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In this work, we report a novel gyrokinetic simulation method named numerical Lie 
transform (NLT), which depends on a new physical model derived from the I-transform 
theory. In this model, the perturbed motion of a particle is decoupled from the unperturbed 
motion. Due to this property, the unperturbed orbit can be computed in advance and saved 
as numerical tables for real-time computation. A 4D tensor B-spline interpolation module 
is developed and applied with the semi-Lagrangian scheme to avoid operator splitting. The 
NLT code is verified by the Rosenbluth–Hinton test and the linear ITG Cyclone test.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Plasma transport is one of the most critical scientific challenges for controlled fusion [1]. In magnetically confined plas-
mas, it is generally accepted that drift wave turbulence, which originates from the free energy provided by the spatial 
gradients of plasma temperature and density, determines the transport properties of particles and thermal energy [2]. In 
most cases this type of turbulence appears as the saturation state of small amplitude fluctuations, which are driven by the 
small scale (kρ ∼ 1) and low frequency (ω � ωc) micro-instabilities. Here, k is wave number, ω is wave frequency, ρ and 
ωc are particle gyro-radius and gyro-frequency, respectively. The drift wave turbulence is complex and essentially nonlinear 
so that particular difficulties arise for analytical theories. Therefore, numerical simulation has become a powerful tool in 
addition to experimental investigation to study the turbulent transport in plasma physics.

During the past decades, significant progress has been made in plasma turbulence simulation [3] and the most suc-
cessful physical model is based on the gyrokinetic theory. The basic idea of gyrokinetic theory [4] is to decouple the fast 
gyro-motion of a particle from the slow drift motion of the gyro-center. For numerical simulation, one of the main ben-
efits of this theory is that six-dimensional particle phase space is reduced to four-dimensional gyro-center phase space 
(though the gyro-center distribution function is five-dimensional), which significantly saves the computational effort. An-
other one is that the time step size for the computation can be greatly enlarged (ωc�t > 1) due to the averaging-out of 
the fast gyro-motion. The gyrokinetic model is composed of the gyrokinetic equation (GKE), which describes the evolu-
tion of gyro-center distribution, and the gyrokinetic field equations which determine the self-consistent electromagnetic 
fields. Up to now, the numerical methods that have been used to solve the GKE can be classified into three types [5]: 
the Lagrangian approach (also referred to as PIC) [6–8], the Eulerian approach [9–11] and the semi-Lagrangian approach 
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[12–14] which will be focused primarily in this paper. In the semi-Lagrangian method the distribution function, which is 
discretized on a fixed phase space grid, can be updated by integrating the perturbed orbit backward at each time step 
and then interpolating the value of the distribution function at the origin of the orbit. For the gyro-center dynamics, a 
high dimensional (4D) interpolation technique is needed if one follows the full gyro-center orbit. Hence there are usually 
two main components in a semi-Lagrangian GKE solver, the perturbed orbit integration and the phase space interpolation. 
For most of the semi-Lagrangian codes [12–14], on one hand, the orbit calculation must be performed in each time step 
with the time-dependent perturbed fields. On the other hand, due to the complexity of high dimensional interpolation, 
the operator splitting method [15], which transforms a high dimensional equation to a set of low dimensional equations, 
is incorporated with the semi-Lagrangian scheme to avoid 4D phase space interpolation. This operator splitting method, 
though make numerical implementation much easier, may introduce additional numerical error [16] which can bring about 
spurious dissipation. Moreover, an improper splitting scheme may break the Hamiltonian property of gyro-center dynamics, 
such as the conservation of phase-space volume.

Recently, a new method to solve the gyrokinetic equation is developed by introducing the I-transform [17–19], which is 
essentially a special Lie transform. The key idea of the I-transform is to decouple the perturbed motion of the gyro-center 
from the unperturbed motion. With this new theory, a single particle orbit code with the electromagnetic perturbation [20]
and a continuum code which solves the 1D Vlasov–Possion system have been developed [21]. These two codes have been 
verified by GYCAVA code [22] and the conservative semi-Lagrangian code, respectively. In this paper, we extend our work 
to carry out the electrostatic turbulence simulation in tokamak geometry. There are two distinct differences between our 
code and previous semi-Lagrangian codes. Firstly, only unperturbed orbit is needed in our simulation since the perturbed 
motion has been decoupled by the I-transform. Thus the unperturbed orbit, which is determined by time-independent 
equilibrium field, can be computed only once and saved as numerical tables for real-time computation. Secondly, we use 4D 
interpolation by tensor product B-splines to avoid operator splitting.

The remaining part of this paper is organized as follows. In Section 2, the fundamental equations are introduced. In 
Section 3, the numerical methods for solving both the GKE and the quasi-neutrality equation are described. In Section 4, 
the numerical simulation results are presented and discussed. Finally, we summarize the main results in Section 5.

2. Fundamental equations

In a collisionless plasma, the particle distribution function F (Z , t) in gyro-center coordinates Z = (X, v‖, μ) satisfies the 
gyrokinetic Vlasov equation, which is written as

d

dt
F = ∂ F

∂t
+ Ẋ

∂ F

∂ X
+ v̇‖

∂ F

∂v‖
= 0, (1)

with X the position of gyro-center, v‖ the parallel velocity of the particle and μ the magnetic moment. Here, the total time 
derivative d

dt in Eq. (1) is taken along the gyro-center orbit in phase space, which indicates that following the gyro-center 
trajectory the distribution function is a constant. Clearly, Eq. (1) is a convective equation and its characteristic is just the 
gyro-center orbit in an electromagnetic field, which includes both equilibrium and perturbation fields.

In this section, a brief introduction to the I-transform method and the GKE are given. For more details on the I-transform 
method, we refer the reader to Refs. [17–19].

2.1. Magnetic equilibrium configuration and unperturbed equations of motion

The equilibrium magnetic field in a tokamak can be written in either a contravariant or a covariant form as [23]

B0 = q(ψ)∇ψ × ∇θ + ∇ζ × ∇ψ

= g(ψ)∇ζ + I(ψ)∇θ + g(ψ)δ(ψ, θ)∇ψ, (2)

where (ψ, θ, ζ ) are the magnetic flux coordinates, with ψ the poloidal magnetic flux, θ the poloidal angle, and ζ the toroidal 
angle. q(ψ) is the safety factor. 2πμ0 g(ψ) is the poloidal current outside ψ ; 2πμ0 I(ψ) is the total current inside ψ . δ(ψ, θ)

is related to the non-orthogonality of ∇ψ and ∇θ . The metric coefficients of the magnetic flux coordinates (ψ, θ, ζ ) can be 
defined by

gψψ = |∇ψ |2, gψθ = gθψ = ∇ψ · ∇θ, gθθ = |∇θ |2.
The Jacobian of the configuration coordinate is

J = |∇ψ × ∇θ · ∇ζ |−1 = qg + I

B2
. (3)

The unperturbed Poisson bracket, which determines unperturbed guiding-center (GC) motion, is expressed in the GC 
phase space coordinates (X, v‖, μ, ξ) as
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{K , G} = es

ms
(
∂ K

∂ξ

∂G

∂μ
− ∂ K

∂μ

∂G

∂ξ
) + B∗

0

ms B∗
0‖

· (∇K
∂G

∂v‖
− ∂ K

∂v‖
∇G) − b0

es B∗
0‖

· ∇K × ∇G (4)

with ξ the gyro-angle, B∗
0 = B0 + ms v‖

es
∇ × b0 and B∗

0‖ = b0 · B∗
0. The subscript s denotes the species of the particle. The 

Jacobian of the GC phase space coordinates (X, v‖, μ, ξ) is expressed as

J ∗ = B∗
0‖

ms
. (5)

For equilibrium magnetic field given by Eq. (2), the non-zero components of the Poisson matrix in the GC phase space 
coordinates Z 0 = (ψ, θ, ζ, v‖, μ, ξ) can be written as

Jψ v‖ = − J v‖ψ = v‖B

es D
∂θ

g

B
, (6)

J θ v‖ = − J v‖θ = B

ms D

(
1 − ms v‖

es
∂ψ

g

B

)
, (7)

J ζ v‖ = − J v‖ζ = B

ms D

[
q + ms v‖

es

(
∂ψ

I

B
− ∂θ

gδ

B

)]
, (8)

Jψθ = − J θψ = − g

es D
, (9)

Jψζ = − J ζψ = I

es D
, (10)

J θζ = − J ζθ = − gδ

es D
, (11)

J ξμ = − Jμξ = es

ms
, (12)

with D = qg + I + ρ‖(I ′ g − g′ I) − ρ‖ g2∂θ δ and ρ‖ = ms v‖/es B . The phase space Jacobian of Z 0 is J ∗ = D/ms B .
The unperturbed equations of motion can be given by

Ż i
0 = J i j∂ j H0, (13)

with the unperturbed GC Hamiltonian

H0 = 1

2
ms v2‖ + μB0 + es�0.

2.2. The I-transform method

The I-transform we used here is a special Lie transform performed in a short time interval �t . This transform assumes 
the following orderings

εδ ∼ δF

F0
� 1, εt ∼ ω�t ∼ k‖v‖�t � 1,

with δF and F0 the perturbed and the equilibrium distribution, respectively; k‖ is the parallel wave number.
In a given time interval [t0, t0 + �t], the I-transform perturbation method transforms the gyro-center coordinate Z to a 

new coordinates z so that the Poisson bracket as well as the equations of motion in z are formally identical to those in the 
unperturbed GC coordinates Z 0, which are given by Eqs. (6)–(13). Consequently, in this time interval the GKE in the new 
coordinate z can be written as

d0

dt
f = 0. (14)

Here, f is the distribution function in z and the total time derivative d0
dt is taken along the unperturbed orbit which is 

determined by Eq. (13).
The relationship between coordinates Z and z can be expressed by the I-transform operator T as

zi = T Z i . (15)

While the gyro-center distribution function F can be transformed from f by the pull-back transform

F = T −1 f . (16)
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Eqs. (14)–(16) are equivalent to the standard GKE, Eq. (1), for t ∈ [t0, t0 + �t]. While for realistic calculation, the second 
order expansion of the I-transform operator is applied so that Eq. (15) and Eq. (16) can be written as

zi = Z i + Gi
1 + 1

2
G j

1∂ j G
i
1 + o(ε2

δ ε
2
t ) (17)

F = f + 1

J ∗ ∂i[J ∗(Gi
1 + 1

2
Gi

1G j
1∂ j)F ] + o(ε2

δ ε
2
t ). (18)

Note that the G2 terms are ignored in Eq. (17) and Eq. (18), which is correct for a short time I-transform [20].
Here, the 1st-order generating vector field G1(z, t) is an incompressible flow in the phase space which satisfies

1

J ∗ ∂i(J ∗Gi
1) = 0, (19)

and can be calculated by

Gi
1 = ∂k S1 J ki . (20)

S1(z, t) denotes the 1st-order gauge function of the I-transform, which in the electrostatic situation satisfies

d0

dt
S1 = eiδφ, (21)

with δφ the perturbed electrostatic potential and (· · · ) the gyro-average operator defined by

δφ(X,μ, t) = 1

2π

2π∫
0

δφ(X + ρ(μ, ξ), t)dξ. (22)

For computational efficiency and numerical accuracy, the full distribution function f is decomposed into a perturbed 
part δ f and an equilibrium part feq , which satisfies

d0

dt
feq = 0. (23)

Therefore, with the help of Eq. (20) and Eq. (23), Eq. (14) and Eq. (18) reduce to

d0

dt
δ f = 0, (24)

δF = δ f + Gi
1∂i feq + Gi

1∂iδ f + 1

2
Gi

1∂i(G j
1∂ j)(δ f + feq). (25)

Note that the second term on the right hand side of Eq. (25) denotes the linear response, e.g. the usual (ω − ω∗) term 
in the conventional gyrokinetic δ f method, as has been clarified in Ref. [17]; the third term and the last term are the 
nonlinear effects, including the well-known E × B nonlinearity.

Since the I-transform is a short time transform in t ∈ [t0, t0 + �t], it must be performed for each time step in numerical 
simulation. And the initial condition for each time step are

δ f (t0) = δF (t0) (26)

S1(t0) = 0 (27)

G1(t0) = 0 (28)

Eqs. (20), (21), (24) and (25) are the GKEs of the I-transform theory in [t0, t0 + �t] with initial condition given by 
Eqs. (26), (27) and (28). Note that in comparison to Eq. (1), the total time derivatives in the I-transformed GKE are taken 
along the unperturbed orbit. This property can be used in numerical computation to reduce the computational effort, which 
is discussed in Sec. 3.

2.3. Gyrokinetic quasi-neutrality equation

The gyrokinetic quasi-neutrality (QN) equation is written as

e2
i ρ

2
i

T i
∇ · (n0i∇⊥δφ) = −(eiδng

i − eδne), (29)

with ρi = √
mi Ti/ei B the gyro-radius, n0i the equilibrium ion density, Ti the ion temperature. The left-hand side of Eq. (29)

is the ion polarization density, with the long-wavelength approximation used. This approximation is valid for the ITG tur-
bulence with adiabatic electrons [24].
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The gyro-center density δng
i is expressed as

δng
i =

∫
δF

B∗
0‖

mi
dξdμdv‖. (30)

Here, the over-bar denotes the gyro-average operator defined by Eq. (22). The electrons are assumed adiabatic, so that the 
perturbed electron density can be expressed as

δne � en0e
δφ − 〈δφ〉

Te
, (31)

where 〈· · · 〉 denotes the magnetic-flux-surface average. Inserting Eq. (31) into Eq. (29) and taking flux average on both sides 
we get the equation for 〈δφ〉 as

〈e2
i ρ

2
ti

T i
∇ · (n0i∇⊥δφ)〉 = −ei〈δng

i 〉. (32)

For flux coordinates (ψ, θ, ζ ), the operator L .= ∇ · (n0i∇⊥) in Eq. (29) can be expressed in large-aspect-ratio limit as

L � 1

J
[∂ψ( J gψψn0i∂ψ) + ∂ψ( J gψθn0i∂θ ) + ∂θ ( J gθψn0i∂ψ) + ∂θ ( J gθθn0i∂θ ) − ∂θ (

n0i

J B2
∂θ )]. (33)

Note that in this limit, the operator L does not depend on the toroidal angle so that Eq. (29) actually becomes a 2D partial 
differential equation with ζ treated as a parameter. For a given toroidal angle ζ ∗ , the 2D QN equation with adiabatic electron 
response for δφ(ψ, θ, ζ ∗) can be written as

(c1∂
2
ψ2 + c2∂

2
θ2 + c3∂

2
ψθ + c4∂ψ + c5∂θ + c6)δφ(ψ, θ, ζ ∗) = −(eiδng

i (ψ, θ, ζ ∗) + en0e
e〈δφ〉

Te
. (34)

The details of the coefficients ci(ψ, θ) can be found in Appendix A. Similarly, Eq. (32) can be written as

(d1∂
2
ψ2 + d2∂ψ)〈δφ〈(ψ, ζ ∗)〉 = −ei〈δng

i 〉, (35)

where the coefficients di(ψ) are also derived in Appendix A. Eq. (34) and Eq. (35) are the QN equations used in our 
simulation and the numerical scheme will be given in the next section.

3. Numerical implementation

A numerical tokamak equilibrium configuration [13,25] is used in the NLT code. The perturbed part of distribution 
function δ f (ψ, θ, ζ, V‖, μ) is discretized on an uniform phase space grid, which can be denoted as

δ f (zI )
.= δ f (ψi, θ j, ζk, V‖l,μm),

where i, j, k, l and m are grid indices for each coordinate. The discretizations of the gauge function S1 and the generating 
vector field G1 are the same as δ f . The perturbed potential is discretized on the configuration grid, which is denoted by

δφk
i, j = δφ(ψi, θ j, ζk).

3.1. GKEs solver

Eq. (21) and Eq. (24) are solved by using the backward semi-Lagrangian method. For a given time interval [tn, tn+1], the 
value of the distribution function at a grid point is updated by tracing the phase space characteristic z(t) from the grid 
z(tn+1) = zI backward in time to find its point of origin, which is denoted by z(tn) = z∗

I .
From Eq. (24), it is clear that

δ f (zI , tn+1) = δ f (z∗
I , tn). (36)

Thus δ f (zI , tn+1) can be computed by a 4D tensor spline interpolation, which predicts the off-grid value δ f (z∗
I , t

n) from 
grid-point values δ f (zI , tn). The details about the 4D tensor spline interpolation can be found in Appendix B.

Compared with Eq. (24), there is an additional source term δφ(z, t) on the right hand side of Eq. (21). Integrating Eq. (21)
from tn to tn+1, one has

S1(zI , tn+1) − S1(z∗
I , tn) = ei

tn+1∫
n

δφ(z(t), t)dt.
t
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Note that for each time step [tn, tn+1] S1(z, tn) = 0 holds and δF = δ f at time t = tn . The above integral can be evaluated 
by

tn+1∫
tn

δφ(z(t), t)dt = δφ(z∗
I , tn)�t + O (�t2).

So the numerical scheme for updating S1 can be written as

S1(zI , tn+1) = eiδφ(z∗
I , tn)�t + O (�t2). (37)

The numerical error analysis for this equation can be found in Ref. [20].
After updating δ f and S1 by Eq. (36) and Eq. (37), the gyro-center distribution δF can by explicitly calculated by Eq. (25). 

The partial derivatives therein are approximated by the fourth order central finite difference scheme, which can be written 
as

∂ f

∂x

∣∣
x=xi

= f i−2 − 8 f i−1 + 8 f i+1 − f i+2

12�x
+ O

(
�x4

)
, (38)

∂ f 2

∂2x

∣∣
x=xi

= − f i−2 + 16 f i−1 − 30 f i + 16 f i+1 − f i+2

12�x2
+ O

(
�x4

)
, (39)

where x indicates ψ, θ, ζ and v‖ .

3.2. Midpoint predictor–corrector algorithm

The numerical integration scheme of Eq. (37) has only first-order accuracy in time. To improve the numerical accuracy, 
the midpoint predictor–corrector method is applied to the GKE solver. Let tn+ 1

2 = (tn+1 + tn)/2. The characteristic z(t)

starting from z(tn+1) = zI can be computed backward to t = tn+ 1
2 and denoted by z(tn+ 1

2 ) = z′
I . For a given time interval 

[tn, tn+1], the predictor–corrector method for the GKE is applied as follows.
Predictor step:

Step 1. Compute S1(tn+ 1
2 ) and δ f (tn+ 1

2 ) from δ f (tn), S1(tn) and δφ(tn) according to Eq. (36) and Eq. (37), where z∗
I is 

replaced by z′
I .

Step 2. Compute δF (tn+ 1
2 ) by Eq. (25).

Step 3. Solve the QN equation to compute δφ(tn+ 1
2 ).

Corrector step:

Step 4. Compute δ f (tn+1) and S1(tn+1) from δ f (tn), S1(tn) and δφ(tn+ 1
2 ) according to Eq. (36) and Eq. (37). In this step, 

the perturbed potential in Eq. (37) should be replaced by the predicted value as

S1(zI , tn+1) = eiδφ(z′
I , tn+ 1

2 )�t + O (�t3). (40)

3.3. Quasi-neutrality equation solver

The 2D QN equation Eq. (34) is solved by using a combination of the pseudo-spectral method in poloidal direction and 
the finite difference method in radial direction. The partial differential equation is transformed to a linear equation set of 
δφk

i, j , which is written as

Ax = b. (41)

For the 1D flux-averaged QN Eq. (35), it can also be transformed into a linear algebraic equation set denoted by

〈A〉 〈x〉 = 〈b〉 . (42)

The details of the derivation of Eq. (41) and Eq. (42) can be found in Appendix C. The linear systems (41) and (42) are 
solved by the Gaussian elimination method. The inverse matrices of A and 〈A〉 are denoted by A−1 and 〈A〉−1, respectively. 
These two matrices can be computed and saved in the initialization step. For real-time computation the QN equation can 
be solved by

〈x〉 = 〈A〉−1 〈b〉 ,

x = A−1b.
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3.4. Boundary conditions, equilibrium distribution and gyro-average operator

The perturbed distribution function is periodic in both θ and ζ directions which satisfies

δ f
(
ψ,θ + 2π,ζ, V‖,μ

) = δ f
(
ψ,θ, ζ, V‖,μ

)
,

δ f
(
ψ,θ, ζ + 2π, V‖,μ

) = δ f
(
ψ,θ, ζ, V‖,μ

)
.

For other two directions ψ and V‖ the fixed boundary condition is assumed, i.e.,

δ f
(
ψ,θ, ζ, V‖,μ

) = δ f
(
ψb, θ, ζ, V‖,μ

)
, i f ψ > ψb,

δ f
(
ψ,θ, ζ, V‖,μ

) = δ f
(
ψa, θ, ζ, V‖,μ

)
, i f ψ < ψa,

with [ψa,ψb] the computation domain in radial direction. In numerical computation, if a particle moves out of the compu-
tational boundary of ψ and V‖ , it will be forced to stay on the boundary so that the interpolation points are always inside 
the computational domain.

For the QN equation, the fixed boundary condition is applied, i.e.,

δφ (ψa, θ, ζ ) = δφ (ψb, θ, ζ ) = 0.

The equilibrium distribution Feq should be a constant of motion so that Eq. (23) is valid. In our simulation, the equi-
librium distribution can be chosen as a local Maxwellian due to the application of the δ f method. The ion equilibrium 
distribution is written as

Feq
(
ψ,θ, ζ, V‖,μ

) =
(

mi

2π Ti

) 3
2

n0iexp

(
−

1
2 mi V 2‖ + μB

Ti

)
,

where n0i (ψ) and Ti (ψ) are particle density and temperature, respectively. The partial derivatives of Feq , which appear in 
Eq. (25) can be given as follows

∂ψ Feq =
(

n′
i

ni
+

( 1
2 mi V 2‖ + μB

Ti
− 3

2

)
T ′

i

T i
− μ∂ψ B

Ti

)
Feq,

∂θ Feq = −μ∂θ B

Ti
Feq,

∂ζ Feq = 0,

∂V‖ Feq = −mi V‖
Ti

Feq.

The gyro-average operator is approximated by a four-point discrete sum method [26] which is valid for kρ < 2.

3.5. Parallelization strategy

The NLT code is parallelized by hybrid MPI + OpenMP programming. The distribution function is decomposed by mag-
netic moment μ and distributed to different processes. For the QN equation, the inverse matrix A−1 is stored distributedly 
on different processes. The loops within a process are parallelized with OpenMP.

4. Simulation results

4.1. Rosenbluth–Hinton test

In this subsection, the Rosenbluth–Hinton (R–H) test is performed. It has been predicted that [27] an E × B flow imposed 
in toroidal plasmas as an initial pulse will excite a geodesic acoustic mode (GAM) [28] oscillation. This poloidal flow will 
relax to a stationary value which is called residual flow due to Landau damping. The analytical theory of GAM frequency 
and damping rate can be found in Ref. [29] and the residual flow level is calculated in Ref. [27].

A concentric circles equilibrium is used for simulation with parameters B0 = 1.5 T, R0 = 1.25 m, a = 0.45 m, where a and 
R0 are the minor radius and major radius, respectively. The temperature and density profile are both set to be constants as 
Ti = 0.15 kev, ni0 = 1019/m3. The radial domain taken in the simulation is [ra, rb] = [0.45a,0.6a] so that krρi = 0.11, where 
kr = 2π/ (rb − ra) is wave number in radial direction. To excite the E × B flow, a sinusoidal perturbation of the flux surface 
averaged ion density, δn × sin (kr (r − ra)), is imposed in the radial direction. Here, the perturbation amplitude δn is chosen 
as δn/ni0 = 10−5. Since GAM is a electrostatic mode with toroidal symmetry, only one grid in toroidal direction is needed, 
that is nζ = 1. The grid resolution 

(
nψ × nθ × nV‖ × nμ

)
for 

(
ψ,θ, V‖,μ

)
are set as (80 × 64 × 128 × 64). The computational 

domain in phase space used for R–H test is V‖ ∈ [−5Vti,5Vti] × μ ∈ [0,13Ti/B0]. The time step in computation is set as 
�t = 0.019R0/Vti . In Fig. 1, the evolution of Er from both numerical simulation and analytical theory, with τ = Te/Ti = 0, 
are plotted and compared. It can be seen that the numerical results of GAM frequency, damping rate and residual flow level 
are all well consistent with theoretical predictions.
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Fig. 1. GAM radial electric filed evolution with q = 1.6, ε = 0.22. The theoretical prediction for GAM frequency, damping rate and residual flow level are 
given in Ref. [29] and Ref. [27].

4.2. ITG Cyclone test

In this subsection, a set of linear ion temperature gradient simulations are performed for the Cyclone-test [30] like 
parameters. To verify the simulation results, a comparison between numerical results of the NLT code and the GENE code is 
presented. The parameters used in our simulation are set as close as possible to those in Ref. [11]. Once again, a concentric 
circles equilibrium is used with parameters R0 = 1.6714 m, a = 0.6043 m, B0 = 1.9 T. The safety factor profile is set as

q = 0.864 + 2.27
( r

a

)2√
1 −

(
r

R0

)2
,

so that q (r0) = 1.455 and ŝ (r0) = 0.826, with r0 = 0.5a and ŝ = (r/q)dq/dr the magnetic shear. The temperature and density 
profile are set as

T (r) = T0exp

[
−κT

a

R0
�T tanh

(
(r − r0) /a

�T

)]
,

N (r) = N0exp

[
−κN

a

R0
�Ntanh

(
(r − r0) /a

�N

)]
,

with T0 = 1.9693 kev, N0 = 1019/m3, κT = 6.9589, κN = 2.232, �T = �N = 0.3. Here, τ = Te/Ti = 1 is assumed. These 
profiles are plotted in Fig. 2.

For the linear ITG simulation, a toroidal mode number is given, which is denoted by n0, so that only this mode in 
toroidal direction is kept. Therefore, the simulation domain for ζ can be reduced to [0,2π/n0) and the periodic boundary 
condition in toroidal direction is applied for all variables. A toroidal mode filtering is utilized so that only the fundamental 
mode in ζ ∈ [0,2π/n0) is kept. The size of radial simulation box is 160ρi . The computational domain in phase space for the 
Cyclone test is V‖ ∈ [−3Vti,3Vti] × μ ∈ [0,9Ti/B0]. A dimensionless number kθ ρi is used to represent the mode number, 
where kθ is defined by kθ = n0q0/r0. The grid resolution 

(
nψ × nθ × nζ × nV‖ × nμ

)
are set as (160 × 128 × 32 × 64 × 32)

and (160 × 512 × 32 × 64 × 32) for kθρi < 0.3 and kθρi ≥ 0.3, respectively. In Fig. 3, the mode frequency and growth rate 
for different mode numbers are shown; it can be seen that the simulation results from two codes are consistent with each 
other. In Fig. 4, the mode amplitude and mode structure for kθ ρi = 0.3 are shown.

To end this section, we note that in the above NLT simulations, the usual damping buffer region near the radial boundary 
of computational domain used in many other codes is not needed here. In comparing the GAM simulation with our previous 
work [13], we conclude that the computation efficiency of the NLT code is comparable to the previous semi-Lagrangian 
operator splitting method.

5. Summary

In this work, we have developed a new continuum code to solve the nonlinear gyrokinetic equation for the parallel 
simulation of electrostatic modes in a tokamak fusion plasma. The numerical scheme is based on the recently developed 
I-transform theory which decouples the perturbed motion from the unperturbed motion. Therefore, the unperturbed motion 
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Fig. 2. (a) q profile, (b) temperature and density profile.

Fig. 3. Comparison of linear ITG frequency (a) and growth rate (b) between GENE and NLT with adiabatic electron and τ = 1.

Fig. 4. Perturbation potential evolution (a) and ITG mode structure (b) for n0 = 33.
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can be computed before evolving the distribution function. The effects of the unperturbed motion on the evolution of 
distribution function are evaluated by using the semi-Lagrangian method and a 4D B-spline interpolation method, while the 
effects of the perturbed motion on the evolution are evaluated by the I-transform method which needs only to integrate 
the perturbed potential along the unperturbed orbit.

We have verified the NLT code by running the Rosenbluth–Hinton test and the Cyclone base test of linear ITG mode. 
The NLT simulation results of the GAM agree well with the analytical theory. The linear ITG mode simulation results of the 
NLT code agree well with the results by the GENE code, an Eulerian continuum code. The preliminary results show that the 
efficiency of the I-transform method used in the NLT code to solve the nonlinear gyrokinetic equation is comparable with 
the previous operator-splitting semi-Lagrangian method. For the test of the NLT code, such as the nonlinear simulation of 
ITG mode, will be reported in the near future.
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Appendix A. Coefficients in QN equation

Let β = e2
i ρ

2
ti

T i
, the coefficients in Eq. (34) are given as follows.

c1 = βn0i gψψ,

c2 = βn0i(gθθ − 1

J 2 B2
),

c3 = βn0i2gψθ ,

c4 = β
1

J
[∂ψ(J gψψn0i) + ∂θ (J gθψn0i)],

c5 = β
1

J
[∂ψ(J gψθn0i) + ∂θ (J gθθn0i) − ∂θ (

n0i

J B2
)],

c6 = −en0e

Te
.

By taking the magnetic-flux-surface average of Eq. (34), one gets the averaged QN equation,

〈L〉 〈δφ〉 = −ei〈δng
i 〉,

with 〈L〉 = 〈
βn0i gψψ

〉
∂2
ψ2 +

〈
β 1
J [∂ψ(J gψψn0i)

〉
∂ψ . Here, the approximation 〈Lδφ〉 = 〈L〉 〈δφ〉 is applied. Thus the coeffi-

cients in Eq. (35) are given by

d1 = 〈
βn0i gψψ

〉
,

d2 =
〈
β

1

J
[∂ψ(J gψψn0i)

〉
.

Appendix B. High dimensional B-spline interpolation

In the NLT code, high dimensional (3D and 4D) spline interpolation is performed by using the tensor product of B-spline 
[31].

Suppose that a one-dimensional function f = f (x) is approximated by B-splines P f = αiBi(x) which satisfy the condition 
f (xi) = P f (xi) at each grid node xi . And in another dimension g(y) is approximated by P g , then interpolations in two 
dimensions can be done:

w(x, y) = αi jBi(x)B j(y).

For each grid node (xr, ys), the coefficients satisfy the condition

w(xr, ys) = αi jBi(xr)B j(ys).

The 3D and 4D B-spline tensor product interpolation can be done in the similar way:

w(x, y, z) = αi jkBi(x)B j(y)Bk(z),

w(x, y, u, v) = αi jklBi(x)B j(y)Bk(u)Bl(v).
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Usually, only the data at the grid nodes are not enough to determine the coefficients completely. Different boundary 
conditions may be applied. For example, when the cubic B-spline (its order is 4) is used in one dimension, the first order 
derivative at both ends of the interval may be added to determine the coefficients completely [32]. Without providing 
these two first order derivative, not-a-knot condition can also help to determine the coefficients. If the knot sequence 
is constructed periodically, and so do the coefficients, then a rigorous periodic condition can be obtained. Here rigorous 
periodic condition means the value and possible derivatives of function exactly equal at the first and the last grid node.

In the NLT code, the rigorous periodic condition is applied in poloidal and toroidal dimensions, not-a-knot condition is 
applied in other dimensions. In order to reduce the computation cost, the parabolic B-spline (its order is 3) is used.

Appendix C. Discretization of QN equation

For a periodic function f (θ), let

f = ( f1, f2, · · · , fn)
T,

with

f j = f (θ j), θ j = 2π( j − 1)

n
, j = 1,2, · · · ,n.

The first order and second order derivatives of f can be evaluated by the first order and the second order Fourier derivative 
matrices, respectively, as [33]

f ′ = D1 f , (C.1)

f ′′ = D2 f . (C.2)

Here, D1 and D2 are m × m matrices defined by

(D1)i j =
{

1
2 (−1)(i+ j)cot[ (i− j)π

n ], i �= j

0, i = j
(C.3)

(D2)i j =
⎧⎨
⎩

1
4 (−1)(i+ j)n + (−1)i+ j+1

2sin2[ (i− j)π
n ] , i �= j

− (n−1)(n−2)
12 . i = j

(C.4)

For a non-periodic function g (ψ) ψ ∈ (ψa,ψb), let

g = (g1, g2, · · · , gn)
T,

with

gi = g(ψi), ψi = ψi + (ψb − ψa)(i − 1)

m − 1
, i = 1,2, · · · ,m.

Similarly, the finite difference derivative matrix for the radial derivative can be derived from Eq. (38) and Eq. (39) as

F1 = 1

12�ψ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−25 48 −36 16 −3
−3 −10 18 −6 1
1 −8 0 8 −1

1 −8 0 8 −1
· · · · · · · · ·
1 −8 0 8 −1

1 −8 0 8 −1
−1 6 −18 10 3
3 −16 36 −48 25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m×m

, (C.5)

F2 = 1

12�ψ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

35 −104 114 −56 11
11 −20 6 4 −1
−1 16 −30 16 −1

−1 16 −30 16 −1
· · · · · · · · ·
−1 16 −30 16 −1

−1 16 −30 16 −1
−1 4 6 −20 11
11 −56 114 −104 35

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C.6)
m×m
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Now we turn to a 2D function and its derivatives. For a 2D m × n matrix � defined by

�i, j = δφ
(
ψi, θ j

)
, i = 1,2, · · · ,m, j = 1,2, · · · ,n, (C.7)

we map it onto a m × n vector x defined by

xk = �i(k), j(k), k = 1,2, · · · ,m × n = N (C.8)

with x explicitly written as

x = (
�1,1, �1,2, · · · , �1,n; �2,1, �2,2, · · · �2,n; · · · , �m,1, �m,2, · · · �m,n

)T
. (C.9)

Here, the map k ↔ (i (k) , j (k)) can be expressed as

i (k) = (k − 1) /n + 1, (C.10)

j (k) = mod (k,n) , (C.11)

k = n × (i − 1) + j. (C.12)

Then the 2D derivative matrix can be constructed from the 1D derivative matrix given above. For example, let’s denote the 
1st order partial derivative matrix for ∂θ by (Dθ )N×N , which satisfies

Dθ x = xθ , (C.13)

where xθ = (
(�θ )1,1 , (�θ )1,2 , · · · , (�θ ) 1,n; (�θ )2,1 , (�θ )2,2 , · · · (�θ )2,n ; · · · ; (�θ )m,1 , (�θ )m,2 , · · · (�θ )m,n

)T
, with 

(�θ )i, j = ∂
∂θ

δφ
(
ψi, θ j

)
. The k0th row of Dθ can be constructed as follows.

Step 1. Set Dθ (k0,k) = 0 for k = 1, 2, · · · N .
Step 2. Compute i (k0) and j (k0) by Eq. (C.10) and Eq. (C.11). From Eq. (C.1), one has

n∑
l=1

(D1) j(k0),l �i(k0),l = (�θ )i(k0), j(k0) = (xθ )k0
.

Step 3. Compute k′ = k (i(k0), l), (l = 1,2, · · ·n) by Eq. (C.12) and set Dθ

(
k0,k′) = (D1) j(k0),l .

For the partial derivative with variable coefficient such as c5∂θ in Eq. (34), the derivative matrix C5 can be calculated from 
D ′

θ by

C5
(
k0,k′) = c (i(k0), j(k0)) Dθ

(
k0,k′) , k′ = 1,2, · · · , N. (C.14)

Similarly, all the derivative matrix {Ci}6
i=1 on the LHS of Eq. (34) can be calculated and the total derivative matrix can be 

denoted by

A =
6∑

i=1

Ci . (C.15)

Let’s denote the RHS of Eq. (34) by s (ψ, θ). By discretizing s to an m × n vector b according to Eq. (C.9), one gets the 
linear algebraic equations for Eq. (34) as

Ax = b. (C.16)
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