
A generalization of the Drude-Smith formula for magneto-optical conductivities in
Faraday geometry

F. W. Han, W. Xu, , L. L. Li, and C. Zhang

Citation: Journal of Applied Physics 119, 245706 (2016); doi: 10.1063/1.4954889
View online: http://dx.doi.org/10.1063/1.4954889
View Table of Contents: http://aip.scitation.org/toc/jap/119/24
Published by the American Institute of Physics

Articles you may be interested in
The origin of non-Drude terahertz conductivity in nanomaterials
Journal of Applied Physics 100, 132102132102 (2012); 10.1063/1.3697404

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/949446391/x01/AIP-PT/JAP_ArticleDL_050317/PTBG_instrument_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Han%2C+F+W
http://aip.scitation.org/author/Xu%2C+W
http://aip.scitation.org/author/Li%2C+L+L
http://aip.scitation.org/author/Zhang%2C+C
/loi/jap
http://dx.doi.org/10.1063/1.4954889
http://aip.scitation.org/toc/jap/119/24
http://aip.scitation.org/publisher/
/doi/abs/10.1063/1.3697404


A generalization of the Drude-Smith formula for magneto-optical
conductivities in Faraday geometry

F. W. Han,1,2 W. Xu,1,2,3,a) L. L. Li,1 and C. Zhang1

1Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences,
Hefei 230031, China
2University of Science and Technology of China, Hefei 230026, China
3Department of Physics and Astronomy and Yunnan Key Laboratory for Micro/Nano Materials and
Technology, Kunming 650091, China

(Received 24 February 2016; accepted 15 June 2016; published online 30 June 2016)

In this study, we generalize the impulse response approach and Poisson statistics proposed by Smith

[Phys. Rev. B 64, 155106 (2001)] to evaluate the longitudinal and transverse magneto-optical

conductivities in an electron gas system in Faraday geometry. Comparing with the standard Drude

model, the coefficients an are introduced in the Drude-Smith formula to describe the backscattering

or localization effect for the nth electronic scattering event. Such a formula can also be applied to

study the elements of the dielectric function matrix in the presence of magnetic and radiation fields

in electron gas systems. This theoretical work is primely motivated by recent experimental activities

in measuring the real and imaginary parts of longitudinal and transverse magneto-optical conductiv-

ities in condensed matter materials and electronic devices using terahertz time-domain spectroscopy.

We believe that the results obtained from this study can provide an appropriate theoretical tool in

reproducing the experimental findings and in fitting with experimental data to determine the

important sample and material parameters. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4954889]

I. INTRODUCTION

For good metals and semiconductors, the frequency

dependence of the complex optical conductivity in the

absence of an external magnetic field can be described by

the well-known Drude formula: rðxÞ ¼ r0=ð1� ixsÞ,
where x is the radiation frequency, s is the electronic relaxa-

tion time, and the DC conductivity r0 is given as nee2s=m�

with ne being the electron density and m* the effective mass

of an electron in the material. The basic feature of the Drude

formula is that it suggests a maximum of the real part of the

conductivity at zero frequency and the real part of the con-

ductivity decreasing with increasing x in a Lorentzian form.

However, in some electrically conductive condensed matter

systems, especially in poor metals1,2 and metal-3,4 and semi-

conductor-based5,6 nanostructures, the deviation of the opti-

cal conductivity from this Drude behavior can be observed

experimentally. Hence, there has been a need to develop

simple and tracy theoretical approach which can be applied

to reproduce the experimental findings and, as a result, to

obtain the sample and material parameters via fitting experi-

mental data with theoretical formula. In 2001, Smith pro-

posed an impulse response approach and Poisson statistics

for evaluating the optical conductivity in the presence of

memory or persistence of electron velocity effect.7 Such a

model is a classical generalization of the Drude formula and,

therefore, has been named as Drude-Smith model. The com-

plex optical conductivity given by the Drude-Smith model

takes a form:

r xð Þ ¼ r0

1� ixsð Þ 1þ
X1
n¼1

cn

1� ixsð Þn

" #
; (1)

where the coefficient cn¼ [0, �1] represents the fraction of

the electron’s original velocity that is retained after the nth

electronic scattering event. Due to the presence of cn terms

in the formula, the Drude-Smith model can be used to inves-

tigate the deviation behavior of optical conductivity from the

standard Drude formula. Interestingly, the coefficient cn can

be related to important electronic effects such as the persist-

ence, backscattering, and even the localization. Since its

publication in 2001, the Drude-Smith formula has been

applied to examine optical conductivity in poor conductors

and material systems near the metal-insulator transition,8,9

the Anderson localization effects,10 etc. In particular, the

Drude-Smith formula has become a powerful theoretical tool

in reproducing experimental results obtained from terahertz

(1012 Hz or THz) time-domain spectroscopy (TDS) in recent

years.11 Nowadays, the THz TDS techniques have been

widely applied to study newly developed condensed matter

materials such as graphene,12–14 high Tc superconduc-

tors,15,16 strongly correlated systems,17,18 metal nano-array

structures,19,20 to mention but a few. Using THz TDS techni-

ques, it is possible to measure the real and imaginary parts of

the optical conductivity for a material. Thus, through fitting

the experimental results with the Drude-Smith formula, one

can obtaine the important sample and material parameters

such as the electron mobility (or relaxation time s),21 the

electron density (or ratio between electron density and

effective mass ne/m
*),22 and the information about electronic

backscattering and localization (or cn),23,24 etc. As aa)Electronic mail: wenxu_issp@aliyun.com
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consequence, one can obtain these sample and material pa-

rameters optically without making Ohmic contacts and

applying external magnetic field.

At present, the THz TDS techniques have been inte-

grated with the high-magnetic field and low-temperature

facilities to measure THz magneto-optical properties of a

material.25,26 Many important and interesting magneto-

optical features, such as cyclotron resonance,27,28 Faraday

rotation,29,30 optically detected quantum Hall effect,31,32 and

magneto-optical Kerr effect,33,34 have been observed and

investigated experimentally in THz bandwidth for different

kinds of materials. The THz TDS based magneto-optical

measurements can be used to obtain the real and imaginary

parts of the longitudinal and transverse conductivities. By

fitting these four experimental results with theoretical for-

mula, we are able to obtain at least four independent physical

properties. Thus, more information about sample and mate-

rial parameters for a material or device can be determined

via THz TDS based mangeto-optical measurements. On the

other hand, one can use more experimental findings to exam-

ine the rightness of a theoretical model. From a fact that in

poor metals1,2 and in metal-3,4 and semiconductor-based5,6

nanostructures, the deviations of the optical conductivity

from standard Drude behavior have been observed experi-

mentally at zero magnetic field, and one would expect that

the real and imaginary parts of longitudinal and transverse

magneto-optical conductivities for these materials may differ

from the standard Drude formula obtained in the presence of

a magnetic field. At present, there is a lack of simple and

tractable theoretical approaches to depict the magneto-

optical conductivities which do not obey the standard Drude

formula. Therefore, it is significant and important to develop

a simple theoretical approach which can be easily applied to

understand and reproduce experimental findings. In this

work, we intend generalizing the Drude-Smith model pro-

posed in the absence of a magnetic field to the case where

the radiation and magnetic fields are applied simultaneously

in the Faraday geometry. The prime motivation of the pres-

ent study is to develop and provide a simple theoretical tool

which can be easily applied to fit experimental data and to

obtain the sample and material parameters via fitting.

The paper is organized as follows. We present the

derivation of the Drude-Smith formula for the case where an

external magnetic field is present in Section II. In Section III,

the results are presented and discussed further. To see more

application of the model in conjunction with experimental

measurement, the theoretical results for the elements of the

dielectric function matrix are presented and discussed. The

main concluding remarks are summarized in Section IV.

II. THEORETICAL APPROACH

In the present study, we consider the situation where the

external magnetic field is not high enough and the tempera-

ture is not low enough so that the effects induced by

the Landau quantization can be neglected. In such a case, the

classical theoretical approach can be used to study the

magneto-optical properties of an electron gas system.

A. Drude-Smith model

In the absence of an external magnetic field, the current

response function for an electron gas system can be written

as:7 jðtÞ ¼ jð0Þe�t=s, which implies that the initial current

jð0Þ ¼ nee2=m� decays exponentially to its equilibrium value

with a relaxation time s. The complex form of frequency-

dependent optical conductivity is then obtained by the

Fourier transformation of the current response function,

which reads

rðxÞ ¼
ð1

0

jðtÞeixtdt: (2)

After considering that an electron in a material may suffer

the first and subsequent collisions due to backscattering

mechanism, Smith proposed7 a modified current response

function with a Poisson distribution

j tð Þ ¼ j 0ð Þe�t=s 1þ
X1
n¼1

cn

n!

t

s

� �n
" #

; (3)

where cn is a parameter describing the persistence of the

change of initial velocity for an electron after the nth scatter-

ing event. Hence, this model has taken into consideration

that an electron experiences collisions which are randomly

distributed in time but with an average time interval s
between collision events. Consequently, the complex optical

conductivity in the absence of a magnetic field is obtained as

Eq. (1).

B. Magneto-optical conductivity tensors

In the present study, we consider a situation where the

radiation field is applied along the z-axis of the sample and

is polarized linearly along the x-direction with an electric

field strength Ei
x. The static magnetic field B is applied along

the z-axis of the sample as well. Thus, the system is in

Faraday geometry. The schematic illustration of the configu-

ration for magneto-optical transmission measurement in

Faraday geometry is shown in Fig. 1. As we know, in

Faraday geometry, the effect of the cyclotron resonance can

be observed due to coupling between magnetic and radiation

fields. In such a case, because of the presence of the Lorentz

force induced by the magnetic field, the electrons in an

electronic material are in cyclotron orbit moving with a

FIG. 1. The schematic illustration of the configuration for magneto-optical

measurement in Faraday geometry. Here, the case for transmission experi-

ment is shown. Ei
x is the electric field strength of the incident light which is

polarized linearly along the x-axis via, e.g., a polarizer. The magnetic field B
is applied along the z-axis. The electric field strengths of the light wave

transmitted through the sample along different directions, Ep
x and Ep

y , are

measured with the polarizer or analyzer.
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frequency xc ¼ eB=m� called cyclotron frequency. As a

result, the electric field of the light wave transmitted through

the sample can be with Ep
x and Ep

y components, and the cur-

rent response function has both longitudinal and transverse

components, which are given as

jxðtÞ ¼ jð0Þe�t=s cosðxctÞ; (4)

and

jyðtÞ ¼ �jð0Þe�t=s sinðxctÞ: (5)

The corresponding longitudinal and transverse conductivities

can be obtained through the Fourier transformation

rxx xð Þ ¼ j 0ð Þ
ð1

0

e�t=s cos xctð Þeixtdt

¼ r0 1� ixsð Þ
1� ixsð Þ2 þ xcsð Þ2

; (6)

and

rxy xð Þ ¼ �j 0ð Þ
ð1

0

e�t=s sin xctð Þeixtdt

¼ � r0xcs

1� ixsð Þ2 þ xcsð Þ2
; (7)

with r0 ¼ nee2s=m� being the conductivity in the absence of

magnetic and radiation fields. Eqs. (6) and (7) are the same

as the classical results for the Drude formula obtained in the

presence of radiation and magnetic fields (see Appendix A).

Now, we take into account of the electron motion after

the first and subsequent collisions. Using the Poisson statis-

tics proposed by Smith, we have

jx tð Þ ¼ j 0ð Þe�t=s cos xctð Þ 1þ
X1
n¼1

an

n!

t

s

� �n
" #

; (8)

and

jy tð Þ ¼ �j 0ð Þe�t=s sin xctð Þ 1þ
X1
n¼1

an

n!

t

s

� �n
" #

; (9)

with an being a parameter describing the persistence of the

change of initial velocity for an electron after the nth scatter-

ing event in the presence of a magnetic field. After Fourier

transformations, the longitudinal and transverse magneto-

optical conductivities now, respectively, become

rxx xð Þ ¼ j 0ð Þ
2

ð1
0

e�t=s eixctþ e�ixctð Þ 1þ
X1
n¼1

an

n!

t

s

� �n
" #

eixtdt

¼ r0=2

1� i xcþxð Þs
1þ

X1
n¼1

an

1� i xcþxð Þs½ �n

" #

þ r0=2

1þ i xc�xð Þs
1þ

X1
n¼1

an

1þ i xc�xð Þs
� �n

" #
;

(10)

and

rxy xð Þ¼�j 0ð Þ
2i

ð1
0

e�t=s eixct�e�ixctð Þ 1þ
X1
n¼1

an

n!

t

s

� �n
" #

eixtdt

¼ ir0=2

1� i xcþxð Þs
1þ
X1
n¼1

an

1� i xcþxð Þs½ �n

" #

� ir0=2

1þ i xc�xð Þs
1þ
X1
n¼1

an

1þ i xc�xð Þs
� �n

" #
; (11)

both with a correction term with the coefficients an. In the

above derivation, the recursion formulas for integration are

given in Appendix B.

C. Special cases

Now, we discuss the special cases of the Drude-Smith

formula obtained in the presence of the magnetic field.

Firstly, when the external magnetic field is absent, we have

rxy(x)¼ 0 and

rxx xð Þ ¼ r0

1� ixsð Þ 1þ
X1
n¼1

an

1� ixsð Þn

" #
; (12)

which is the previous Drude-Smith formula obtained for

B¼ 0.7

Secondly, when the radiation field becomes the DC

field, i.e., x¼ 0, Eqs. (10) and (11) read, respectively

rxx 0ð Þ ¼ r0

1þ xcsð Þ2
þ r0

2

X1
n¼1

an

� 1

1� ixcsð Þnþ1
þ 1

1þ ixcsð Þnþ1

" #
; (13)

and

rxy 0ð Þ ¼ � r0xcs

1þ xcsð Þ2
þ ir0

2

X1
n¼1

an

� 1

1� ixcsð Þnþ1
� 1

1þ ixcsð Þnþ1

" #
: (14)

When an¼ 0, rxxð0Þ ¼ r0=½1þ ðxcsÞ2� and rxyð0Þ
¼ �r0xcs=½1þ ðxcsÞ2� so that the magneto-resistivities:

qxx ¼ 1=r0 and qxy ¼ B=nee, which are the well-known clas-

sical results for magneto-resistivity tensors when quantum

effects are not taken into consideration. We note that when

x¼ 0 and an¼ 0, the magneto-conductivity or resistivity ten-

sors are with only the real part. However, as long as there is

at least one nonzero an, both rxxð0Þ and rxyð0Þ are complex

quantities. It is known that the real part of the conductivity

corresponds to the energy consuming process, namely, a pro-

cess that an electron gains the energy from the external field

and losses it due to electronic scattering mechanisms.

Whereas the imaginary part of the conductivity describes the

energy exchange process between electrons and external

field applied on electrons, which does not change the energy

245706-3 Han et al. J. Appl. Phys. 119, 245706 (2016)



of the electron-field system. Such an effect is a consequence

that the initial current decays exponentially to its equilibrium

value with a relaxation time s due to subsequent electronic

collision events. This is electrically equivalent to the quasi-

harmonic oscillation of electron motion.

Lastly, in Eqs. (10) and (11), the value of the coefficient

an should be in-between 0 and �1. When an¼ 0, the Poisson

statistics does not take into account and the magneto-optical

conductivity tensors become the standard Drude formula

(see Appendix A). an¼�1 corresponds to a case of full

backscattering mechanism to an electron, and the Poisson

statistics has the strongest influence on magneto-optical

conductivity tensors. For practical usage of the Drude-Smith

formula, especially in fitting experimental data with the for-

mula, one often first examines the results obtained by taking

only a1 term into consideration. If a1 is in-between 0 and �1

and the good comparison between experimental and theoreti-

cal results can be achieved, n> 1 terms can be safely

neglected. When a good fitting between experimental and theo-

retical results cannot be achieved by taking only a1¼ [0, �1],

higher order terms have to be included. Therefore, it is worthy

and significant to discuss the case where the persistence of

electron motion is retained for only one collision event (i.e.,

only the a1 related term is considered). When an¼ 0 for n> 1,

after defining a1¼ a, the longitudinal and transverse current

response functions become, respectively

jx tð Þ ¼ j 0ð Þe�t=s cos xctð Þ 1þ at

s

� �
; (15)

and

jy tð Þ ¼ �j 0ð Þe�t=s sin xctð Þ 1þ at

s

� �
; (16)

and the longitudinal and transverse magneto-optical conduc-

tivities are given, respectively, as

rxx xð Þ ¼ r0

1� ixs

1� ixsð Þ2 þ xcsð Þ2

þ ar0

2

1

1� i xþ xcð Þs½ �2
þ 1

1� i x� xcð Þs
� �

�2

" #
;

(17)

and

rxy xð Þ ¼ �r0

xcs

1� ixsð Þ2 þ xcsð Þ2

þ iar0

2

1

1� i xþ xcð Þs½ �2
� 1

1� i x� xcð Þs
� �2

" #
:

(18)

Here, both rxxðxÞ and rxyðxÞ are complex quantities, and the

cyclotron resonance effect can be seen when x � xc.

III. RESULTS AND DISCUSSIONS

First of all, it is necessary and interesting to look into

how a magnetic field and the Poisson statistics affect the

impulsive current response function that is the basis of the

Drude-Smith model. To see the effects more clearly, we con-

sider the situation where an¼ 0 for n> 1 and use Eqs. (15)

and (16) for examination. In Fig. 2, we show the time de-

pendence of the longitudinal [jx(t) in (a)] and transverse [jy(t)
in (b)] impulsive current response functions at a fixed relaxa-

tion time s for B¼ 0 and B¼ 5 T and for different coeffi-

cients a. For sake of demonstration only, here we take the

electron effective mass to be m� ¼ 0:065me (for semicon-

ductor such as GaAs) with me being the rest electron mass

and the relaxation time to be s¼ 0.5 ps (for typical momen-

tum relaxation time in semiconductors). For a case of B¼ 0

and a¼ 0 (the black curves in Fig. 2), which corresponds to

the standard Drude formula at B¼ 0, jyðtÞ ¼ 0 and jxðtÞ are

always positive and decay exponentially with t. When B 6¼ 0

and a¼ 0 (red curves in Fig. 2), which corresponds to the

standard Drude formula for B 6¼ 0, both jxðtÞ and jyðtÞ oscil-

late with a frequency xc ¼ eB=m� and decay exponentially

with t purely. When B 6¼ 0 and a ¼ ð0;�1� (e.g., for

a¼�0.5 and �1 in Fig. 1), both jxðtÞ and jyðtÞ still oscillate

with a frequency xc, but their decay behavior is modified

markedly by the presence of the 1þ at=s term in Eqs. (15)

and (16). From Fig. 2, we see that the presence of the mag-

netic field can induce the oscillations of the current response

functions with a frequency xc, which can lead to a change of

sign for the current response functions. Moreover, the usage

of the Poisson statistics in Drude-Smith model [i.e., the pres-

ence of 1þ at=s term in Eqs. (15) and (16)] can change the

feature of the time decay of the longitudinal and transverse

current response functions.

Now, we discuss the basic features of the longitudinal

and transverse magneto-optical conductivities given by

Drude-Smith model. Again, to see the effects more clearly,

we consider the situation where an¼ 0 for n> 1 and use Eqs.

(17) and (18) for investigation. We take m� ¼ 0:065me and

s¼ 0.5 ps in the calculation. In Fig. 3, we show the real and

imaginary parts of the longitudinal and transverse magneto-

optical conductivities as a function of radiation frequency

� ¼ x=2p at a fixed relaxation time s and a fixed magnetic

field B¼ 5 T for different coefficients a. When B¼ 5 T and

m� ¼ 0:065me; xc=2p ¼ 2:16 THz. For s¼ 0.5 ps, xcs � 1

FIG. 2. The time dependence of the longitudinal [jx(t) in (a)] and transverse

[jy(t) in (b)] impulsive current response functions at a fixed relaxation time

s¼ 0.5 ps for B¼ 0 (black curves) and B¼ 5 T and for different coefficients

a as indicated. Here, jð0Þ ¼ nee2=m�.
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can be satisfied. Thus, the cyclotron resonance effect can be

observed in rxxðxÞ and rxyðxÞ in THz regime where xs � 1.

As we know, the real part of optical conductivity corre-

sponds to the process that an electron gains the energy from

the external field and losses it due to electronic scattering

mechanisms. The peak for Re rxxðxÞ in Fig. 3(a) at a¼ 0 is

induced by the resonant absorption due to the cyclotron reso-

nance effect. However, in the presence of the backscattering

or localization mechanism (i.e., for a nonzero coefficient a),

the absorption peak splits into two peaks and the peak posi-

tion at a¼ 0 becomes the valley position at a 6¼ 0 as shown

in Fig. 3(a) for a¼�0.5 and a¼�1. With decreasing the

value of the coefficient a (note that a should be a negative

value), the effect of backscattering becomes stronger and

the splitting of the peak for cyclotron resonance becomes

more obvious. From Fig. 3(c), we see that the presence of a

nonzero coefficient a does not change the basic features of

Rerxy(x). However, a stronger backscattering effect or a

smaller a can lead to a higher peak and a deeper valley in

Rerxy(x). The imaginary part of the optical conductivity

describes the energy exchange process between electrons

and applied external field. The results shown in Fig. 3(b)

indicate that the presence of the backscattering mechanism

can change the features of Imrxx(x) significantly. With vary-

ing the coefficient a, Imrxx(x) at a¼ 0 and a¼�1 depends

very differently on frequency � ¼ x=2p around the cyclo-

tron frequency x � xc. In contrast, we find that the presence

of a nonzero coefficient a does not change the basic features

of Imrxy(x) which is always negative. However, with

decreasing the coefficient a, the valley in Imrxy(x) around

the cyclotron frequency x�xc looks deeper and the position

of the valley does not shift with varying a.

It should be noted that once the magneto-optical conduc-

tivity tensor is obtained, the components of the dielectric

function matrix can be evaluated simply through17

exx xð Þ ¼ eb þ
irxx xð Þ

e0x
; (19)

and

exy xð Þ ¼ irxy xð Þ
e0x

; (20)

where eb is the dielectric constant of the host material and e0

is the permittivity in the vacuum. They are, in general, the

complex quantities.

In 2004, Ino and co-workers measured the real and

imaginary parts of exxðxÞ and exyðxÞ for InAs34 via THz

Kerr effect experiments by using THz TDS technique at

room temperature. In general, the transmission measurement

by the THz TDS technique can be obtained directly the real

and imaginary parts of optical conductivity.18 On the other

hand, the THz TDS based reflection experiments can nor-

mally be applied to determine the real and imaginary parts of

the dielectric response function or dielectric constant34 via

measuring the strength and phase of the THz waves reflected

from the sample. In the paper by Ino and co-workers,34 they

took the standard Drude formula for B 6¼ 0 to fit the experi-

mental data and obtained the sample and material parameters

such as the electronic relaxation time and electron density in

InAs samples. We have applied the present Drude-Smith

formula to fit the experimental data for InAs34,35 and have

found the better agreement between experimental and

theoretical results. However, we know that generally the

electronic localization effect in bulk InAs is considered to be

very weak. Therefore, in the present study, we calculate the

real and imaginary parts of exxðxÞ and exyðxÞ for nano-

granular VO2 films in which the electronic metal and insula-

tor phases can co-exist9 and the electronic localization effect

can be markedly observable. The metal-insulator transition

in nano-granular VO2 films has been studied by using THz

TDS techniques in the absence of a magnetic field.9,36 When

B¼ 0, the Drude-Smith formula can fit very well with the ex-

perimental results obtained for nano-granular VO2 films and

the corresponding value of a¼�0.66 can be determined.9 In

Fig. 4, we demonstrate how the parameter a in Eqs. (19) and

(20) affects the real and imaginary parts of exxðxÞ and exyðxÞ
for nano-granular VO2 films in the presence of a magnetic

field B. In the calculation, we take a¼�0.66 determined

FIG. 3. The real and imaginary parts

of the longitudinal [in (a) and (b),

respectively] and transverse [in (c) and

(d), respectively] magneto-optical con-

ductivities as a function of radiation

frequency �¼x/2p at a fixed relaxa-

tion time s¼ 0.5 ps and a magnetic

field B¼ 5 T for different coefficients a
as indicated. Here, r0 ¼ nee2s=m�.
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experimentally9 at B¼ 0, eb¼ 9.0, the electron density9

ne¼ 5.2� 1020 cm�3, the relaxation time9 s¼ 20 fs, and the

electron effective mass9 m*¼ 2.0me. We find that by using

these parameters, the value xcs is relatively small at B¼ 5 T

for VO2 so that the effect of Landau quantization can be

neglected and the cyclotron resonance cannot be observed in

the THz frequencies. In Fig. 4, we plot the real and imagi-

nary parts of exxðxÞ and exyðxÞ as a function of radiation fre-

quency for a nano-granular VO2 film at a fixed magnetic

field strength B¼ 5 T for different values of a¼ 0 (solid

curves) and a¼�0.66 (dashed curves). As we can see from

Figs. 4(a) and 4(c), because xs is relatively small for VO2

in THz regime, Reexx(x) and Reexy(x) depend weakly on

x for a¼ 0 and a ¼ �0:66. Similar to the case of B¼ 0, a

big difference of Reexx(x) can be found for a¼ 0 and a ¼
�0:66 at B¼ 5 T in THz regime. Both Reexx(x) and

Reexy(x) can change from the negative values at a¼ 0 to

the positive values at a¼�0.66 for B¼ 5 T. As shown in

Figs. 4(b) and 4(d), both Imexx(x) and Imexy(x) depend

rather strongly on radiation frequency x and their values

at a¼ 0 and a ¼ �0:66 differ significantly at B¼ 5 T for a

nano-granular VO2 film. Particularly, Imexy(x) decreases

with increasing x at a¼�0.66 and increases with x at

a¼ 0.

The results shown in Figs. 3 and 4 indicate that for an

electronic system in which the electronic backscattering or

localization effect is present, the parameter a in the Drude-

Smith formula for magneto-optical conductivities can affect

strongly the real and imaginary parts of conductivity tensors

rxxðxÞ and rxyðxÞ and dielectric function tensors exxðxÞ and

exyðxÞ. In the presence of the magnetic field, the nonzero

real and imaginary parts of rxyðxÞ and exyðxÞ can be present.

Therefore, the real and imaginary parts of conductivity ten-

sors or dielectric function tensors determined from THz TDS

based transmission or reflection experiments for a sample

can be applied to fit the Drude-Smith formula and to

determine the sample and material parameters via fitting

experimental data with theoretical formula. The most signifi-

cant effect of the electronic backscattering and localization

on magneto-optical properties can be observed for Rerxx(x)

where the peak of the cyclotron resonance splits into two

peaks in the Drude-Smith model and the peak position given

by standard Drude formula becomes the valley position.

When the effect of the electronic backscattering and local-

ization is strong enough, e.g., for nano-granular VO2 films,

Imexy(x) decreases with increasing x in sharp contrast to a

fact that it increases with x given by standard Drude

formula.

IV. CONCLUDING REMARKS

In this work, we have developed a simple and tractable

theoretical approach to evaluate the magneto-optical conduc-

tivity tensors in an electron gas system in Faraday geometry.

Such an approach is a generalization of the optical conduc-

tivity derived from the impulse response approach and

Poisson statistics proposed by Smith for a case where the

external magnetic field is absent. We have examined the de-

pendence of real and imaginary parts of conductivity tensors

rxxðxÞ and rxyðxÞ and dielectric function tensors exxðxÞ and

exyðxÞ on the radiation frequency, magnetic field strength,

and parameter a in the Drude-Smith formula. The main

conclusions obtained from this study are summarized as

follows. (i) By applying the Drude-Smith model to derive

the magneto-optical conductivity tensors for an electron gas

system, we can obtain the real and imaginary parts of rxxðxÞ
and rxyðxÞ with the coefficients an induced by the Poisson

statistics and related to electronic backscattering or localiza-

tion effect. (ii) The Drude-Smith formula generalized in this

study for B 6¼ 0 can be applied to study the magneto-optical

properties such as the real and imaginary parts of conductiv-

ity tensors and dielectric function tensors in the electronic

system. (iii) The presence of the an terms in the Drude-Smith

FIG. 4. The real and imaginary parts

of dielectric tensors as a function of

radiation frequency �¼x/2p at a fixed

magnetic field strength B¼ 5 T for dif-

ferent values of a. The solid and

dashed curves are for a¼ 0 and

a¼�0.66, respectively.
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formula can change dramatically the features of the longitu-

dinal and transverse magneto-optical conductivities and

dielectric function elements. Thus, the formula can be

applied to study the electronic materials and devices whose

magneto-optical conductivities deviate from the standard

Drude behavior and to obtain the information about elec-

tronic backscattering and localization which cannot be

obtained directly from magneto-transport measurement. (iv)

The most significant effect of the electronic backscattering

and localization on magneto-optical properties can be

observed for the real part of the longitudinal conductivity

and for the imaginary of transverse dielectric function tensor.

The peak of the cyclotron resonance in Rerxx(x) broadens

and splits into two peaks in the Drude-Smith model for a

nonzero parameter a and the peak position given by standard

Drude formula for a¼ 0 becomes the valley position.

Imexy(x) decreases with increasing x in the Drude-Smith

model, e.g., nano-granular VO2 films, and increases with x
at a¼ 0 in the standard Drude model.

At present, the techniques of the terahertz (THz) time-

domain spectroscopy (TDS) have been applied to investigate

the magneto-optical properties of the condensed matter

materials and electronic devices in conjunction with the high

magnetic field and low temperature facilities. Such techni-

ques can be used to measure the real and imaginary parts of

conductivity tensors rxx(x) and rxy(x) and dielectric func-

tion tensors exx(x) and exy(x) and, therefore, have been

applied to study important and interesting magneto-optical

effects such as the cyclotron resonance, Faraday rotation,

quantum Hall effect, Kerr effect, etc. In recent years, the

Drude-Smith formula for B¼ 0 has been widely adopted in

the theoretical analysis of the experimental findings from the

THz TDS measurements. On this basis, we believe that the

magneto-optical conductivity tensors obtained from the

Drude-Smith model for B 6¼ 0 can be used appropriately to

reproduce the experimental findings and to fit with experi-

mental data in order to determine the important sample and

material parameters.
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APPENDIX A: THE CLASSICAL DRUDE FORMULA
FOR B 6¼ 0

For a case where the light field is polarized linearly

along the x-direction and the magnetic field is applied along

the z-direction, we have the electric field strength of the radi-

ation field as Ei
x ¼ ðEx; 0; 0Þe�ixt and the static magnetic

field strength as B¼ (0, 0, B), with x being the radiation

frequency. For linear response of an electron in an electron

gas system to the light field, the drift velocity of the elec-

tron oscillates with the optical field synchronously and

v ¼ ðvx; vy; 0Þe�ixt due to cyclotron movement induced by

the presence of the magnetic field. Thus, the equation of

motion for the electron is given by

dvx

dt
¼ � e

m�
Ex þ vyBð Þ �

vx

s
; (A1)

and

dvy

dt
¼ e

m�
vxBð Þ � vy

s
; (A2)

with s being the electronic relaxation time. By solving the

above equations, we get the steady-state electron velocities

as

vx ¼ �
eExs
m�

1� ixs

1� ixsð Þ2 þ xcsð Þ2
; (A3)

and

vy ¼
xcs

1� ixs
vx; (A4)

where xc ¼ eB=m�. By definition, the current density j ¼
�neev with ne being the electron density. Taking r0

¼ nee2s=m�, the components of the current density are

jx ¼ r0

1� ixs

1� ixsð Þ2 þ xcsð Þ2
Ex; (A5)

and

jy ¼ r0

xcs

1� ixsð Þ2 þ xcsð Þ2
Ex: (A6)

By definition, the matrix j ¼ r � E with r being the conduct-

ance matrix. Thus, we obtain the longitudinal and transverse

conductivities as

rxx ¼
1� ixs

1� ixsð Þ2 þ xcsð Þ2
r0; (A7)

and

rxy ¼ �
xcs

1� ixsð Þ2 þ xcsð Þ2
r0: (A8)

APPENDIX B: RECURSION FORMULAS

To do the Fourier transformation in this work, the follow-

ing formulas have been applied to carry out the integrations.ð1
0

e�t=se6ixcteixt t=sð Þndt

¼ n

17i xc6xð Þs

ð1
0

e�t=se6ixcteixt t=sð Þn�1dt; (B1)

ð1
0

e�t=se6ixcteixt t=sð Þndt ¼ n!s

17i xc6xð Þs½ �nþ1
; n � 0ð Þ:

(B2)
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