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The 3D ERO code, which simulates plasma–wall interaction and impurity transport in magnetically confined
fusion-relevant devices is described. As application, prompt deposition of eroded tungsten has been simulated
at surfaces with shallow magnetic field of 3 T. Dedicated PIC simulations have been performed to calculate
the characteristics of the sheath in front of plasma–exposed surfaces to use as input for these ERO simulations.
Prompt deposition of tungsten reaches 100% at the highest electron temperature and density. In comparison to
more simplified assumptions for the sheath the amount of prompt deposition is in general smaller if the PIC–
calculated sheath is used. Due to friction with the background plasma the impact energy of deposited tungsten
can be significantly larger than the energy gained in the sheath potential.
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1 Introduction

The erosion of wall material in fusion devices is a crucial issue due to reduction of life time of wall components
and also due to long–term tritium retention by means of tritium co–deposition together with the eroded mate-
rial. At locations of highest power and particle loadings high-Z materials, in particular tungsten, are foreseen
as plasma–facing material. Tungsten has a high melting point and exhibits comparably low physical sputtering.
Therefore, the divertor of ITER will consist of tungsten based plasma–facing materials. An additional advantage
of high-Z materials is the expected large amount of prompt deposition, i.e. deposition during the first gyration
after being eroded. Due to their large number of electrons high-Z materials have rather large ionisation proba-
bilities and due to their large mass also large gyration radii which increase the probability of prompt deposition.
Within the present work the 3D impurity transport and plasma–wall interaction code ERO is used in combination
with Particle in Cell (PIC) simulations to address the issue of prompt deposition of tungsten.

The second section gives a brief description of the ERO code. Particular attention is turned to the electrical
sheath in front of plasma–exposed surfaces. The normally used simplified assumptions for the sheath will be
compared with PIC simulations. ERO simulations of prompt deposition of sputtered tungsten are presented in the
third section. A parameter study, also covering conditions at the ITER divertor, shows the dependence of prompt
deposition on the electron temperature and density. Moreover, the mean energy and charge of deposited tungsten
particles is discussed. Results for the sheath characteristics from PIC are used as input for ERO to analyse the
prompt deposition of tungsten in comparison to the simplified assumptions.
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2 The ERO code

ERO is a three–dimensional Monte–Carlo code to simulate plasma–wall interaction and impurity transport in
fusion devices with magnetic confinement. Originally the code was developed in the beginning of the 1990s
[1] but continuous development and application to a large number of experiments has been done. Typically, the
simulations are focused on localized wall components with sizes in the range of cm to m like divertor target
plates, limiter tiles or samples exposed to linear machines. Besides benchmarking simulations with existing
experiments, see e.g. [2, 3, 4] also predictive modelling of the life time of wall components in ITER have been
performed, see e.g. [5, 6]. Currently the source code is subject of a major rewriting aiming at an improved
performance. Together with a generalised definition of surfaces the revised ERO version should be capable of
simulating much larger volumes than nowadays, as far as possible even whole machine dimensions of fusion
experiments like divertor and main chamber of ITER. The modelling of the global migration of impurities thus
will be an additional important application. In the following only the basic features of ERO will be described;
more details can be found in [7, 8].

2.1 Basic description of the ERO code

Within a user–defined simulation volume around a wall component the background hydrogen plasma has to be
provided as input. This in particular includes the electron temperature and density, the ion temperature and the
magnetic field (strength and orientation). The electric field and the plasma flow velocity are typically calculated
within the code depending on the plasma conditions. Alternatively, these two properties can be provided as input,
e.g. originating from plasma simulations – more details will be given in section 2.2. The local transport of
impurities generated at such surfaces is then treated in detail considering cross field diffusion, Lorentz force in
combined electric and magnetic fields, friction with background ions due to Coulomb forces and thermal forces.
Also collisions between impurity particles and background neutrals can be considered, which is important for
conditions with large neutral pressure like for instance in linear devices. While moving through the background
plasma the impurity particles can be ionised, recombine or, in case of molecules, be dissociated. Necessary rate
coefficients for these processes are taken from literature. The transport simulation of an impurity particle ends if
the particle leaves the simulation volume or is deposited on the surface.

Impurity test particles for which ERO simulates the transport through the plasma can be generated by various
processes: physical sputtering, chemical erosion and background impurities reflected at the surface. The impurity
content in the plasma has to be defined by input parameters. From the given electron temperature Te and density
ne at the sheath entrance the incident flux Γ of plasma ions is given by Γ = ne · cS(ne,Te) · sin(α) with cS the
sound speed of the plasma ions and α the angle between the magnetic field and the surface. A cross field flux can
be added, which in particular becomes dominant for shallow angles α. Typically the surface is divided into surface
cells and test particles start from each surface cell. The flux of eroded impurities starting from each surface cell
is given by Γ · Y · csolid, where Y is the yield for the specific erosion process and csolid the concentration of the
impurity in the surface cell under consideration. The mixing of different species inside the surface and thus the
concentrations of impurities csolid in the material is changing dynamically with plasma exposure. In ERO this
is calculated by means of a simple homogeneous mixing model or alternatively a coupling with SDTrimSP is
available. Details of both methods can be found in [9]. The number of different impurity species to be considered
is in principle unlimited. The flux of reflected impurities from background impurity particles hitting the surface is
given by Γ · R · cplasma, with R the reflection coefficient of the impurity on the surface and cplasma the impurity
content in the plasma.

As the real number of impurity particles starting from each surface cell is much too large, only a certain
number of test particles is simulated instead. The number of test particles is given by an input parameter and
influences the computational time nearly linearly. In most cases it is assumed that the impurity fluxes from the
surfaces are small enough not to influence the plasma parameters but fulfilling the test particle approximation.
However, in specific cases like external injection of particles, the possible effects of local cooling and increase
of plasma density has been considered, see [10]. Test particles returning to the surface can be reflected, generate
new impurities by sputtering or can be deposited. An ERO simulation can be divided into time steps to take into
account the dynamic changes of material mixing in the surface.
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For the various plasma–wall interaction and atomic processes diverse data bases for yields and rate coefficients
are used. Sputtering and erosion yields are based on SDTrimSP and Molecular Dynamics simulations, if possible
in combination with experimental data. Ionisation, recombination and photon emission rates for atoms are typ-
ically taken from ADAS [11]. Rate coefficients for molecules (e.g. hydrocarbons or BeD) come from separate
calculations together with measurements.

2.2 Description of the sheath

In the default version of ERO details of the sheath are not resolved. Therefore values of the electron and ion
density and temperature or the plasma flow velocity are given at the sheath entrance, which is then also the
location of the surface. As the dimension of the sheath is very small – typically in the order of few Debye
lengths or gyration radii of the plasma ions – this simplification is uncritical for many applications. However, this
could be different e.g. when studying prompt deposition of tungsten within a strongly magnetised plasma as the
ionisation length of eroded tungsten atoms can be smaller than the dimension of the sheath – this will be analysed
in the subsequent section 3.

For the simplified sheath described in a two point model, the electron density decreases by a factor of 2 when
moving from the stagnation point to the sheath entrance (surface) and the plasma flow velocity increases from
zero to sound speed. The electrical sheath potential US scales exponentially with the Debye length λD if the
magnetic field is perpendicular to the surface. For shallow magnetic field lines the potential decays exponentially
with the gyration radius rgyro.

US = U0 · f(α) · exp(− z

2λD
) + U0 · (1− f(α)) · exp(− z

rgyro
)

U0 is the sheath potential drop, f(α) is a function with f(α = 0◦) → 0 and f(α = 90◦) = 1 and z is the distance
from the surface. In a simplified evaluation with Te = Ti and neglecting secondary electron emission, U0 ≈ 3 Te

for hydrogen plasma [12], here U0 is given in [V] for Te in [eV]. For the total potential, a pre-sheath drop of
≈ 0.7 Te has to be added to satisfy the Bohm-criterion.
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Fig. 1 Electron density within the sheath: PIC vs. SIM-
PLE assumption. The magenta line indicates the location of
sheath entrance. ne0 = 6 × 1019 m−3 is the nominal value
of the density at the sheath entrance.

Fig. 2 Electron temperature within the sheath: PIC vs.
SIMPLE assumption. The magenta line indicates the lo-
cation of sheath entrance. The nominal temperature at the
sheath entrance is 20 eV.

PIC simulations can provide more detailed characteristics of the sheath. In the present work the BIT1 code
[13] has been used to study the sheath with magnetic field B = 3 T and α = 2◦. Exemplary results are presented
here for an electron density of 6 × 1019 m−3 and temperature of 20 eV at the sheath entrance. Figure 1 shows
the resulting electron density in front of the surface in comparison with the simple sheath, for the latter one the
stagnation point is assumed to be 10 m away from the surface. The PIC simulations show a significant decrease
of the density when approaching the surface from the sheath entrance (indicated as magenta line in Fig. 1 at about
8 mm away from the surface) whereas the decrease for the simple case is marginal due to the large distance of 10
m to the stagnation point.
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In any case, the density at the surface resulting from PIC is much smaller than in the simple case where we
have per definition 6× 1019 m−3 at the surface. Figure 2 presents the electron temperature Te depending on the
distance from the surface. Whereas Te from PIC decreases from 20 eV at the sheath entrance to about 3 eV at the
surface, it is constant for the simple sheath. From these results one can expect that the sheath details can become
important for the estimation of tungsten deposition if the ionisation length of sputtered tungsten is clearly smaller
than the extension of the sheath such that variations of ne and Te become noticeable.

3 Modelling of tungsten deposition

For the ERO simulations a roof–like surface geometry with an inclination angle of 2◦ is used, see Fig. 3. Tung-
sten atoms are injected at the middle point of the surface with a Thompson energy distribution around 8 eV
(describing the energy distribution of sputtered tungsten) and a cosine angular distribution. The electron density
and temperature are given as input at the stagnation point, which is 10 m away from the surface. As no final
ADAS data are available yet, ionisation of tungsten atoms W0 and singly charged ions W+ is calculated with
rate coefficients from [14], for higher ionised W atoms the Lotz formula is used [15]. Given that for the simple
sheath assumption the electron and ion temperature inside the sheath are constant along the magnetic field lines,
the thermal force is calculated using formulae for the temperature distribution and resulting thermal force from
literature [16]. Self-sputtering of deposited tungsten particles is not considered.

Fig. 3 Set–up for the ERO simulations with an example of simulated tungsten injection (2D spatial distribution of injected
atoms above the surface, integrated in y-direction); ne = 1×1019 m−3 at the stagnation point and Te = 5 eV, B field angle: 2◦.

3.1 Dependence of prompt deposition on electron temperature and density for simple sheath

Using the simplified assumption for the sheath ERO, simulations have been performed for electron temperatures
between 1 eV and 20 eV and electron densities between 1 × 1018 m−3 and 1 × 1021 m−3 at the stagnation
point. The calculated amounts of tungsten prompt deposition relative to the amount of injected tungsten atoms
are summarised in Fig. 4. As expected, prompt deposition increases with increasing electron temperature and
density. For the highest density and temperature studied, 100% of injected tungsten is deposited promptly. For 1
eV and electron densities up to 1 × 1020 m−3 no prompt deposition takes place and even at the highest density
and an electron temperature of 1 eV only 2% prompt deposition occurs.

Fig. 4 Simulated amount of prompt deposition for tungsten
in dependence on the electron temperature for various elec-
tron densities employing the simple sheath assumptions. Self-
sputtering of tungsten is neglected.

Figures 5 and 6 present the mean energy and charge of promptly deposited tungsten. For the highest density
and small temperatures the mean energy Emean is significantly larger than expected from the sheath potential,
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Emean ≈ 3QmeanTe with Qmean the mean charge. This is the result from very effective friction of W ions with
the plasma ions at the high density. In contrast, at high temperature and high density the mean energy is smaller
than expected from the sheath potential. In these cases the ionisation length of tungsten is very small such that the
sheath potential is not completely passed. The mean charge of promptly deposited tungsten is mainly increasing
with density reaching a maximum value of nearly 2 at the maximal density and temperature studied.

Fig. 5 Simulated mean energy of promptly deposited tung-
sten (simple sheath assumption).

Fig. 6 Simulated mean charge of promptly deposited tung-
sten (simple sheath assumption).

3.2 ERO simulations of prompt deposition with sheath characteristics from PIC

The resulting distribution of density, temperature, flow velocity, electric field and thermal force within the sheath
from PIC has been used as input for ERO for the example cases of ne = 6×1019 m−3 and Te = 20 eV or 5 eV at
the sheath entrance. The main results are summarised in table 1. With ERO–PIC the amount of prompt tungsten
deposition decreases from 99% to 95% for 20 eV and from 73% to 65% for 5 eV. The mean charges of promptly
deposited tungsten are similar (1.3 – 1.5 for 20 eV and 1.0 – 1.1 for 5 eV).

Table 1 Simulated amount of tungsten prompt deposition, mean energy and mean charge of promptly deposited tungsten
particles: ERO with simple sheath vs. ERO–PIC.

ERO with simple sheath ERO–PIC

Prompt Mean Mean Prompt Mean Mean
Simulation case deposition energy charge deposition energy charge

6× 1019 m−3, 20 eV 99% 24 eV 1.3 95% 89 eV 1.5
6× 1019 m−3, 5 eV 73% 15 eV 1.1 65% 16 eV 1.0

However, the mean impact energy of promptly deposited tungsten from ERO–PIC for the 20 eV case is with
Emean = 89 eV significantly larger than for ERO with simple sheath (Emean = 24 eV). In contrast, for the 5 eV
case similar energies of about Emean = 15 eV are calculated. The tungsten ionisation for the 20 eV case with the
simple sheath occurs very near to the surface such that returning particles do not see the full sheath potential. In
contrast, as the density and temperature decrease approaching the surface within the sheath in the ERO–PIC case
(see Figs. 1 and 2), ionisation takes place farther away from the surface such that the whole sheath potential is
traversed by deposited tungsten ions finally leading to larger energies. For the 5 eV case ionisation takes place
outside the sheath potential drop both for ERO–PIC and ERO with simple sheath such that the mean impact
energy of deposited tungsten corresponds to ≈ 3QmeanTe.

4 Conclusions and summary

It has been seen that entrainment, thus acceleration of ions by means of friction due to Coulomb collisions with
the background plasma, at large plasma densities can lead to energies of deposited particles much larger than
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expected from the sheath potential drop – this has to be considered when sputtering by deposited particles is
studied. In particular, the possible effect of self-sputtering avalanche has to be analysed in detail for promptly
and also for non-promptly deposited particles. The impact of entrainment is more distinctive for non–prompt
deposition as these particles travel over larger distances before hitting the surface.

Sheath–resolved characteristics, in the present work calculated by PIC simulations and then used as input
in ERO, can become important for very small ionisation lengths of eroded particles and potentially reduce the
amount of prompt deposition. If ionisation takes place mainly within the sheath, the amount of ERO–PIC simu-
lated prompt deposition of tungsten for the cases studied so far is similar to values estimated in [17] by means of
an analytic fit formula which has been deduced for the condition when ionisation takes place inside the sheath.
In the future more studies will be done with ERO–PIC in comparison with results from [17] and also recent work
published in [18] carried out by Monte-Carlo simulations. Moreover, plasma conditions during ELMs, where in
contrast to steady state conditions significant tungsten sputtering can occur within the divertor of ITER, will be
analysed.
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