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Theoretical analysis of the EAST 4-strap ion cyclotron range of
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A variational principle code which can calculate self-consistently currents on the conductors is used to assess the cou-
pling characteristic of the EAST 4-strap ion cyclotron range of frequency (ICRF) antenna. Taking into account two layers
of antenna conductors without lateral frame but with slab geometry, the antenna impedances as a function of frequency and
the structure of RF field excited inside the plasma in various phasing cases are discussed in this paper.
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1. Introduction
Heating in the ion cyclotron range of frequencies (ICRF)

is one of the important auxiliary heating methods in the EAST
tokamaks. A key issue is the improvement of the coupling be-
tween the ICRF antenna and the plasma. Over the past years,
a lot of efforts have been made to analyze and design the ICRF
antenna.[1–4] In this paper, we will apply a variational theory to
evaluate the coupling characteristic of the EAST 4-strap ICRF
antenna.

Theihaber and Jacquinot came up with the variational the-
ory to calculate the self-consistent current distribution in the
straps of the simple back-to-back ICRF antenna[5] and then
improved the coupling code to take into account a more com-
plicated trombone antenna geometry surrounded by an opaque
frame[6] in JET. The coupling code was extended by Saigusa
et al. so that it can be applied to a toroidal trombone antenna
array with solid septa[7] despite its complication. Zhang et al.
made some progress on Theihaber and Jacquinot’s coupling
code to analyze the ICRF antenna array in HT-7U.[8] In the
present paper, the EAST 4-Strap ICRF antenna impedances as
a function of frequency and the structure of RF field excited
inside the plasma in various phasing cases are presented by
using a modification coupling code with the variational the-
ory. For simplicity, the naked ICRF antenna model without
lateral structure is employed in spite of the effect produced by
the limiter frame while multiple current conductors are taken
into account. The rest of this paper is organized as follows.
In Section 2 the 4-strap ICRF antenna model is described,
and the derivation of the wave equations in vacuum is also

re-presented. In Section 3, we investigate the variation of the
input impedance at the feeder point relating to antenna param-
eters and compare the RF field structures in different antenna
phasing cases. Conclusions about the 4-strap ICRF antenna
model are drawn in Section 4.

2. Model and variational theory
2.1. Description of the model

The model of a single antenna is shown in Fig. 1. The z
direction of the coordinate is parallel to toroidal magnetic field
BT, the y direction is in the poloidal field direction, and the x
direction is in the radial direction pointing to the plasma. The
antenna conductors are represented by infinitely thin metal-
lic sheets. They radiate through an ideal electrostatic screen,
which is perfectly conducting in the z direction and perfectly
insulating in the y direction. This screen is completely opaque
to the TM modes (Ez 6= 0) and completely transparent to the
TE modes (Hz 6= 0), which carry the power into the plasma.
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Fig. 1. Geometry of the coupling model: (a) schematic view, (b)
poloidal cross-sectional view for the single ICRF antenna, and (c)
plasma density profile.
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Table 1. Antenna parameters.

Parameters/m Parameters/m
y1 0.01 b1 0.02
y2 0.4 b2 0.12

yF = (y2− y1)/2 0.195 c 0.13
w 0.1 d 0.14

The back wall of the antenna is located at x = 0, the elec-
trostatic screen at x = c and the plasma edge at x = d. The
antenna consists of two main radiating conductors at x = b2

and two return conductors at x = b1. The feeder point con-
nects to the return conductors at y = yF. The upper main radi-
ating conductor short point is placed at y = y1 and the lower
main radiating conductor short point is placed at y =−y2. The
widths of the conductors in the z direction are both w.

The plasma is assumed to have a linear density profile
over a length ln from a low edge density of n01 at x = d to a
maximum density of n0 at x = d + ln. The radiation condition
is imposed at x = d + ln so that all outgoing waves inside the
plasma are absorbed without reflection.

2.2. Derivation of the wave equations

We normalize Maxwell’s equations in the calculations as
done in Ref. [5]. The subscript ‘p’ denotes the physical quan-
tity, then: 𝑥 = (ω/c)𝑥P, 𝐸 = 𝐸P, 𝐻 = (µ0/ε0)

1/2𝐻P, and
𝐽 = (1/ωε0)𝐽P. With these normalizations, expressions for
the impedance should be multiplied by (µ0/ε0)

1/2 = 377 Ω

to recover the physical result. We then have Maxwell’s equa-
tions:

∇×𝐸 = i𝐻, (1)

∇×𝐻 = 𝐽 − i𝐸. (2)

From Maxwell’s equations, the equations for Ez and Hz are

d2Ez

dx2 −Γ
2Ez = nz

(
inyJy +

dJx

dx

)
, (3)

d2Hz

dx2 −Γ
2Hz =−

dJy

dx
+ inyJx, (4)

where

Γ
2 = n2

y +n2
z −1. (5)

The current distributions on conductors of the antenna are
modeled by

Jy(x,y,z) = Jy1(y,z)δ (x−b1)+ Jy2(y,z)δ (x−b2), (6)

Jx(x,y,z) = Jx1(y,z)γ(b1− x)+ Jx2(y,z)

× [γ(b2− x)− γ(b1− x)]+ Jx3(y,z)γ(b2− x), (7)

where γ(x) is the step-function and δ (x) the Dirac delta. The
solution for Ez (0 ≤ x ≤ c) consistent with the boundary con-
ditions (Ez(x = 0) = Ez(x = c) = 0) is:

Ez(x) = S(x,b1)nz [inyJy1− (Jx1− Jx2)]

+S(x,b2)nz [inyJy2− (Jx2 + Jx3)] , (8)

where

S(x,ξ ) =


−sinh [Γ (c− x)]sinh(Γ ξ )

Γ sinh(Γ c)
, x≥ ξ ≥ 0,

−sinh [Γ (c−ξ )]sinh(Γ x)
Γ sinh(Γ c)

, ξ ≥ x≥ 0.

(9)

The boundary conditions for Hz are imposed as follows:

dHz (0)
dx

= 0, (10)

Hz(d) = YP(ny,nz)

(
− i

1−n2
z

)
dHz(d)

dx
, (11)

where YP is the plasma admittance defined as

YP(ny,nz) =
1

ZP(ny,nz)
=

Hz(ny,nz)

Ez(ny,nz)

at x = d. The solution for Hz satisfying the boundary condi-
tions can be written as

Hz(x) = T (x,b1)

[
Jy1 +

iny (Jx1− Jx2)

Γ 2

]
+T (x,b2)

[
Jy2 +

iny (Jx2 + Jx3)

Γ 2

]
−

inyJx(x)
Γ 2 , (12)

where

T (x,ξ ) =


−Γ cosh [Γ (d− x)]−ρ sinh [Γ (d− x)]

Γ sinh(Γ d)+ρ cosh(Γ d)
sinh(Γ ξ ) , x≥ ξ ≥ 0,

Γ sinh [Γ (d−ξ )]+ρ cosh [Γ (d−ξ )]

Γ sinh(Γ d)+ρ cosh(Γ d)
cosh(Γ x) , ξ ≥ x≥ 0,

(13)

and

ρ = i
(
n2

z −1
)

ZP (ny,nz) . (14)

Having obtained the solutions for Ez and Hz, we can proceed

to find the other field components through the procedures in
Appendix A of Ref. [5] as follows:

Ey =
1

1−n2
z

[
−nynzEz− i

dHz

dx

]
, (15)
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Ex =
1

1−n2
z

[
inz

dEz

dx
−nyHz

]
− i

1−n2
z
[Jx] , (16)

Hy =
1

1−n2
z

[
−nynzHz + i

dEz

dx

]
, (17)

Hx =
1

1−n2
z

[
inz

dHz

dx
+nyEz

]
. (18)

Furthermore, the feeder point impedance can be written in the
variational form as

ZA =

∫
D𝐾 ·𝐸 (𝐽) d𝑅

IAKIAJ
. (19)

We can calculate the integration by using Parseval’s theorem∫
D
𝐾 ·𝐸 (𝐽) d𝑅

= ∑
α1 ,α2=x,y

β1,β2=1,2,3

∫∫ dny

2π

dnz

2π
Kα2β2(−ny,−nz)

×Rα2β2,α1β1(ny,nz)Jα1β1(ny,nz). (20)

In Eqs. (19) and (20), D denotes the surface of the central con-
ductors, 𝐽 and 𝐾 are trial functions for the currents, and IAJ

and IAK are the total currents flowing at the feeder point, which
are consistent with 𝐽 and 𝐾, respectively.

The condition δZA = 0 will lead to the physical current
𝐽 flowing in the conductors and the corresponding antenna
impedance ZA at the feeder point.

2.3. Choice of trial functions for a single strap antenna

For simplicity, we assume that the current on the conduc-
tor in the z direction is uniform because the conductors are
much longer than width, and the width is much shorter than a
wavelength at the operating frequency. Then

𝐽 (y,z) = 𝐽 (y)M (z) , (21)

where M(z) = 1 on the conductor (|z| ≤ w/2) and is 0 other-
wise.

In order to satisfy continuity conditions at the connec-
tions and the short-circuit condition dJy2(y)/dy = 0 at y = y1

and y = −y2, we take advantage of the current distributions
corresponding to the transmission line model in the upper and
lower conductors, respectively. The upper and the lower an-
tenna loop are balanced (yF = (−y1 + y2)/2), so we can write
down the trial functions as follows:

J(n)y1 (y) = cos [nk (−y+ |2y2− y1|)] [γ(y− yF)− γ(y− y2)]

− cos [nk (y+ y2)] [γ(y− y1)− γ(y− yF)] , (22)

J(n)y2 (y) = −cos [nk (y− y1)] [γ(y− y1)− γ(y− y2)]

− cos [nk (y+ y2)] [γ(y+ y2)− γ(y+ y1)] , (23)

J(n)x1 (y) = 2cos [nk (yF + y2)]δ (y− yF) , (24)

J(n)x2 (y) = cos [nk (y2− y1)]δ (y− y2)

+ cos [nk (y2− y1)]δ (y+ y1), (25)

J(n)x3 (y) = −δ (y− y1)−δ (y+ y2), (26)

where γ(x) is the step-function γ(x) = 0, 1/2, 1 for x < 0,
x = 0, x > 0, respectively. We could express each current in
terms of a linear combination of these trial functions:

Jα1β1 (y,z) =
N

∑
n=0

anJ(n)
α1β1

(y)M (z) , (27)

Kα2β2 (y,z) =
N

∑
n=0

bnJ(n)
α2β2

(y)M (z) . (28)

Here, an and bn are the coefficients for 𝐽 and 𝐾, where n = 0,
1, . . . , N. N = 4–5 is large enough to result in a rather small
calculation error for ZA. With these trial functions, equa-
tion (19) can be rewritten as

ZA =

∑
m,n

bmLmnan(
∑
n

anPn

)(
∑
m

bmPm

) , (29)

where Pn = 2wcos [nk (yF + y2)] and the matrix elements are
as follows:

Lmn = ∑
α1 ,α2=x,y

β1,β2=1,2,3

∫∫ dny

2π

dnz

2π
K(m)

α2β2
(−ny,−nz)

×Rα2β2,α1β1(ny,nz)J
(n)
α1β1

(ny,nz). (30)

Requiring an extremum δZA = 0, we will obtain an input
impedance at the feeder point and the physical current coef-
ficients on conductors:

ZA =
1

𝑃 ·𝐿−1 ·𝑃
, (31)

𝑎= ZA
(
𝐿−1 ·𝑃

)
, (32)

𝑏= ZA
(
𝑃 ·𝐿−1) , (33)

where 𝐿= ‖Lmn‖ and 𝑃 = (P0 · · ·PN)
T.

2.4. Extension for the antenna array

The situation with four identical current straps in the z di-
rection can be treated by rewriting the current distribution and
resolving Maxwell’s equations. The current distribution for
the N-strap antenna array can be written as

𝐽array =
N−1

∑
n=0

𝐽 (x,y,z−n ·∆z) · exp(iϕn), (34)

where 𝐽(x,y,z) is the current distribution for a single strap an-
tenna, ∆z is the period of the antenna array in the z direction,
and ϕn is the current phase of the n-th current strap. If the mu-
tual coupling between current straps is ignored, we can obtain
the impedance for each current strap by modifying Eq. (19)
into the following expression:

ZA =
1
N

∫
D𝐾 ·𝐸

(
𝐽array

)
d𝑅

IAKIAJ
. (35)
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3. Simulation results
In this section, first we give the frequency scans in the

presence of the plasma for a single ICRF antenna. Then, we
investigate the antenna behavior dependent on the antenna pa-
rameters at 30 MHz around which the EAST ICRF antenna
operates frequently. Finally, the field structures corresponding
to the single ICRF antenna and the ICRF antenna array are
provided.

3.1. Frequency characteristics

Frequency scans with and without the plasma for a sin-
gle strap ICRF antenna are shown in Fig. 2. The antenna
parameters are listed in Table 1. The plasma edge density
is assumed to be n01 = 3× 1012 cm−3, the central density
n0 = 2× 1013 cm−3, and the linear profile length ln = 0.1 m.
In the following figures, the line with black squares represents
the resistance of the impedance R = Re(ZA) and the line with
white squares refers to the reactance X = Im(ZA). Accord-
ing to the definition of the code, the negative and the positive
signs of X represent the inductive and capacitive reactances,
respectively. Figure 2(a) shows that the single strap ICRF
antenna in vacuum becomes resonant at f = 31 MHz, where
R reaches a maximum value and X starts to approach to zero
rapidly. The minor peak of R occurs at f = 28 MHz because of
the larger numerical calculation error near the resonant point.
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Fig. 2. (a) Frequency scans of the antenna impedance ZA = R+ iX in
vacuum. The line with black squares represents the resistance of the
impedance R = Re(ZA) and the line with white squares refers to the
reactance X = Im(ZA). (b) Frequency scans of the antenna impedance
ZA =R+ iX in the presence of a DH plasma: nD/ne =0.9, nH/ne = 0.1,
B = 2.3 T, n01 = 3× 1012 cm−3, n0 = 2× 1013 cm−3, ln = 0.1 m, the
antenna parameters are indicated in Table 1.

As shown in Fig. 2(b), the presence of the plasma smooths the
frequency responses of R and X in vacuum. R is much larger
and inductive reactance is smaller than their counterparts of
vacuum condition in Fig. 2(a).

3.2. Dependence on antenna parameters

Figure 3 shows the variations of real part (resistance)
and imaginary part (reactance) of impedance with antenna
parameters for a single antenna. The resistance of the
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Fig. 3. (a) Antenna impedance versus distance d−c. y1 = 0.01 m, y2 = 0.4 m,
w = 0.1 m, b1 = 0.02 m, b2 − b1 = 0.1 m, c− b2 = 0.01 m; (b) Antenna
impedance versus distance c− b2. y1 = 0.01 m, y2 = 0.4 m, w = 0.1 m,
b1 = 0.02 m, b2− b1 = 0.1 m, d− c = 0.01 m; (c) Antenna impedance ver-
sus distance b2 − b1. y1 = 0.01 m, y2 = 0.4 m, w = 0.1 m, b1 = 0.02 m,
c− b2 = 0.01 m, d− c = 0.01 m; (d) antenna impedance versus distance b1.
y1 = 0.01 m, y2 = 0.4 m, w = 0.1 m, b2 − b1 = 0.1 m, c− b2 = 0.01 m,
d− c = 0.01 m.

085201-4



Chin. Phys. B Vol. 25, No. 8 (2016) 085201

impedance R = Re(ZA) and the reactance X = Im(ZA) first fall
down rapidly as d − c increasing in Fig. 3(a). Then R and
X remain almost unchanged as d–c increases beyond 60 cm.
R in Fig. 3(b) is similar to that in Fig. 3(a) dependent on
c−b2 while X first increases with c−b2 increasing. As shown
in Fig. 3(c), R goes up and X falls down with the distance
b2−b1 increasing steadily. Figure 3(d) shows that R decreases
with b1 increasing rapidly and X reaches a maximum value at
b1 = 0.04 m approximately.

3.3. RF field structure

The three-dimensional (3D) distributions of the electric
field

∣∣Ey
∣∣ in the poloidal and toroidal direction at the plasma

edge are shown in Fig. 4 for a single strap ICRF antenna and
for 4-strap ICRF antenna array in different toroidal phasing
cases. We can see that the electric field with toroidal phas-
ing (0,π,0,π) is much smaller than that with the phasing
(0,0,0,0,).
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Fig. 4. (color online) (a) Distribution of
∣∣Ey
∣∣ at the plasma edge for the single antenna; (b) distribution of

∣∣Ey
∣∣ at the plasma edge for the 4-strap antenna

array with toroidal phasing (0,0,0,0,) and period ∆z = 0.2 m; (c) distribution of
∣∣Ey
∣∣ at the plasma edge for the 4-strap antenna array with toroidal phasing

(0,π,0,π) and period ∆z = 0.2 m; all with parameters: y1 = 0.01 m, y2 = 0.4 m, w = 0.1 m, b1 = 0.02 m, b2 = 0.12 m, c = 0.13 m, and d = 0.14 m.

4. Discussion and conclusions
A general variational formalism is used to evaluate the

coupling of the ICRF antenna. The antenna resonant fre-
quency is around 30 MHz in vacuum, and the presence of the
plasma smooths the peak of the frequency response of the an-
tenna resistance. The antenna resistance in the case of the
plasma is much larger than the resistance with the vacuum
condition due to the fact that the ICRF waves are absorbed
in the plasma. The relationship between the impedance and
the antenna parameters can be used to optimize the design of
the ICRF antenna by maximizing the resistance R and mini-
mizing the reactance X . The RF electric field distribution of
the EAST 4-strap ICRF antenna shows that the antenna ar-
ray with (0,π,0,π) phasing has lower electric field than with
the (0,0,0,0) phasing. The mutual coupling between adjacent

straps will be considered in the variational method in the fu-
ture.
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