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The fixed boundary toroidal plasma equilibria with toroidal flows are investigated by solving the

modified Grad-Shafranov equation numerically in the cylindrical coordinate system. For normal

equilibrium configurations with geometry and profiles similar to usual tokamaks with no flow, it is

found that the effect of flow is to lead to an outward shift of the magnetic flux surfaces, together

with the profiles of pressure, and mass and current densities. The shifts could become significant

when the toroidal flow Mach number exceeds 0.5. For non-conventional current profiles, even for

the usual tokamak geometry, novel current reversal equilibrium configurations may result, some-

times with changed topology in the poloidal flux function. This change in the topology of plasma

equilibrium can be attributed to the large toroidal flow. The computed results may correspond to

situations of intense tangential injection during the low toroidal current phase in expected experi-

mental situations. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4947028]

I. INTRODUCTION

Plasma flows (rotations) have been observed in many

tokamaks,1–7 particularly in neutral beam heating experi-

ments.2–4,8 Studies of the equilibrium and stability properties

of rotating plasmas have recently attracted considerable in-

terest in fusion plasma research.1,7 The plasma rotation could

be spontaneous or driven by neutral beam injection or radio-

frequency wave heating. In certain phases of the discharge,

both the energy transport and the macroscopic stability are

significantly impacted by either the poloidal or toroidal

plasma rotations.

We note that there are already a rich history on the

investigations of the effect of plasma flow and flow shear on

the plasma equilibrium1,9–14 in the literature. The general

equilibrium result is that a large plasma flow, with a signifi-

cant Mach number (defined as the velocity of flow relative to

the sound speed or the Alfven velocity) will lead to a signifi-

cant outward shift of the magnetic surfaces, accompanied by

the shifts in the profiles of the pressure and mass and current

densities. Together with these are the investigations on the

effect of flow on the macroscopic plasma stabilities such as

the internal and external kinks,15–17,20 ballooning modes,18,19

and resistive wall Mode (RWM)20–22 etc. In recent years, it

has been observed in several tokamaks that the existence of

sheared toroidal flows in the equilibrium could have a benefi-

cial influence on the neoclassical tearing modes (NTMs).23

Impurity transport is also strongly correlated with toroidal

plasma rotation. The injection of fast, neutral particles which

parallel to the plasma current (coinjection) suppresses the

accumulation of impurities in the center of the plasma, and

while in the case of counterinjection, the impurity buildup is

enhanced.24 However, very large rotation is also found to be

unfavorable for plasma stability. It is found that the kink

mode may be destabilized by high rotation velocities, even

when the safety factor at the magnetic axis is above unity.25

On the other hand, as far as the poloidal flow is concerned, a

large poloidal flow could cause the governing equation deter-

mining the plasma equilibrium configurations to become

hyperbolic, introducing internal discontinuities into the pres-

sure profiles in the plasma. This would require the existence

of shock waves on the plasma sources which might lead to

equilibrium degradation.26 On the one hand, the study of sta-

bility and transport requires first accurate knowledge about

the plasma equilibrium. On the other hand, we still find chal-

lenging and interesting issues on the accurate determination

of the complete knowledge on plasma equilibrium. This

work is thus motivated by having a better understanding of

the issue of toroidal plasma equilibrium with a toroidal flow.

The generalized Grad-Shafranov (GGS) equation of a

rotating plasma was first given concisely by Hameiri.10

Maschke and Perrin showed that with some simplifying

assumptions,9 the GGS equations can be solved analytically.

Recently, Guazzotto et al. have investigated numerically the

effects of toroidal and poloidal flows on the equilibrium of

tokamak plasmas by using the equilibrium code FLOW.1

Their results covered a wide range of tokamak equilibria, but

apparently with the plasma configuration mainly consisted of

nested flux surfaces.

In this work, we concentrate our attention on plasma

with a pure toroidal flow. We first formulate and define the

equilibrium problem under consideration. The GGS equation

with toroidal flow is solved in a fixed domain without first

assuming the equilibrium to consist of nested flux surfaces.

The solution method is to first divide the domain into trian-

gular sub-regions, and the solution in each sub-region is

assumed to be spanned by a finite element. The sub-regions

can be refined to consist of finer sub-regions. The nonlinear

GGS equation is then cast into a matrix equation for the

poloidal flux function with given sources. The matrix equa-

tion is solved iteratively with the source functions deter-

mined by the previous iteration. The convergence is tested

self-consistently by demanding that the solution converge to
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a specific accuracy. We first calibrate our numerical results

against the analytic solution. We then investigated the effect

of a toroidal flow on a normal equilibrium configuration

(NEC), choosing for the plasma boundary similar to that of

Experimental Advanced Superconducting Tokamak (EAST).

We fixed the toroidal current in the equilibrium solution and

showed that as previous authors found, the effect of toroidal

flow is mainly to impart an outward shift to the plasma flux

surfaces, together with the pressure, and mass and current

density profiles. The shifts are especially prominent when

the Mach number is larger than 0.5. It also has effects on the

total bv, normalized bN, and volume average pressure pv.

We next study the current reversal equilibrium configu-

rations (CRECs), and these are equilibria with unconven-

tional plasma current profiles. CRECs have been

demonstrated to exist experimentally as well as theoreti-

cally27–34 in plasmas without flow or with small flow.

Experiments on JET and JT-60 have demonstrated improved

confinement regimes with reversed shear and nearly zero to-

roidal current density in the central region. On the other

hand, alternating-current operation has been demonstrated

experimentally on several tokamaks such as Stor-1M, CT-

6B, and HT-7. By fixing other constants in the plasma equi-

librium profile and increasing only the Mach number, we

showed that for very low current equilibria, the configuration

can change from NEC to CREC. Thus toroidal plasma flow

is the direct cause of these CRECs. This could correspond to

intense tangential neutral beam injection during the initial

low current phase of the tokamak discharge. We next show

that change in discharge topology due to plasma rotation can

be further demonstrated starting with a CREC and changed

into another type of CREC.

The paper is organized as follows: In Sec. II, the formu-

lation of the problem of plasma equilibrium with a toroidal

flow in a fixed domain is presented. We also give a brief dis-

cussion of the method of solution. Details of the results of

numerical solution are given in Sec. III. We first discuss the

validation of our results and the results of solutions for the

NECs in Sec. III A. The discussion on the possibility of

changes in plasma topology is presented in Sec. III B. A brief

discussion and summary is given in Sec. IV.

II. FORMULATION OF THE FIXED BOUNDARY
EQUILIBRIA FOR PLASMA WITH TOROIDAL FLOW
AND METHOD OF SOLUTION

We start with the ideal magnetohydrodynamics (MHD)

equations for a toroidally rotating plasma and use the standard

cylindrical coordinates ðr;u; zÞ. Where r is the major radius of

the torus, u the toroidal angle, and z the height above the mid-

plane. For the toroidally symmetric plasma equilibrium, @
@u ¼ 0.

The basic MHD equations include the equations for (1) mass

and (2) momentum conservation, as well as the Maxwell’s

equations (3)–(5) written in the following standard form:10

r � ðqvÞ ¼ 0; (1)

qv � rv ¼ �rpþ J � B; (2)

r � B ¼ 0; (3)

l0J ¼ r� B; (4)

r� ðv� BÞ ¼ 0; (5)

v � rS ¼ 0; (6)

p ¼ Sqc; (7)

where q; v; p; J;B, and c are the plasma density, velocity,

pressure, current density, magnetic field, and the adiabatic

constant. Eq. (6) is the equation for the specific entropy S,

and Eq. (7) is the equation of state for plasma pressure p.

It is well known that the magnetic field can be written as

B ¼ rw�ruþ Bueu; (8)

where wðr; zÞ is the poloidal flux function. From Eq. (5), we

obtain

v� B ¼ rH: (9)

Because rH is perpendicular to B, rH ¼ XðwÞrw,

where XðwÞ is an arbitrary function of the poloidal flux w.

Ignoring the poloidal flow, we obtain

v ¼ vu ¼ rX: (10)

Therefore, X is the toroidal rotation angular frequency of

the flux surface. From Eqs. (6) and (10), we could find that S
can be an arbitrary axially symmetric function of r and z. For

simplicity, we assume

S ¼ SðwÞ: (11)

Note this choice is not arbitrary. Rather, it corresponds

to the general behavior of the entropy function S in a plasma

with a general flow, including the aligned flow. In our pres-

ent case, the aligned flow has been damped to a negligible

value. From the u component of the momentum equation

(2), we get B � rðrBuÞ ¼ 0, which implies

Bu ¼
l0F wð Þ

r
; (12)

here FðwÞ is an arbitrary function of the poloidal flux. We

note this relation is the same as the case of plasma equilib-

rium without flow. From the well known thermodynamic

relations

dw ¼ 1

q
dpþ TdS; (13)

where x and T are the specific enthalpy and plasma tempera-

ture. Because the differential operator d in (13) stands for

change in the plasma frame, we can use Equations (6) and

(11) to obtain

1

q
rp ¼ rw;w ¼ c

c� 1
Sqc�1: (14)

Multiplying the moment equation (2) by 1
q
~B and using

(14), we can get another equation of the form ~B � rf ¼ 0,

yielding
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� r2

2
X2 þ c

c� 1
Sqc�1 ¼ H wð Þ; (15)

where HðwÞ is a arbitrary function. This is the analog of

Bernoulli’s law in fluid dynamics. In the same way, the rw
component of the momentum equation yields9–12

�r � 1

r2
rw

� �
¼ l0 qrvuð Þ

dX
dw
þ Bu

r

dF

dw

�

þq
dH

dw
� qc

c� 1

dS

dw

�
¼ ju

r
: (16)

In summary, collecting Eqs. (12), (15), and (16), we

have obtained the following set of equations:

Bu ¼
l0F wð Þ

r
; (17)

� r2

2
X2 þ c

c� 1
Sqc�1 ¼ H wð Þ; (18)

�r � 1

r2
rw

� �
¼ l0 qrvuð Þ

dX
dw
þ Bu

r

dF

dw

�

þq
dH

dw
� qc

c� 1

dS

dw

�
: (19)

These constitute the generalized Grad-Shafranov (GGS)

equations of a plasma with toroidal rotation. Here, we

assumed that the entropy is constant on the magnetic surface.

The solution depends on the four arbitrary functions of

w : X;F;H; S. It is a nonlinear elliptic partial differential

equation defined over a closed domain.

We further adopt the following dimensionless parame-

ters to cast the GGS equations into a nondimensional form.

x ¼ r

a
; z ¼ z

a
; S! S

S0

; H ! H

H0

;

X! X
X0

; F! F

F0

; q! q
q0

; p! p

p0

;

w! w
w0

; Bu !
Bu

B0

; vu !
vu

v0

;

w0 ¼ B0a2; ju !
ju
j0
; j0 ¼

B0

a
;

F0 ¼
aB0

l0

; S0 ¼
B2

0

l0q
c
0

; H0 ¼
B2

0

l0q0

¼ v2
A0;

p0 ¼ S0q
c
0 ¼

B2
0

l0

; v0 ¼ R0X0;

where B0; q0;X0 are the value of magnetic field, plasma den-

sity, and toroidal rotation frequency at r ¼ R0, which is cho-

sen to be at the center of the computational domain. R0; a are

the major radius and the minor radius.

Using the above dimensionless parameters, we rewrite

Eqs. (17), (18), and (19) as

Bu ¼
F

x
; (20)

� 1

2
e2M2

t0x2X2 þ c
c� 1

Sqc�1 ¼ H; (21)

r � 1

x2
rw

� �
þ eM2

t0xqvu
dX
dw
þ Bu

x

dF

dw
þ q

dH

dw

� qc

c� 1

dS

dw
¼ 0:

(22)

Here, e ¼ 1
x0
; x0 ¼ R0

a . Mt0 ¼ v0

vA0
is the reference Alfven Mach

number. From Eq. (21), the density can be solved analyti-

cally. Then, we obtain

q ¼ D 1þ c� 1

2
e2M2

t0 e2x2 � 1ð ÞM2

� � 1
c�1

;

M ¼ x0X
Cs

; Cs ¼
ffiffiffiffiffiffi
cP

D

r
; (23)

where

D ¼ c� 1

Sc
H þ 1

2
M2

t0X
2

� �" # 1
c�1

; (24)

which can be viewed as a “quasi-density”. The free functions

X;F;H; S are then the same as those in Ref. 1

FðwÞ ¼ x0BtðwÞ; (25)

X wð Þ ¼
ffiffiffiffiffiffi
cP

D

r
M

x0

; (26)

H wð Þ ¼ cP wð Þ
D wð Þ

1

c� 1
� 1

2
e2M2

t0M2
u

� �
; (27)

S wð Þ ¼ P wð Þ
D wð Þc ; (28)

where Bt;M;P;D can be viewed as “quasi-toroidal magnetic

field,” “quasi-toroidal Mach number,” “quasi-pressure,” and

“quasi-density,” respectively. Defining these free functions

facilitates the assignment of the input parameters for the nu-

merical solution of the GGS equation(s).

To continue the specification of the fixed boundary equi-

librium problem, we adopt the Dirichlet boundary condition

of w¼ 0 on the boundary. Once the profile parameters are

supplied, the GGS equation is solved iteratively over the

computational domain. We note that usually, the GGS equa-

tion could be close to linear, then an integral constraint, such

as the total plasma current needs to be supplied to ensure we

do not obtain a null solution. On the other hand, after enough

equilibrium profile data is supplied, the solution is deter-

mined self-consistently. Some of the global quantities, such

as total poloidal flux, toroidal flux, and even the number of

closed flux regions in the computational domain are then

self-consistently determined by the solution. Because the

profiles are inherently nonlinear, uniqueness of the solution

is not guaranteed. Herein lies the possibilities of multiple

solutions which could possibly be obtained by specifying the

same profile parameters differently or adopt a different pro-

cess for the solution of the problem.

We use the finite element method to solve the coupled

equation set Eqs. (20), (21), and (22). The computation do-

main is covered by a triangular mesh with the basic region a
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small triangle. The finite element base functions are defined

on each of the triangular regions. The GGS equation is then

recast into a matrix equation for the base (poloidal flux)

functions on triangles. The highest order derivative term in

the partial differential GGS equation is iteratively solved

using the results from the previous equation to specify the

source current terms. Iteration continues until the solution

converges to a predetermined accuracy. After a converged

solution is obtained, analysis is performed on it to obtain the

desired information on the equilibrium.

After an initial checking against the analytic solutions

given by Maschke and Perrin, we concentrate our numerical

study on the normal equilibrium configurations (NECs), and

then the current reversal equilibrium configurations for the

Experimental Advanced Superconducting Tokamak (EAST)-

like plasmas.

III. NUMERICAL RESULTS

In this section, we solve Eqs. (20), (21), and (22) by tak-

ing the EAST-like parameters as follows: (except in check-

ing the analytic solution, we adopt a boundary consistent

with that specified by the analytic solution)

R0 ¼ 1:85 m; a ¼ 0:45 m; elong ¼ 1:8; d ¼ 0:6;

B0 ¼ 2 T; c ¼ 5=3; Pe ¼ 0; P0 ¼ 0:02;

lp ¼ 2; De ¼ 0; D0 ¼ 1;

lD ¼ 0:2; Bte ¼ 1; lB ¼ 1;

Me ¼ 0; lM ¼ 0:2; Mt0 ¼ 1:

In the following figures, all the abscissas are the dimen-

sionless quantity x, and if no special claim, the ordinate are

the dimensionless quantity z.

We consider two kinds of equilibria: the normal equilib-

rium configurations (NECs) and the current reversal equilib-

rium configurations (CRECs).

A. Normal equilibrium configurations

For the normal flow equilibrium, we set Bt;M;P;D as

the following analytic expression as in Ref. 1

Bt ¼ Bte þ Bt0 � Bteð Þ w
w0

� �lB

; (29)

M ¼ Me þ M0 �Með Þ w
w0

� �lM

; (30)

D ¼ De þ D0 � Deð Þ w
w0

� �lD

; (31)

P ¼ Pe þ P0 � Peð Þ w
w0

� �lP

: (32)

The subscripts e and 0 denote the values at the plasma

boundary and x ¼ x0, respectively.

The roots of the Bernoulli equation (21) yield the

plasma density q which should meet the condition q � 0, so

from Eq. (23), we get the sufficient condition for the real

root of q.

M � Mc ¼
ffiffiffi
2
p

eMt0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� 1ð Þe 2� eð Þ

p :

Using the above parameters for EAST, we obtain Mc

¼ 10:1; and the corresponding actual Mach number Mr¼ 2.46.

1. Validation against analytic solution

First of all, in order to verify the validity of our numeri-

cal method, we made a benchmark comparison between the

results from our numerical method and that from the analyti-

cal method. An exact solution of Eq. (22) was obtained by

making the following assumptions:9

X2

H
¼ w2

r2
0

; (33)

ps ¼
P0

r4
0

w� w1ð Þ; (34)

F2 ¼ F2
0 þ 2

F
r2

0

w� w1ð Þ; (35)

where w2 ¼ 2M2
0

2
c�1
�M2

0

; ps wð Þ ¼ ðHgÞ
gS1�g; g ¼ c

c�1
, r0 is a suit-

ably chosen scale length, P0;w1;F0 and F are the constants,

and M0 is the Mach number at r ¼ r0:
In the case of F ¼ 0, w1 and F0 need not to be specified.

Eq. (22) becomes a linear partial differential equation for the

function w and has the exact solution as the following form:9

w� w0 ¼ P0

Cr2

r2
0

þ ea � 1

4

r2

r2
0

z2

r2
0

� r2

4r2
0

 !(

þ 1

gþ 1ð Þ gþ 2ð Þw4
1þ gþ 2ð Þw

2r2

2r2
0

"

�Ggþ2 r

r0

� �#)
; (36)

where G r
r0

� � ¼ 1þ w2r2

2r2
0

, C ¼ ea � 1ð Þ r2
a

8r2
0

� 1�Ggþ1

2 1þgð ÞX2, ea is a

constant, and ra is the magnetic axis.

Shown in Fig. 1 is the overlay of results from the two

methods. Here, the solid and dash lines are the analytical and

numerical solutions, respectively. In this figure, the outer-

most flux contours was taken as the outer-boundary of the

computational domain with the flux function value of w ¼ 0:
The other two inner contours are for w ¼ 0:02 and w ¼ 0:07:
Aside from the above mentioned parameters of ea ¼ 0;
g ¼ 5=2, we have also taken r0 ¼ ra; M0 ¼ 1 and w0

¼ �0:01. It is readily seen that out numerical results of are in

good agreement with the exact analytical calculations.

2. NECs in EAST-like configuration

To obtain the value of Bt0, we resort to the relationship

of normalized total toroidal current I ¼
Ð

judxdz, which is

used as a constraint during the solution of the equilibrium

equation. Here, we take I¼ 1, adjust the value of M0, and

then obtain the value of Bt0 and Mr0 (the value of the actual

Mach number at x ¼ x0). The values are shown in Table I.
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In Fig. 2, the actual Mach number is defined as

Mr ¼ vu

cs
; vu ¼ rX; cs ¼

ffiffiffiffi
cp
q

q
, where cs is the sound speed.

The actual Mach number can be obtained from the

relationship

Mr ¼ Mt0
e2xffiffiffiffi
D
p M; (37)

where D ¼ 1þ c�1ð Þe2M2
t0

2
e2x2 � 1ð ÞM2.

As shown in Fig. 2, the Mach number profile is elevated

by increasing the value of parameter Mr0 from 0 to 0.7. And,

Fig. 3 shows an increasing outward shift of the poloidal flux

function and the magnetic axis with the increase in the Mach

number profile. The shifts could be not obvious when the

Mach number is much less than 0.5, while the shifts become

quite prominent when the Mach number becomes larger than

0.5. In the experiments, the (real) Mach numbers of toka-

maks has been observed to be about 0.1–0.5.2–5 The

achieved Mach number in the EAST is about 0.2. Therefore,

the observed shifts of the magnetic axis due to the effects of

rotation have not been prominent.

Figs. 4–7 show the change of the normalized density,

pressure, b, toroidal current density across the midplane for

varying toroidal flows in an EAST-like plasma. It is seen

that the most prominent consequence of the increasing rota-

tion Mach number is the increasing outward shifts of the pro-

files of the density, the pressure, the local b, and the toroidal

current density of the plasma column. Comparing the differ-

ent profiles on their trend of change with respect to the

change in the rotation Mach numbers, it is also found that

the rate of change of the profiles with the change in Mach

number started slow. The rate of change increases with the

increase in rotation Mach numbers. Finally at large Mach

numbers, we find the plasma is squeezed against the out-

board side of the boundary by the centrifugal force. Since

the boundary itself is fixed, this will result in higher peaks

and steeper gradients of the profiles in the outboard region of

the plasma. This holds true for the mass density, the pres-

sure, the local b as well as the current density. These sharp

gradients have been known to be the source of MHD

instabilities.

In Fig. 7 and Table II, the b; bv; bN; pv, and Ip are

defined as follows:

b ¼ 2p

B2
; bv ¼ hbi; pv ¼ hpi;

FIG. 1. Comparison of the flux function obtained from our numerical com-

putation with that of the analytic solution given by Eq. (36).

TABLE I. Mr0 and Bt0 for different M0.

Mr0 0 0.2 0.5 0.7

M0 0 0.823 2.058 2.881

Bt0 1.0035 1.0029 0.9986 0.9929

FIG. 2. Profiles of the actual toroidal Mach number Mr0 across the midplane

for different M0.

FIG. 3. Increasing shift of the poloidal flux function (and the magnetic axis)

with increasing toroidal flow in an EAST-like plasma.
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bN ¼ 100� bvB0ahBui
Ip

%mT=MAð Þ;

Ip ¼ 10�6 � B0a

l0

ð
judxdz MAð Þ;

where h� � �i ¼
Ð
���dVÐ
dV
; dV ¼ 2pxdxdz, and l0 is the vacuum

magnetic permeability.

The volume averaged global parameters are observed

not to have changed much within this series of variation in

the rotation Mach numbers. It shows that the plasma equilib-

rium has compensating changes in the pressure value versus

the volume elements across the plasma.

B. Current reversal equilibrium configurations

1. Change in flux function topology (from NEC to
CREC) for an equilibrium with low plasma current

For studying the current reversal equilibrium, we first

focus our attention on a case when the normalized plasma

current is small, with jIj � 1. Because the total current is

very small, fixing the total current becomes a constraint diffi-

cult to impose. We first relax this constraint. We fix our

attention on the effect of rotation to the change in plasma

equilibrium. We take the profiles of the free functions as

follows:

dF2

dw
¼ b1 þ b2w; (38)

FIG. 4. Normalized density profile across the midplane for varying toroidal

flows in an EAST-like plasma.

FIG. 5. Profiles of the normalized pressure across the midplane for different

amounts of plasma toroidal flow.

FIG. 6. Profiles of b across the midplane for different amounts of toroidal

flow.

FIG. 7. Profiles of the normalized toroidal current density across the mid-

plane for different amounts of toroidal flow.

TABLE II. bv; pv; bN , and Ip for NECs with different M0.

Mr0 0 0.2 0.5 0.7

bv 0.0109 0.0109 0.0107 0.0109

pv 0.0051 0.0050 0.0048 0.0048

bN 1.3778 1.3651 1.3398 1.3610

Ip 0.7162 0.7162 0.7162 0.7162
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M ¼ Me þ M0 �Með Þ w
wc

				
lM

;

				 (39)

D ¼ De þ D0 � Deð Þ
				 w
wc

				
lD

; (40)

P ¼ Pe þ Pf jwj; (41)

where wc is the maximum of jwj. Pf and b2 are free

parameters.

The input parameters for the free functions are taken as

De¼0;D0¼1;Me¼0;Pe¼0; b1¼�0:35; b2¼5; Pf¼0.001,

lM¼2, and lD¼2. In this type of profile, both the density

and the rotation have gradients extending to the plasma edge.

It is found that the plasma equilibrium configuration may

change from a NEC into a CREC, which are showed in Fig. 8

by simply varying the value of M0. In Fig. 8, it is seen that

with increasing flow Mach number, the current density on the

high field side (HFS) started to become negative. The trend

increases with the increase in the flow Mach number. This

can be explained by the fact that the effect of toroidal rotation

gradients act as an enhanced pressure gradient, with an even

higher dependence on the major radius. Large pressure

FIG. 8. Magnetic flux surfaces change from NECs to CRECs with increasing Mach number.

FIG. 9. Profiles of current density Jm, plasma particles density qm, and normalized pressure pm in the midplane change with varying toroidal flow Mach number

when all of parameters of the free functions are fixed except the Mach number (dash: Mr0 ¼ 0, dash dot: Mr0 ¼ 0:5; dot: Mr0 ¼ 0:9; solid: Mr0 ¼ 1:2).
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gradients near the edge have been known to lead to current re-

versal near the inside edge of the plasma. Therefore, a large

gradient in rotation can more easily lead to a current reversal.

Of course, this effect increases with the increase of the rota-

tion Mach number. When the total current is small, the poloi-

dal magnetic field is weak throughout. It is very easy for the

plasma to create local closed flux regions (islands). Figs. 9(a)

and 9(b) show that the current density and mass density across

the midplane change with the change in flow Mach number. It

is seen that the trend of these changes is similar to those in the

NECs. Fig. 9(c) shows the change in the pressure across the

midplane for different flow Mach numbers. It is seen that apart

from the outward shift of the pressure profile, a secondary

pressure peak appears together with the increase in the flow

Mach number.

Table III shows both bv and pv decrease monotonically

with increasing Mach number. It is seen that all these global

parameters are relatively small, except the value of bN,

which is somewhat meaningless because it is normalized

with respect to the total current. We would like to comment

that the change in topology has not been expected at first. It

is, however, easily rationalized as explained above.

Furthermore this may correspond to situations in the early

low current phase of the tokamak discharge with an intense

tangential neutral beam injection. The change in plasma to-

pology can be traced completely to the increase in plasma

rotation.

2. Change in flux function topology with fixed total
current

Next, we continue with the CREC with a large toroidal

current. For this series, we keep the total plasma current con-

stant. We start with a value of Pf and use the chosen imposed

normalized total toroidal current I to obtain the value of b2.

It is found that current reversal equilibrium with flow will

occur when we assign the input parameters for the free func-

tions as follows: De ¼ 0; D0 ¼ 1; Me ¼ 0; Pe ¼ 0; b1 ¼
�0:05; Pf¼ 0.005, lM ¼ 0:2, and lD ¼ 0:1. We obtained a

series of values of b2 for different Mach numbers while

keeping the normalized plasma current at I ¼ �0:4. The

results are shown in the following figures.

In Fig. 10, we see that the equilibrium magnetic flux

surfaces change from a configuration with three-magnetic-

islands into one with two-magnetic-islands when the toroidal

Mach number is increased. It is worth noticing that with the

increase in the toroidal Mach number, the magnetic island

on the inboard side undergoes quite a significant change in

shape of its magnetic surfaces, while the magnetic axis

undergoes only a minor outward shift. Whereas both of the

magnetic islands on the top and bottom gradually merge into

one centered on the outboard midplane.

In Figure 11 are shown the change in the normalized to-

roidal current density across the midplane for the various to-

roidal flows in the above sequence of CRECs. It is seen that

the toroidal current density changed remarkably with the

increasing Mach numbers. From Figs. 11(b) and 11(c), it is

seen that the plasma density and pressure undergo outward-

shifts in each magnetic island in this sequence of CRECs.

The peak density and pressure increase with increasing toroi-

dal flow, which is the same as the case for the rotating

NECs. Table IV shows pv; bv; bN of this sequence of CRECs

all increases with the increase in the Mach number monot-

onically, which is different from the case of the series of

rotating NECs studied in the Subsection III B 1.

TABLE III. bv; pv; bN of CRECs change with different Mr0 when keep

I ¼ �0:4ðIp ¼ �0:2865 MAÞ.

Mr0 0 0.5 1.0 2.0

bv 1.7639� 10�03 1.9103� 10�03 2.5445� 10�03 5.3554� 10�03

pv 9.3697� 10�04 1.0070� 10�03 1.3415� 10�03 4.2576� 10�03

bN 5.8030� 10�01 6.2822� 10�01 8.4507� 10�01 2.0248� 10þ00

FIG. 10. Magnetic flux surfaces of CRECs change with varying toroidal flow Mach number.
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IV. SUMMARY AND DISCUSSION

Plasma rotation has been found to affect the stability

and transport behavior of the tokamak. However, the study

of plasma stability and transport has to start with a self-

consistent equilibrium. Therefore, we are motivated to study

the effect of toroidal flow on the toroidally symmetric

plasma.

We start with the formulation of the equilibrium prob-

lem in Sec. II. We derived the Generalized Grad Shafranov

equation and discussed our method of solution. The choice

of unstructured grid using triangular shaped finite elements

allows us to study change in plasma topology with different

input profile parameters.

The numerical results are given in Sec. III. First, we val-

idate our results against the known analytic results in the lit-

erature. Next, we study the effects of the toroidal flow on a

NECs and a CRECs prescribing a EAST-like plasma bound-

ary. For the NEC configuration, the generalized Grad-

Shafranov equation is solved with the constraint of fixed

total plasma current. It is found that an increase in toroidal

flow leads to an increase in the outward shift of the profiles

of the density, pressure, b, and toroidal current density across

the midplane of the plasma. The shifts become non-

negligible when the Mach number is larger than 0.5. These

findings all agree with the general findings from previous nu-

merical studies.

Next, the effects of the plasma toroidal flow on the cur-

rent reversed equilibrium configurations are also investi-

gated. First, we studied a series when the total plasma

current is small. It is found that increased plasma rotation

can lead to a change of the plasma equilibrium from an NEC

to a CREC; in this case, the rotation profile has a finite gradi-

ent at the plasma edge. We can directly identify the increase

in the rotation value as the cause of the topological change.

This could correspond to the experimental situation during

the early phase of the plasma discharge when the total cur-

rent is small, while the plasma undergoes an intense tangen-

tial neutral beam injection. Next, we study the change of

plasma topology for a CREC plasma with the total discharge

current fixed. We found that similar to the low current case,

the topology of the flux function can still be modified by

changing the toroidal flow. In particular, the plasma topology

is shown to change from a configuration with 3 closed mag-

netic flux regions (islands) to one with just two magnetic

islands.

ACKNOWLEDGMENTS

The authors would like to thank Professor M. S. Chu for

going through the manuscript and making improvements.

They would also like to thank him for his valuable

suggestions and comments and Dr. W. F. Guo for useful

discussions. One of the authors (Yemin Hu) would like to

thank his host Professor Heiji Sanuki for his kindness,

hospitality, valuable discussions, help, and arrangements

during the whole time of his visit to NIFS. This work was

supported by the program of Fusion Reactor Physics and

Digital Tokamak with the CAS “One-Three-Five” Strategic

Planning, the National Natural Science Foundation of China

under Grant No. 11375234 and also partly by National

Magnetic Confinement Fusion Science Program of China

FIG. 11. Profiles across the midplane of CRECs of the current density Jm, plasma particles density qm, and normalized pressure pm for different toroidal flow

Mach numbers when the plasma current is fixed at Ip ¼ �0:2865 MA (dash: Mr0 ¼ 0, dash dot: Mr0 ¼ 0:5; dot: Mr0 ¼ 1:0; solid: Mr0 ¼ 2:0).

TABLE IV. Change in bv; pv; bN and Ip for different Mr0.

M0 0 0.5 0.8 0.9 1.0 1.2

bv 2.6567� 10�05 1.4496� 10�05 9.3297� 10�06 8.3817� 10�06 7.8871� 10�06 7.5998� 10�06

pv 1.3178� 10�05 7.0407� 10�06 4.3399� 10�06 3.8405� 10�06 3.5777� 10�06 3.4477� 10�06

bN 5.8225� 10�02 8.4194� 10�02 2.3502� 10�01 1.4285� 1000 4.0920� 10�01 1.6266� 10�01

IpðMAÞ 4.2504� 10�02 1.6038� 10�02 4.1887� 10�03 5.4656� 10�04 �1.7954� 10�03 �4.3521� 10�03

042506-9 Hu, Hu, and Xiang Phys. Plasmas 23, 042506 (2016)



under Contract No. 2015GB101003. The authors would also

like to acknowledge the ShenMa High Performance

Computing Cluster at the Institute of Plasma Physics,

Chinese Academy of Sciences.

1L. Guazzotto, R. Betti, J. Manickam, and S. Kaye, Phys. Plasmas 11, 604

(2004).
2R. C. Isler, L. E. Murray, E. C. Crume, C. E. Bush, J. L. Dunlap, P. H.

Edmonds, S. Kasai, E. A. Lazarus, M. Murakami, G. H. Neilson, V. K. Par�e,

S. D. Scott, C. E. Thomas, and A. J. Wootton, Nucl. Fusion 23, 1017 (1983).
3R. J. Taylor, J.-L. Gauvreau, M. Gilmore, P.-A. Gourdain, D. J.

LaFonteese, and L. W. Schmitz, Nucl. Fusion 42, 46 (2002).
4K. Brau, M. Bitter, R. J. Goldston, D. Manos, K. McGuire, and S.

Suckewer, Nucl. Fusion 23, 1643 (1983).
5N. C. Hawkes and N. J. Peacock, Nucl. Fusion 25, 971 (1985).
6M. G. Bell, Nucl. Fusion 19, 33 (1979).
7Y. Shi, G. Xu, F. Wang, M. Wang, J. Fu, Y. Li, W. Zhang, J. Chang, B.

Lv, J. Qian, J. Shan, F. Liu, S. Ding, and B. Wan, Phys. Rev. Lett. 106,

235001 (2011).
8S. Suckewer, H. P. Eubank, R. J. Goldston, E. Hinnov, and N. R. Sauthoff,

Phys. Rev. Lett. 43, 207 (1979).
9E. K. Maschke and H. Perrin, Plasma Phys. 22, 579 (1980).

10E. Hameiri, Phys. Fluids 26, 230 (1983).
11R. A. Clemente and R. Farengo, Phys. Fluids 27, 776 (1984).
12R. Iacono, A. Bondeson, F. Troyon, and R. Gruber, Phys. Fluids B 2, 1794

(1990).
13A. G. Peeters, Phys. Plasmas 5, 763 (1998).
14F. L. Hinton and M. N. Posenbluth, Plasma Phys. Controlled Fusion 41,

A653–A662 (1999).

15F. L. Waelbroeck, Phys. Plasmas 3, 1047 (1996).
16C. Wahlber and A. Bondeson, Phys. Plasmas 7, 923 (2000).
17J. P. Graves, R. J. Hastie, and K. I. Hopcraft, Plasma Phys. Controlled

Fusion 42, 1049 (2000).
18A. Sen, D. Chandra, and P. Kaw, Nucl. Fusion 53, 053006 (2013).
19M. W. Kissick, J. N. Leboeuf, S. C. Cowley, and J. M. Dawson, Phys.

Plasmas 8, 174 (2001).
20R. Betti and J. P. Freidberg, Phys. Plasmas 5, 3615 (1998).
21D. J. Ward and A. Bondeson, Phys. Plasmas 2, 1570 (1995).
22M. S. Chu, J. M. Greene, T. H. Jensen, R. L. Miller, A. Bondeson, R. W.

Johnson, and M. E. Manuel, Phys. Plasmas 2, 2236 (1995).
23K. P. Wessen and M. Persson, Phys. Plasmas 45, 267 (1991).
24H. F. Tammen, A. J. H. Donne, H. Euringer, and T. Oyevaar, Phys. Rev.

Lett. 72, 356 (1994).
25V. Varadarajan and G. H. Miley, J. Comput. Phys. 123, 415 (1996).
26H. Tasso and G. N. Throumoulopoulos, Phys. Plasmas 5, 2378 (1998).
27J. A. Breslau, S. C. Jardin, and W. Park, Phys. Plasmas 10, 1665 (2003).
28J. Huang, X. Yang, S. Zheng, C. Feng, H. Zhang, and L. Wang, Nucl.

Fusion 40, 2023 (2000).
29M. S. Chu and P. B. Parks, Phys. Plasmas 9, 5036 (2002).
30A. A. Martynov, S. Yu.Medvedev, and L. Villard, Phys. Rev. Lett. 91, 24

(2003).
31S. Wang, Phys. Rev. Lett. 93, 155007 (2004).
32Y. Hu, Phys. Plasmas 15, 022505 (2008).
33S. Yu. Medvedev, Y. Hu, A. A. Martynov, and L. Villard, in 36th EPS

Conference on Plasma Physics, June 29–July 3, Sofia 2009 ECA, 2009,

Vol. 33E, P-1.130.
34E. Strumberger, S. G€unter, J. Hobirk, V. Igochine, D. Merkl, E.

Schwarz, and C. Tichmann, ASDEX Upgrade Team, Nucl. Fusion 44,

464 (2004).

042506-10 Hu, Hu, and Xiang Phys. Plasmas 23, 042506 (2016)

http://dx.doi.org/10.1063/1.1637918
http://dx.doi.org/10.1088/0029-5515/23/8/003
http://dx.doi.org/10.1088/0029-5515/42/1/307
http://dx.doi.org/10.1088/0029-5515/23/12/008
http://dx.doi.org/10.1088/0029-5515/25/8/010
http://dx.doi.org/10.1088/0029-5515/19/1/004
http://dx.doi.org/10.1103/PhysRevLett.106.235001
http://dx.doi.org/10.1103/PhysRevLett.43.207
http://dx.doi.org/10.1088/0032-1028/22/6/007
http://dx.doi.org/10.1063/1.864012
http://dx.doi.org/10.1063/1.864695
http://dx.doi.org/10.1063/1.859451
http://dx.doi.org/10.1063/1.872762
http://dx.doi.org/10.1088/0741-3335/41/3A/059
http://dx.doi.org/10.1063/1.871760
http://dx.doi.org/10.1063/1.873889
http://dx.doi.org/10.1088/0741-3335/42/10/304
http://dx.doi.org/10.1088/0741-3335/42/10/304
http://dx.doi.org/10.1088/0029-5515/53/5/053006
http://dx.doi.org/10.1063/1.1326062
http://dx.doi.org/10.1063/1.1326062
http://dx.doi.org/10.1063/1.872746
http://dx.doi.org/10.1063/1.871307
http://dx.doi.org/10.1063/1.871247
http://dx.doi.org/10.1017/S0022377800015695
http://dx.doi.org/10.1103/PhysRevLett.72.356
http://dx.doi.org/10.1103/PhysRevLett.72.356
http://dx.doi.org/10.1006/jcph.1996.0034
http://dx.doi.org/10.1063/1.872912
http://dx.doi.org/10.1063/1.1556299
http://dx.doi.org/10.1088/0029-5515/40/12/306
http://dx.doi.org/10.1088/0029-5515/40/12/306
http://dx.doi.org/10.1063/1.1521714
http://dx.doi.org/10.1103/PhysRevLett.91.085004
http://dx.doi.org/10.1103/PhysRevLett.93.155007
http://dx.doi.org/10.1063/1.2839032
http://dx.doi.org/10.1088/0029-5515/44/3/012

	s1
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	s2
	d20
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	d28
	s3
	d29
	d30
	d31
	d32
	s3A
	s3A1
	d33
	d34
	d35
	d36
	s3A2
	d37
	s3A2
	f1
	t1
	f2
	f3
	s3A2
	s3B
	s3B1
	d38
	d39
	f4
	f5
	f6
	f7
	t2
	d40
	d41
	f8
	f9
	s3B2
	t3
	f10
	s4
	f11
	t4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34

