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A two-crystal assembly was deployed on the tangential X-ray crystal spectrometer to measure
both helium-like and hydrogen-like spectra on EAST. High-quality helium-like and hydrogen-like
spectra were observed simultaneously for the first time on one detector for a wide range of plasma
parameters. Profiles of line-integrated core ion temperatures inferred from two spectra were consis-
tent. Since tungsten was adopted as the upper divertor material, one tungsten line (W XLIV at
4.017 A) on the short-wavelength side of the Lyman-a line (Lal) was identified for typical USN
discharges, which was diffracted by a He-like crystal (2d = 4.913 A). Another possible Fe XXV
line (1.85 A) was observed to be located on the long-wavelength side of resonance line (w), which
was diffracted from a H-like crystal (2d = 4.5622 A) on the second order. Be-like argon lines were
also observable that fill the detector space between the He-like and H-like spectra. Published by AIP

Publishing. [http://dx.doi.org/10.1063/1.4960504]

I. INTRODUCTION

Recently, the tangential X-ray spectrometer was devel-
oped to contain two crystals and extend the system’s capa-
bility for diagnosing high-temperature plasmas with upgraded
auxiliary heating powers on EAST.! Utilizing the width of
newly deployed large-area solid X-ray detector, high-quality
hydrogen-like and helium-like argon spectra were recorded
simultaneously for the same discharge. Additionally, a two-
crystal setup also allowed more line emission from other impu-
rities such as W, Mo, and Fe to be diffracted and mix with
the argon spectra. This paper reports the newest experimental
results from the two-crystal spectrometer and representative
spectra containing other impurity lines on EAST to illus-
trate the complexity of two-crystal spectra used for plasma
diagnostics.

Il. SIMULTANEOUS MEASUREMENT OF He-LIKE
AND H-LIKE ARGON SPECTRA

The selection of crystal type and geometric parameters
such as the radius of curvature was determined such that the
Bragg angles for He-like and H-like spectra were close enough
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to fit two spectra on one detector. Table I summarized the
parameters of crystals used on the tangential spectrometer. It
could be seen that the chosen crystal types result in similar
Bragg angles for He-like and H-like argon spectra. When
aligning the detector-to-crystal distance based on the average
Bragg angle from two spectra, the recorded spectra are calcu-
lated to cover the detector width of ~79 mm, which is within
the effective detector width (83.8 mm). This indicated that the
spectra should be recorded, although part of the spectra may be
affected due to the curved shape and Doppler broadening and
shift. Experimental measurements also confirmed that the two
spectra could be recorded by carefully positioning the detector
to fully exploit the detector width.

Lithium was typically applied as one of the main wall
conditioning materials on EAST to control and suppress wall
influx and impurity accumulation. This also largely prevented
contamination of argon spectra from other impurity’s line
emissions, although molybdenum and tungsten presently cover
more than half of the plasma facing surface. Fig. 1 showed
time-integrated typical measurement of two argon spectra with
effective lithium wall conditioning (Tey ~ 1.5 keV). Spatially
and spectrally resolved He-like argon spectra at full wave-
length range were present and extended towards almost the
entire detector length with the strongest intensity found in the
center. For H-like spectra, the line intensity was much weaker
and only visible in the center region of plasma due to higher
excitation energy than He-like spectra. In the space between
two argon spectra, there were several lines that were vaguely

Published by AIP Publishing.
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TABLE I. Crystal choice for the two-crystal spectrometer.

Crystal
Impurity  Type 2d (A) Wavelength range (A) Bragg angle (deg)
Ar XVII 110 491304 3.9494, 3.9944 53.50, 54.39
ArXVII 102 456225 3.7300, 3.7353 54.84, 54.95

visible, which were emitted from excited Be-like argon ions.
Fig. 2 also plotted a spectrum for a sightline passing through
the plasma center. Besides the He-like spectra and two Lyman-
a lines from H-like spectra, there were lines emitted from
Be-like argon located in the region between He-like and H-
like spectra. No significant contamination of spectra by other
impurities was observed.

To first validate the H-like spectra measurement, ion
temperature profiles inferred from two spectra were analyzed.
For typical EAST parameters, argon ion temperatures were
expected to agree for two types of spectra. Here, the H-like
spectra were simply fitted with two Gaussian functions without
taking into account other lines on the short-wavelength side
of H-like spectra. This might overestimate the ion temperature
slightly. For He-like spectra, ion temperatures were determined
by fitting the w line and its neighboring n > 3 satellites using
a Voigt function. Fig. 3 showed the calculated profiles of
ion temperatures for a discharge with Ip ~ 500 kA, nep ~ 2.1
x 10" m~3 heated with Pragw ~ 1.2MW and Pgcryg ~ 0.5 MW
(Teop ~ 3.0keV). It could be seen that the ion temperature from
the two spectra were indeed comparable within uncertainty
with the results from H-like spectra higher than He-like spectra
in the plasma core. This was expected since the line-integrating
effect was more prominent for He-like spectra than H-like ones
as the electron temperature increased above 2.5 keV. He-like
argon ion density would evolve into a hollow profile while the
H-like one remained more peaked due to the vastly different
excited rate coefficients at the same electron temperature. How-
ever, the preliminary comparison indicated that the two-crystal
assembly could produce high-quality spectra for analyzing ion
temperature profiles both from He-like and H-like features, as
reported on Alcator C-Mod.?

lll. OBSERVATION OF OTHER IMPURITY LINES
IN THE Ar SPECTRA

In more recent EAST experiments, upper tungsten di-
vertors were further commissioned for high-power auxiliary
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FIG. 1. Spatially and spectrally resolved He-like and H-like spectra mea-
sured on EAST.
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FIG. 2. He-like and H-like spectra observed on the central sightline. The
wavelength scale was divided into two parts to illustrate He-like and H-like
Ar spectra on one plot.

heating upper-single-null (USN) discharges to take advantage
of its high heat handling capability. With concurrently less
applied lithium wall conditions, more tungsten ions were ex-
pected to accumulate in the plasma. Additionally, Mo and Fe
lines were also present due to enhanced plasma-wall inter-
action associated with higher heating power delivered to the
plasma, since Mo is one of the main first-wall materials and
Fe is present such as in ICRF antenna. This section presented
some spectral measurements from most recent plasma opera-
tions showing more lines that were present in the argon spectra
that were hardly seen in the discharges with effective lithium
wall conditions.

Fig. 4 plotted spectra recorded for an USN diverted
plasma (Ip ~ 360 kA, ne ~ 4.0 X 10" m~3) heated with Py gw
~ 1.6 MW and Picryg ~ 1.8 MW. Here the wavelength ruler
was evaluated based on both He-like spectra (bottom) and
H-like spectra (top) to help identification of the lines. Two
prominent lines were present (labeled as L1 and L2). L1 and
L2 were located on the long-wavelength side of the w line
and z line, respectively. The wavelength scales were estimated
based on the He-like and H-like argon spectra (first or second
order) and were searched in NIST Atomic Spectra Database
to identify the possible line.> A preliminary search indicated
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FIG. 3. Comparison of ion temperature profiles inferred from He-like and
H-like argon spectra.
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FIG. 4. Sample spectra with lines from other impurities. Note that the bottom
scale is based on He-like argon spectra and the top scale is based on H-like
argon spectra.

that L1 was mostly likely Mo XXXIII at 3.684 A diffracted by
H-like spectra of the first order.* The roughly estimated value
was 3.6894 A, which was also close to the value of 3.682 A
in Ref. 5. A more accurate wavelength will be determined
through spectra fitting taking into consideration Doppler shift
from plasma rotation. Additionally, since these two lines
were only typically observed for ICRF heated discharge, we
surmised that there were possibly diffracted on the second-
order of iron lines as the surface of the ICRF antenna was
mainly comprised of stainless steel and L2 was similarly
determined to be from Fe XXV at 1.8505 A. To infer correct
ion temperature and electron temperature, these lines must be
taken into account.

Additionally, a prominent tungsten line was first observed
for H-mode USN discharges when heated with counter-current
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FIG. 5. Two-crystal spectra showing the presence of a strong tungsten line.
Note that the bottom scale is based on He-like argon spectra and the top scale
is based on H-like argon spectra.
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NBI and ECRH. Fig. 5 showed a central-chord spectra from
a discharge with Ip ~ 450 kA, ng ~ 2.6 x 10" m™ heated
mainly with Pppgw ~ 2.6 MW and Pc,.ngr ~ 1 MW. The most
important feature is that a W XLIV line (4.017 10\) was excited
to much higher intensity than the active w line and dominates
in the spectra.® The line was identified through wavelength
ruler based on He-like and H-like spectra. This was consis-
tent with W impurity accumulation in the core measured by
Extreme Ultraviolet (EUV) spectrometer.” As more W entered
the plasma core, the intensity also increased and even exceeded
the previously strongest argon lines. This discharge ended with
disruption due to severe core impurity radiation.

IV. CONCLUSIONS

A two-crystal X-ray spectrometer was successfully
commissioned on EAST to extend the system’s capability
for diagnosing high-temperature plasmas. High-quality He-
like and H-like argon spectra were captured and inferred ion
temperatures were consistent. With elevated plasma perfor-
mance and different heating scenarios, more lines from impu-
rities like W, Mo, and Fe were also present in the spectra,
affecting the spectral analysis but also providing an opportu-
nity to study tungsten spectra. An important usage will also
be explored to using two spectra for absolute wavelength
calibration.?
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