2
T r

2/3 f or l0≪r≪L0 . (2)

where~x and~r denote the position vector,r is the magnitude of~r , 〈...〉 represents the ensemble
average,l0 and L0 are the inner and outer scales of the atmospheric turbulence respectively
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and have units of m. In this study, a 10µm diameter, 20 mm long platinum wire is used as
micro-thermometer probe, and the equivalent noise is about 0.002 K (see [19] in detail). The
platinum probe has a linear resistance-temperature coefficient, and responds to an increase in
atmospheric temperature with an increase in resistance. In our case, the probes are used to
measure the temperature difference at two points which are horizontally separated by 1.0 m
apart. The two probes are legs of a Wheatstone bridge, and the resistance of the probe is very
nearly proportional to temperature, thus temperature changes are sensed as an imbalance voltage
of the bridge. The micro-thermometer system providesC2

T
data by measuring mean square

temperature fluctuations and thenC2
n data can be acquired.

2.2. WRF model configuration and sample selection

WRF model is a mesoscale atmospheric model used for both professional forecasting and at-
mospheric research, developed jointly between the National Center for Atmospheric Research
(NCAR) and the National Oceanic and Atmospheric Administration (NOAA) of the United S-
tates. The model is based on the Navier-Stokes equations which are solved numerically on a
three dimensional grid. The model simulates four basic atmospheric properties: wind, pressure,
temperature and atmospheric water vapor. All other variables are derived from these four pa-
rameters. Details of governing equations, transformations and grid adaptation are given in the
Modeling System User’s Guide. In this study, WRF model is initialized with the Final Opera-
tional Global Analysis (FNL) data which has a horizontal resolution of 1◦ × 1◦ (in longitude
and latitude), downloaded from the web site of National Center of Environment Prediction (N-
CEP). The Antarctic plateau map is shown in Fig. 2.

Fig. 2. Antarctic Plateau map. The site of mobile atmospheric parameter measurement
system is noted with a red solid star. The blue solid circles represent the Dome A, Dome C
and Dome F, respectively.

A triple-nested numerical modeling domain, of which the nesting ratio is 5, with the coarse
horizontal resolution of 12.5 km and grid points of 90, as well as the finest horizontal resolution
of 0.5 km and grid points of 45, is used in this study. The basic parameter settings are listed in
Table 1.

WRF model exports a large number of meteorological parameters (pressure, temperature,
absolute humidity, wind speed, etc.), which depend upon the physical schemes that have been
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Table 1. The basic parameter settings.∆X represents the grid horizontal resolution.

Basic parameter Settings
Center longitude and latitude 76◦58′E, 73◦51′S

∆X , Number of grid points (Domain 1) 12.5 km, 90× 90
∆X , Number of grid points (Domain 2) 2.5 km, 75× 75
∆X , Number of grid points (Domain 3) 0.5 km, 45× 45

Initialized field data FNL
Vertical layers 40

Output time interval 10 minutes

chosen for the simulation. Other numerical details are omitted here for brevity, and interested
readers are encouraged to peruse WRF User’s Guide to gain a better understanding of mesoscale
modeling. The main physical scheme settings are listed in Table 2.

Table 2. The main physical scheme settings.

Main physical scheme Settings
Micro-physics process WSM-5
Longwave radiation RRTM
Shortwave radiation Goddard

Boundary layer Eta similarity
Ground process Noah

Planetary boundary layer MYJ
Cumulus parameterization Kain-Fritsch

To validate the performance of this approach, a set of 9 different nightsC2
n data measured

by micro-thermometer from a part of field campaign of the 30th CHINARE are sampled, since
WRF model each run is time-consuming and costs huge computational resource. Besides, WRF
model is run on 3 different nights (starting at Jan 10, 13, 16, respectively) using the procedure
described before, and all the simulation times are listed in Table 3. We should note that the
measurement system exportsC2

n values at 5 seconds interval, while WRF model outputs results
at 10 minutes interval owing to the model configuration limitation. The measured values are
averaged over the same interval (10 minutes) to match with the simulated ones for a meaningful
comparison. We also note that WRF model outputs are saved as UTC time format while the
micro-thermometer values are saved as Local time format, and the conversion between them is
Local time= UTC time+ 05:00.

Table 3. Simulation times.

Simulation No.
Simulation time

Start time End time
1 2014-01-10-19:00 UTC 2014-01-13-19:00 UTC
2 2014-01-13-19:00 UTC 2014-01-16-19:00 UTC
3 2014-01-16-19:00 UTC 2014-01-19-19:00 UTC

3. Theoretical basis

For estimation of surface layerC2
n we chose the following semiempirical model, which is based

on the MOS theory. From visible to near-infrared wavelengths, a wide range of physically-based
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approach for the estimation ofC2
n exists in the literature (see [13] for details). The expression

C2
n can be defined in terms ofC2

T
,C2

q andCTq as follows :

C2
n = A2C2

T + 2ABCTq + B2C2
q . (3)

where the coefficientA andB are related to the wavelength (µm), pressure (hPa) and tempera-
ture (K). At a interest wavelength of 0.55µm, A = 79.0×10−6 P

T2 and B= -56.4×10−6.C2
T

,C2
q

andCTq are the temperature structure parameter, humidity structure parameter and temperature-
humidity structure parameter, respectively. OnceC2

T
,C2

q andCTq are estimated, it is relatively
straightforward to estimateC2

n.
The dimensionless function (ξ) is used to express the surface layer atmospheric dynamic

property, defined as:

ξ =
zkg(T∗ + 0.61Tq∗)

ϑvu
2
∗

. (4)

in which z (m) is the height above the surface,k is the von-Karman constant (0.4),g (ms−2) is
the gravitational acceleration,ϑv (K) is the virtual potential temperature,T∗, q∗ andu∗ are the
scaling parameters for temperature, absolute humidity and wind speed, respectively.

By using MOS theory in atmospheric surface layer, the expressionsC2
T

, C2
q andCTq can be

expressed in terms ofT∗ andq∗ as follows:

C2
T = T2

∗
z−2/3fT (ξ), (5a)

C2
q = q2

∗
z−2/3fq(ξ), (5b)

CTq = γTqT∗q∗z
−2/3fTq(ξ). (5c)

whereγTq is the temperature-humidity correlation coefficient. We use a value of 0.5 forγTq
when ∆T

∆q
≤ 0, and a value of 0.8 when∆T

∆q
≥ 0 in this work, following [15]. The similarity

functionsfT (ξ), fq(ξ) and fTq(ξ) are determined by experiment, and supposed tofT (ξ) = fq(ξ)
= fTq(ξ) usually [13]. The similarity functionf (ξ) is given by Wyngaard [9] during a field
campaign in Kansas:

f (ξ) =















4.9(1− 7ξ)−2/3, ξ ≤ 0,

4.9(1+ 2.75ξ), ξ ≥ 0.
(6)

Subsequently, substituting Eqs. (5-6) into Eq. (3) gives aC2
n expression in terms of theT∗

andq∗:
C2
n = z−2/3f (ξ)(A2T2

∗
+ 2ABγTqT∗q∗ + B2q2

∗
). (7)

According to MOS theory, the average vertical profiles of wind speedU(z), temperatureT (z)
and absolute humidityq(z) within the surface layer are defined as follows:

∂U(z)
∂z

=
u∗

kz
ϕm(ξ), (8a)

∂T (z)
∂z

=
T∗

kz
ϕh(ξ), (8b)

∂q(z)
∂z
=

q∗

kz
ϕq(ξ), (8c)

where the functionsϕm(ξ), ϕh(ξ) andϕq(ξ) must be found experimentally. Although there is
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no consensus yet on their forms, the measurements seem to be converging toward the functions
used by Large and Pond [27]. For unstable conditions (ξ ≤ 0)

ϕm(ξ) = (1− 16ξ)−1/4, (9a)

ϕh(ξ) = ϕq(ξ) = (1− 16ξ)−1/2. (9b)

For stable conditions (ξ ≥ 0)

ϕm(ξ) = ϕh(ξ) = ϕq(ξ) = 1+ 7ξ. (10)

Paulson [28] showed how to integrate Eq. (8) with the empirical functions Eqs. (9)-(10). The
scaling parametersu∗, T∗ andq∗ within atmospheric surface layer are given by Eq. (11)

u∗ = kU(z)[ln(
z

zoU
) −Φm(ξ)]−1, (11a)

T∗ = k [T (z) − Ts ][ ln(
z

zoT
) −Φh(ξ)]−1, (11b)

q∗ = k [q(z) − qs][ ln(
z

zoq
) −Φh(ξ)]−1, (11c)

whereTs andqs are the surface temperature and surface absolute humidity, respectively.zoU
, zoT and zoq are the “roughness lengths" of wind speed, temperature and absolute humidity
respectively, which can be parameterized by routine meteorological parameters as well (see [29]
for details). The functionsΦm(ξ) andΦh(ξ) are the integrated forms of the functionsϕm(ξ) and
ϕh(ξ), respectively. For unstable conditions (ξ ≤ 0)

Φm(ξ) = 2ln[
1+ x

2
] + ln[

1+ x2

2
] − arctan(x)+

π

2
, (12a)

Φh(ξ) = 2ln[
1+ x2

2
]. (12b)

wherex = (1− 16ξ)1/4. For stable conditions (ξ ≥ 0)

Φm(ξ) = Φh(ξ) = −7ξ. (13)

Thus, with estimated values of theU(z), T (z) andq(z), as well as theTs andqs, we can
obtainu∗,T∗, q∗ andξ by solving Eq. (4) and Eqs. (11)-(13) iteratively (see [13,19] for details).
Finally, with these values ofu∗, T∗, q∗ andξ, it is simple to estimateC2

n from Eq. (7).

4. Results

4.1. Temporal evolution of C2
n for model and measurement

Figure 3 compares the temporal evolution of surface layerC2
n over snow and sea ice between

model and measurement. One can see that estimatedC2
n agrees reasonably well with that meas-

ured by micro-thermometer in trend and magnitude in general. This approach qualitatively cap-
tures several "sharp drop-offs" ofC2

n during morning and evening transitions in a faithful manner
which are clearly visible in this plot. In some cases, these "sharp drop-offs" are estimated earlier
by about one hour. Moreover, some specific featureC2

n for snow and ice surface layer has been
displayed in Fig. 3 where the diurnal variation of the estimatedC2

n and the measuredC2
n are

all obvious and the peak value ofC2
n is not the most strong at noontime, while strong at night,

especially the time from nightfall to midnight.
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Quite interestingly, estimatedC2
n values tend to be overestimated slightly from nightfall to

midnight, while having a relatively better performance in the low range ofC2
n. The surface

heterogeneity has a much greater impact on atmospheric turbulence in stable conditions [30],
and the categories of snow and sea ice are more homogeneous than that of underlying surface
relatively. In this study, the simulation area is in an open snow and sea ice surface where the
atmospheric turbulence is impacted by the surroundings slightly. While in that study over the
coastal ocean surface layer, the atmospheric turbulence is impacted by the surroundings greatly
and MOS theory will be invalid if the dynamic atmospheric properties depend upon surface
characteristics excessively. Thus, it is fair to expect that theC2

n values obtained by this approach
over snow and sea ice surface layer are better than the ones obtained over the ocean surface
layer [19].
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Fig. 3. Temporal evolution of the surface layerC2
n ( about 2 m) over snow and sea ice

during January 11 to 19, 2014 (panels a-c depict simulations No.1-3, respectively). The red
open star and the black dots represent the model and micro-thermometer, respectively.

4.2. The correlation and cumulative distributions

We evaluate the reliability ofC2
n estimated by this approach using four statistical operators:

the bias, the root mean square error (RMSE), the bias-corrected RMSE (σ) and the correlation
coefficient (Rxy). The expression bias, RMSE, Rxy are defined as:

bias =

N
∑

i=0

∆i

N
, (14a)

RMSE =

√

√

√

N
∑

i=0

(∆i)2

N
, (14b)

Rxy =

∑N
i=0(Xi − X i)(Yi − Y i )

√

∑N
i=0(Xi − X i)2∑N

i=0(Yi − Y i)2
, (14c)
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with ∆i = Yi - Xi , whereXi is the individualC2
n value measured by the micro-thermometer,

Yi the individualC2
n value estimated by this approach at the same time andN is the number of

times for which a couple (Xi,Yi ) is available.X i andY i represent the average value of measured
and estimated parameters. From the bias and the RMSE, we deduce the bias-corrected rmse (σ):

σ =
√

RMSE2 − bias2. (15)

The correlation of log10(C2
n) between model and measurement is depicted in Fig. 4(a), and

the values of bias, RMSE,σ and Rxy are noted in the left-top of Fig. 4(a). We can see that the
values of bias, RMSE andσ are very small and the data scatter is rather small, while the Rxy

is high relatively, which shows again the estimated values are coherent with the measurements
well. There’s one point which needs attention that the estimated values have relatively large drift
compared with in-situ measurements when log10(C2

n) is greater than -14.25.
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Fig. 4. Statistical analysis of the surface layerC2
n over snow and sea ice for model and

micro-thermometer. (a) The correlation between model (abscissa) and micro-thermometer
(ordinate); (b) The histograms (black histogram, left scale) and cumulative distributions
(blue symbol curves, right scale) of log10(C2

n), the top and bottom panels for model and
micro-thermometer, respectively.

The histograms and cumulative distributions for log10(C2
n) are shown in Fig. 4(b). Estimated

values are coherent with measured values in a large probability distribution (≥ 80%), while
the estimated values distribute in a relatively wideC2

n range, which is to say that estimated
values relatively are larger than measurements when log10(C2

n) is greater than -14.25. From the
cumulative distributions, we can extract the mean (-14.603 versus -14.652) and the median (-
14.562 versus -14.501) of log10(C2

n) for values estimated and measurements, which are close to
each other (noted in the left-middle of the top and bottom panels in Fig. 4(b)). Consequently,
we confirm that the estimated values in this approach are reliable overall.

4.3. Contingency table

As mentioned in the introduction, we utilize a contingency table to investigate the relationship
between estimated values and measurements. A contingency table allows for analysis of the
relationship between two or more categorical variables, which is a table withn × n entries
that displays the distribution of model and measurement in terms of frequencies or relative
frequencies. For our purpose, a 2× 2 table, however, is too simple to analyze this model. A
3 × 3 table is definitely more appropriated. It consists of the dividing estimated and measured
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values in some categories delimited by some thresholds. An example of a 3× 3 contingency
table is shown in Table 4.

Table 4. Generic 3× 3 contingency table.

Intervals
Measurement

interval 1 interval 2 interval 3 total
interval 1 a b c a+ b + c

(hit 1) (miss)
interval 2 d e f d+ e+ f

M
od

-
el

(hit 2)
interval 3 g h i g+ h + i

(miss) (hit 3) N = a+ b + c + d
total a+ d+ g b+ e+ h c+ f + i + e+ f + g+ h+ i

There are two cases where the “hit” represents that the estimated value is correct, and the
“miss” represents that the estimated value is incorrect [21]. Using a, b, c, d, e, f, g, h, i and N
(N = a+ b + c + d + e+ f + g + h + i), we can compute different probabilities useful to have
an insight on how well (or bad) this approach performs for a particular parameter. With all the
different simple scores (a, b, c, d, e, f, g, h, i) listed, we will use them in the following of the
paper from the generic 3× 3 contingency table of Table 4. The percent of correct detections
(PC, in %), probability of detection (POD, in %) and extremely bad detection (EBD, in %) are
given below

PC =
a + e + i

N
× 100, 0%≤ PC ≤ 100%, (16a)

POD(event 1) =
a

a + d + g
× 100, 0%≤ POD ≤ 100%, (16b)

POD(event 2) =
e

b + e + h
× 100, 0%≤ POD ≤ 100%, (16c)

POD(event 3) =
i

c + f + i
× 100, 0%≤ POD ≤ 100%, (16d)

EBD =
c + g

N
× 100, 0%≤ EBD ≤ 100%. (16e)

where PC=100% is the best score and corresponds to a perfect estimation. POD=100% is
the best score, which represents the proportion of measured values that have been correctly
estimated by this approach. EBD represents the percent of the most distant estimated values by
this approach from the measurements, and it is equal to 0% for a perfect estimation. In the case
of a perfectly random estimation (a= b= ...= i = N

9 ), all POD are equal to 33%, PC=33% and
EBD=22.2%. The model is useful if these values perform better than those random cases (33%
or 22.2%). These values are a good reference to evaluate the performances of this approach. We
will write PODi instead of POD (event i ) with thei event considered (seen in Eq. (16)).

Here, the variables we considered are the measurement ofC2
n, and the correspondingC2

n

estimated by this approach. As seen in Table 5, we can observe that the PC (63.66%) is signi-
ficatively better than 33% (value of random case). Moreover, the EBD (1.77%) is well smaller
than 22.2% and even negligible, which is the sign that this approach never produces extremely
bad estimation. POD1 (event 1) is 72.18%, POD2 (event 2) is 50.66% and POD3 (event 3) is
66.40%. In all cases, PC and PODi=1,2,3 are well larger than 33% (value of random case). This
proves therefore the utility of this approach.
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Table 5. A 3×3 contingency table for log10(C2
n) between model (row) and micro-

thermometer (column)a . Interval 1 represents log10(C2
n) ≤ -14.803, interval 2 represents

-14.803≤ log10(C2
n) ≤ -14.348, interval 3 represents log10(C2

n) ≥ -14.348. This two thresh-
olds (-14.803 and -14.348) are defined with the climatological tertiles [6].

Intervals
Measurement

interval 1 interval 2 interval 3 total
interval 1 301 131 14 446

(hit 1) (miss)
interval 2 107 192 154 453

M
od

-
el

(hit 2)
interval 3 9 56 332 397

(miss) (hit 3)
total 417 379 500 N = 1296

aPC = 63.66%; EBD= 1.77%; POD1 = 72.18%; POD2 = 50.66%; POD3 = 66.40%

5. Discussion

Although the estimatedC2
n agrees with the measuredC2

n as a whole, there still exists some
room for improvement. Here we discuss the uncertainties and the possible improvement for this
approach.

Firstly, theC2
n value measured by micro-thermometer could be considered as the "point"

measurement at a limited domain, while the estimatedC2
n should be considered as the 10 min-

utes statistical average value which is a simple process of various influencing factor to atmo-
spheric turbulence at 0.25 km2 area for the center of simulation domain. In future work, im-
provements are expected from WRF model finer horizontal grid resolution as well as the outputs
time interval.

Secondly, the form of the similarity functionf (ξ) and empirical functionϕ(ξ) is very impor-
tant to the accuracy of estimatingC2

n [31]. The conclusive and justify form off (ξ) andϕ(ξ)
is determined difficultly. Nevertheless, the structure is similar and the coefficient is just only
different. Hence, choosing a quite appropriate form off (ξ) andϕ(ξ) will improve the accuracy.
The form of f (ξ) cited in this paper is determined in the Kansas experiment in 1968 [9], and
also cited in the Andreas’s paper to estimateC2

n over snow and sea ice [13]. We will do more
sufficient field experiments to gain a more quite appropriate form off (ξ) andϕ(ξ) in following
work.

Finally, the atmospheric turbulence is impacted by the surroundings slightly over open snow
and sea ice surface layer in this study, but there still exist some uncertainties. The measurement
height or the height whereC2

n value was estimated with this approach may be above the constant
flux layer in a region where MOS theory is invalid when the snow and sea ice surface layer can
become very thin in very stable conditions [30]. In the future, we will do more sufficient field
experiments to gain a more precise understanding for the performance of this approach under
very stable conditions.

6. Conclusions

The performance of WRF model coupled with MOS theory in reconstructing the temporal evo-
lution of surface layerC2

n over snow and sea ice has been investigated with the associated
statistical operators and the contingency table. The reasonably good agreement in trend and
magnitude is found between estimated values and measurements overall. For the associated
statistical operators, the values of bias (0.049), RMSE (0.453) andσ (0.450) are very small,
while the Rxy (70.01%) is high relatively, as well as the mean (-14.603 versus -14.652) and the
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median (-14.562 versus -14.501) of log10(C2
n) between estimated values and measurements are

close to each other. For the contingency table, the percent of correct detection (PC=63.66%)
and extremely bad detection (EBD=1.77%) computed from 3×3 contingency tables are excel-
lent. PODi (POD1 = 72.18%; POD2 = 50.66%; POD3 = 66.40%) are all greater than 33% (a
typical value for a random distribution). These results permit us to confirm the excellent per-
formances of this approach, and even better than recent results obtained by this approach over
the ocean surface layer. Thus, it is conceivable that this approach has a conservative ability to
capture realistic temporal variations of surface layerC2

n over snow and sea ice. To be certain,
more validation studies are needed.

We have concluded that the performance of this approach in reconstructing the temporal
evolution of surface layerC2

n over snow and sea ice is satisfactory, and it is applicable to the
ground-based optical applications over snow and sea ice.
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