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Experimental Observation of the Ground-State Geometric Phase of Three-Spin

𝑋𝑌 Model *

Hui Zhou(周辉)1, Zhao-Kai Li(李兆凯)1,2**, Heng-Yan Wang(王恒岩)1, Hong-Wei Chen(陈宏伟)3,
Xin-Hua Peng(彭新华)1,2**, Jiang-Feng Du(杜江峰)1

1Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics,

University of Science and Technology of China, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics,

University of Science and Technology of China, Hefei 230026
3High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031

(Received 14 March 2016)

The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently,

the study of the geometric phase has attracted considerable attention in the context of quantum phase transition,

where the ground state properties of the system experience a dramatic change induced by a variation of an

external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-

spin 𝑋𝑌 model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that

the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body

systems.

PACS: 03.65.Vf, 05.30.Rt, 76.60.−k, 64.70.−p DOI: 10.1088/0256-307X/33/6/060301

Discovered by Berry in 1984,[1] the wave func-
tion of a quantum system will acquire an extra phase
(namely Berry’s phase) in addition to the usual dy-
namical phase under the condition that the Hamil-
tonian is cyclic and adiabatic. This phase is also
known as the geometric phase since the phase fac-
tor depends only on the geometry of the evolution-
ary path in parameter space. Further study indicates
that this phenomenon also exists in the noncyclic,[2]

nonadiabatic evolution,[3] and the case of mixed
states.[4,5] The geometric phase has been experimen-
tally observed in many systems, e.g., photons,[6] spin-
polarized neutrons,[7] nuclear magnetic resonance[8]

and superconducting systems.[9] Now the applica-
tions of the geometric phase can be found in various
fields.[10−12] Recently, the relationship between the ge-
ometric phase and quantum phase transition (QPT)
has been revealed gradually and increasing interest
has been drawn to the role of the geometric phase
in characterizing QPT of many-body systems.[13]

Unlike classical phase transition driven by thermal
fluctuations, quantum phase transition of the many-
body system is driven by pure quantum fluctuations.
It is characterized by the abrupt changes in the prop-
erties of the ground state of the system, which re-
sults from the presence of the level crossing and avoid-
crossing between the ground state and the excited
state.[14] In the past few years, many methods were

developed to study the QPT from different perspec-
tives, such as quantum entanglement,[15] and quantum
fidelity.[16] Since the features of energy-level crossings
or avoided crossings correspond to the divergence or
extremum property of the Berry curvature, the en-
ergy level structures can be captured by the geomet-
ric phase. This relationship has been observed exper-
imentally in the two-spin 𝑋𝑌 model.[17] In this Let-
ter, we report an observation of this phenomenon in
a more complex many-body system, i.e., the three-
spin 𝑋𝑌 model, and further study the relationship
of the ground-state geometric phase and QPT. First,
we analyze the ground-state geometric phases of the
three-spin 𝑋𝑌 model. Then, we carry out the exper-
iment with a four-spin NMR system and present the
experimental results. Finally, a brief summary with a
discussion is presented.

Consider the one-dimensional spin-1/2 𝑋𝑌 model
with three spins in a uniform external magnetic field,

𝐻(𝜆, 𝛾) = − 𝜆

2

3∑︁
𝑖=1

𝜎𝑖𝑧 −
1 + 𝛾

2

3∑︁
𝑖=1

𝜎𝑖𝑥𝜎
𝑖+1
𝑥

− 1 − 𝛾

2

3∑︁
𝑖=1

𝜎𝑖𝑦𝜎
𝑖+1
𝑦 , (1)

with periodic boundary condition, i.e., 𝜎4
𝑣 = 𝜎1

𝑣 .
Here 𝜎𝑖𝑣(𝑣=𝑥,𝑦,𝑧) denotes the Pauli operators of the
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𝑖th qubit, 𝛾 represents the anisotropy of the coupling
strength, and 𝜆 denotes the external magnetic field in
the 𝑧-direction. The lowest two energies of the sys-
tem are 𝐸± = −1 ± 𝜆

2 −
√︀

(𝜆± 1)2 + 3𝛾2, with the
corresponding orthonormalized eigenstates

|𝜓⟩+ = sin
(︁𝜃+

2

)︁
|𝑊 ⟩001 + cos

(︁𝜃+
2

)︁
|111⟩,

|𝜓⟩− = sin
(︁𝜃−

2

)︁
|000⟩ + cos

(︁𝜃−
2

)︁
|𝑊 ⟩011, (2)

where tan(𝜃±/2) = [(𝜆±1)+
√︀

(𝜆± 1)2 + 3𝛾2]/(
√

3𝛾),
|𝑊 ⟩011 = 1√

3
(|011⟩ + |101⟩ + |110⟩) and |𝑊 ⟩001 =

1√
3
(|001⟩ + |010⟩ + |100⟩).
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Fig. 1. Energy levels and geometric phases of the three-
spin 𝑋𝑌 model. (a) The lowest two energies as functions
of the isotropy parameter 𝛾 and magnetic field strength 𝜆.
The energy level crossing points between the ground state
and the first excited state lie along the line 𝛾2+(𝜆/2)2 = 1.
(b) The geometric phase of the ground state |𝜓(0)⟩g in the
plane of 𝛾 and 𝜆. When 𝛾2+(𝜆/2)2 = 1, the ground state
is doubly degenerate and then the geometric phases asso-
ciated change discontinuously.

To generate the geometric phases, we let the
Hamiltonian adiabatically rotate around the 𝑧-axis
with 𝑈𝑧(𝜙) = Π𝑁

𝑘=1𝑒
−𝑖𝜙2 𝜎

𝑘
𝑧 , the Hamiltonian can be

written as �̃�(𝜆, 𝛾, 𝜙) = 𝑈 �
𝑧 (𝜙)𝐻(𝜆, 𝛾)𝑈𝑧(𝜙), which

has the same spectrum as Eq. (1). The quantum adia-
batic theorem predicts that a system initially in one of
its eigenstates |𝜓(0)⟩g will remain in its instantaneous
eigenstate |𝜓(𝜙)⟩g of the Hamiltonian �̃�(𝜆, 𝛾, 𝜙) in
this progress. As a result, the cyclic adiabatic evo-
lution from 0 to 𝜋 along the closed path 𝐶1 lets the
Hamiltonian and quantum state return to their orig-
inal forms in the parameter space. The ground state
of the studied system is

|𝜓(𝜙)⟩g =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sin
(︁
𝜃+
2

)︁
|𝑊 ⟩001

+𝑒−𝑖2𝜙 cos
(︁
𝜃+
2

)︁
|111⟩, 𝜉 ≤ 1,

sin
(︁
𝜃−
2

)︁
|000⟩

+𝑒−𝑖2𝜙 cos
(︁
𝜃−
2

)︁
|𝑊 ⟩011, 𝜉 > 1

,
(3)

where 𝜉 ≡ 𝛾2 + (𝜆/2)2. According to the standard
Berry’s formula 𝛽gp = 𝑖

∮︀
𝜑:0→𝜋

⟨𝜓|𝜕𝜑|𝜓⟩, the adiabatic
path 𝐶1 will generate the geometric phase

𝛽gp =

{︂
𝜋(1 + cos(𝜃+)), 𝜉 ≤ 1

𝜋(1 + cos(𝜃−)), 𝜉 > 1
. (4)

For 0 < 𝛾 < 1, the geometric phases have an abrupt
change along the energy cross line 𝛾2 + (𝜆/2)2 = 1. A
special case is the 𝑋𝑋 spin model (i.e., 𝛾 = 0). Since
the operation 𝑈𝑧(𝜙) does not change the Hamiltonian
of the system, the geometric phases vanish as shown
in Fig. 1(b).

Apart from the geometric phase, the dynamic
phase will also be generated relative to the instanta-
neous energy of the system 𝛽dp = 𝑖

∮︀
𝐸(𝑡)𝑑𝑡. To elimi-

nate the dynamical phase in experiment, we construct
another evolution path 𝐶2 �̃�

′(𝜆, 𝛾, 𝜙) = −�̃�(𝜆, 𝛾, 𝜙),
which will generate the same geometric phase and
the opposite dynamical phase as path 𝐶1.

[3] Then
the contribution of the dynamical phase is eliminated
and only the geometric phase will be acquired. Here
we introduce an ancilla qubit coupled to the system.
The auxiliary qubit is initialized into a superposi-
tion state 1√

2
(|0⟩ + |1⟩), and the controlled operation

𝑉𝑘 = |0⟩⟨0|𝑎⊗ 𝐼8 + |1⟩⟨1|𝑎⊗𝑈𝑘 is implemented, where
𝐼8 represents an 8 × 8 unit operator and the unitary
operator 𝑈𝑘 is the cyclic adiabatic evolution along the
chosen path of the system. When 𝑈𝑘 creates a non-
zero phase, it will effectively introduce a relative phase
shift between |0⟩ and |1⟩, which can be detected in ex-
periment. The quantum circuit is presented in Fig. 2.

Readout
Geometric phase

generationInitial state preparation 

ASP

H

Y

Y

Y

U1 U2

W1 V1 V2W2

Ψ2>Ψ1>Ψ0>

13C |0>

|0>

|0>

|0>

19F1

19F2

19F3

Fig. 2. Quantum circuit of the experimental progress.
Here 𝑌 and 𝐻 represent the operation 𝑒𝑖

𝜋
4
𝜎𝑦 and

Hadamard gate, respectively, and 𝐴𝑆𝑃 denotes adiabatic
preparation of the ground state |𝜓(0)⟩g. Notice that
|𝜓(0)⟩g = |𝜓(𝜋)⟩g, 𝑈1 and 𝑈2 are two adiabatic evolu-
tions, |Ψ 𝑖(𝑖=0,1,2)⟩ represents the expected instantaneous
state of the whole system, where |Ψ0⟩ = |0000⟩, |Ψ1⟩ =
1√
2
(|0⟩+ |1⟩)⊗ |𝜓(0)⟩g, and |Ψ2⟩ = 1√

2
(|0⟩+ 𝑒𝑖2𝛽gp |1⟩)⊗

|𝜓(𝜋)⟩g.

The experiment was carried out on a Bruker
AV-400MHz spectrometer (9.4T) at room tempera-
ture. We chose iodotrifluoroethylene dissolved in d-
chloroform as a four-qubit quantum system, where a
13C nucleus is labeled as the ancilla qubit and three
19F nuclei are used to simulate the 𝑋𝑌 model. The
natural abundance of the sample with a single 13C
is about 1%. To distinguish those molecules against
the large background, we read out all three 19F qubits
via the 13C channel. The natural Hamiltonian of the
system in the double rotating frame is

𝐻nmr =

4∑︁
𝑖=1

𝜔𝑖
2
𝜎𝑖𝑧 +

4∑︁
𝑖<𝑗,=1

𝜋𝐽𝑖𝑗
2

𝜎𝑖𝑧𝜎
𝑗
𝑧, (5)
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where 𝜔𝑖 is the chemical shift of spin 𝑖, and 𝐽𝑖𝑗 is
the scalar coupling constant between spins 𝑖 and 𝑗.
Figure 3 shows the measured properties of this four-
qubit quantum system. As summarized, this exper-
iment includes three steps: (i) initial state prepara-
tion: prepare the ground state of the 𝑋𝑌 spin model
of 𝐻(𝜆, 𝛾); (ii) geometric phase generation: drive the
system evolving along the engineered paths; and (iii)
readout: measure the geometric phases.

C

15478.7 -297.6 -257.6 39.1 C 7.9

-33114.5 64.6 51.4 4.4

-42674.9 -129.1 6.8

-56450.7 6.8
Unit: (Hz)

F1

F1

F2

F3

F2 F3 T2 (s)

19F3

19F2

19F1

13C

Fig. 3. Molecular structure and relevant parameters of
iodotrifluoroethylene at 303K. The chemical shifts and 𝐽-
coupling constants are on and above the diagonal in the
table, respectively. The spin-lattice relaxation times 𝑇1
are 21 s for 13C and 12.5 s for 19F. The chemical shifts are
given with respect to reference frequencies of 376.47MHz
(fluorines) and 100.64MHz (carbon). The transmitter off-
sets of carbon channel and fluorine channel are set at
15478.7Hz and −44701.0Hz, respectively.

(i) Initial state preparation, starting from the
equilibrium state, we first initialized the system into
the pseudopure state with the line-selective-transition
method[17]

𝜌pps =
1 − 𝜀

16
𝐼16 + 𝜀|0000⟩⟨0000|, (6)

where 𝐼16 represents the 16 × 16 unity operator and
𝑜 ≈ 10−5 is the polarization. The NMR spectrum
and experimentally measured density matrix of the
pseudopure state are shown in Fig. 4. To create the
ground state of the Hamiltonian 𝐻(𝜆, 𝛾), we designed
an adiabatic path starting with an initial Hamilto-

nian 𝐻0 =
𝑖=4∑︀
𝑖=2

𝜎𝑖𝑥, whose ground state is known as

|𝜑⟩ = 1
2 (|0⟩ − |1⟩)⊗3. In the experiment, |𝜑⟩ can be

easily prepared by the operation

𝑊1 =
1√
2

(︂
1 1
1 −1

)︂
⊗ 𝑒

𝑖𝜋
4

4∑︀
𝑖=2

𝜎𝑖
𝑦

. (7)

Notice that the ancilla qubit was prepared into the
superposition state 1√

2
(|0⟩+ |1⟩) by a Hadamard gate

at the same time.
Next we use the adiabatic evolution to drive the

system into the ground state of the Hamiltonian.
A time-dependent Hamiltonian 𝐻ad(𝑡) smoothly in-
terpolates between 𝐻0 and 𝐻(𝜆, 𝛾): 𝐻𝑠(𝑡) = [1 −
𝑠(𝑡)]𝐻0 + 𝑠(𝑡)𝐻(𝜆, 𝛾), where the function 𝑠(𝑡) varies
from 0 to 1 to parameterize the interpolation. If the
quantum system starts initially in its ground state of
𝐻(0) and the variation of 𝐻𝑠(𝑡) is adiabatic, the fi-
nal state will be close to the ground state of 𝐻(𝜆, 𝛾).

To ensure that the system is prepared in the ground
state of 𝐻(𝑔, 𝛾), the sufficiently slow variation of
𝐻ad(𝑡) means that the traditional adiabatic condition

| ⟨𝜓g(𝑡)|�̇�1e(𝑡)⟩
𝜀1e(𝑡)−𝜀g(𝑡) | ≪ 1 is fulfilled, where 𝜓g(𝑡) and 𝜓1e(𝑡)

refer to the instantaneous ground state and the first
excited state, respectively, and 𝜀g(𝑡), 𝜀1e(𝑡) are the
corresponding energies. An optimal function of 𝑠(𝑡)
determines the efficiency of initial state preparation.
To find the optimal interpolation function 𝑠(𝑡) for the
adiabatical evolution process, we rewrite the adiabatic
condition as⃒⃒⃒𝑑𝑠(𝑡)

𝑑𝑡

⃒⃒⃒
≪ |𝜀1e(𝑡) − 𝜀g(𝑡)|2⃒⃒⃒

⟨𝜓g(𝑡)|𝜕𝐻ad(𝑠)
𝜕𝑠

⃒⃒⃒
|𝜓1e(𝑡)⟩

= 𝜒, (8)

which defines the optimal sweep of the control param-
eter 𝑠(𝑡) with the scan speed 𝑑𝑠(𝑡)

𝑑𝑡 . The required time
dependence of 𝑠(𝑡) was numerically optimized for con-
stant adiabaticity parameter 𝜅 = 𝑑𝑠

𝑑𝑡 /𝜒. The time de-
pendence of 𝑠(𝑡) was chosen such that the adiabaticity
parameter 𝜅 < 0.25 at all times.
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Fig. 4. Experimental spectrum and density matrix of the
pseudopure state. (a) The 13C spectra after a 𝑒−𝑖𝜋

4
𝜎𝑦

readout pulse applied to the initial pseudopure state. (b),
(c) The real and imaginary parts of experimental density
matrix of the pseudopure state. The rows and columns
represent the standard computational basis in binary or-
der from |0000⟩ to |1111⟩. The fidelity is about 0.99.

In the experiment, we need to discretize 𝐻𝑠(𝑡)
into 𝐿-segment interpolated between 𝐻0 and 𝐻(𝜆, 𝛾):
𝐻𝑠[𝑙] = [1 − 𝑠(𝑙)]𝐻0 + 𝑠(𝑙)𝐻(𝜆, 𝛾), where the function
𝑠(𝑙) varies from 0 to 1. The evolution operator for
the 𝑙th step is given by 𝑒−𝑖𝜏𝐻𝑠[𝑙], where 𝜏 = 𝑇0/𝐿 and
𝑇0 is the total evolved time. The system will evolve
according to the unitary operator

𝑊2 =

𝐿∏︁
𝑙=1

𝑒−𝑖𝜏𝐻𝑠[𝑙]. (9)

We use a numerical procedure for optimizing the pa-
rameter 𝑠(𝑙) to make the operation 𝑊2 have the theo-
retical efficiency above 0.995. In experiment, the uni-
tary operators 𝑊1,2 were realized by shaped quantum
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control pulses found by the gradient ascent pulse en-
gineering (GRAPE) technique,[19] with the length of
each pulse being 25ms and the number of segments
being 2500. All the pulses have theoretical fidelities
over 0.99 and are designed to be robust against the
inhomogeneity of radio-frequency pulses.

(ii) Geometric phase generation, to perform the
adiabatic rotation of the Hamiltonian around the 𝑧-
axis, we discretize the continuous adiabatic passage
into 𝑀 segments with the instantaneous Hamiltonian

�̃�[𝑚] = (𝑒−
𝑖𝑚𝜋
𝑀

∑︀4
𝑖=2

1
2𝜎

𝑖
𝑧 )�𝐻(𝑔, 𝛾)(𝑒−

𝑖𝑚𝜋
𝑀

∑︀4
𝑖=2

1
2𝜎

𝑖
𝑧 ).

The system will evolve according to the unitary op-

erator 𝑈1 =
𝑀∏︀
𝑚=1

𝑒−𝑖𝑡�̃�[𝑚], where 𝑡 = 𝑇/𝑀 and 𝑇 rep-

resents the total evolution time. To ensure the success
of the adiabatic evolution in experiment, we use nu-
merical simulation to optimize 𝑀 and 𝑇 , thus the ef-
ficiency keeps above 0.995. For instance, at the point
(𝜆, 𝛾) = (1.55, 0.6) the parameters are optimized as
𝑀 = 30 and 𝑇 = 9.14.
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Fig. 5. (a), (d), (b), (e) Experimental density matrix before and after the adiabatic evolutions at the point
(𝜆, 𝛾) = (1.55, 0.6). (c), (f) Theoretical density matrix. The top and bottom denote the real and imaginary
components, respectively. Notice that the ancilla qubit is traced over.
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Fig. 6. (a) The experimental 13C spectra of the thermal
equilibrium state. The eight resonance lines are labeled by
the corresponding states of the other three qubits. (b), (c)
The experimental 13C spectra of the state before and after
the adiabatic evolutions at the point (𝜆, 𝛾) = (1.55, 0.6).

The second adiabatic passage 𝐶2 can be imple-
mented with the same method, and the corresponding

propagator is written as 𝑈2 =
𝑀∏︀
𝑚=1

𝑒−𝑖𝑡�̃�
′[𝑚]. Taking

consideration of the ancilla qubit, the control opera-

tions can be written as

𝑉𝑘(𝑘=1,2) = |0⟩⟨0| ⊗ 𝐼8 + |1⟩⟨1| ⊗ 𝑈𝑘, (10)

which can be achieved by using standard pulsed NMR
techniques in theory. However, in experiment direct
implementation of the gate operation 𝑉1,2 will need a
large number of single-qubit operations and free evolu-
tions, which will accumulate systematic errors and sig-
nificant decoherence effect. To overcome these prob-
lems and to reach a high-fidelity quantum coherent
control, 𝑉1 and 𝑉2 are realized by two GRAPE pulses
individually in experiment, with theoretical fidelities
over 0.99 and pulse length being 25ms. To examine
if the final state is still in the ground state, the quan-
tum state tomography technique could be used at the
beginning and end of the adiabatic evolutions. For
example, at the point (𝜆, 𝛾) = (1.55, 0.6) the exper-
imental fidelities before and after the two adiabatic
evolutions are about 0.96 and 0.93. The fidelity is
defined by 𝐹 =

Tr(𝜌exp𝜌th)√
Tr(𝜌2exp)Tr(𝜌

2
th)
, where 𝜌exp and 𝜌th

represent the experimentally measured density matrix
and the ideal expectation, respectively. Figure 5 gives
the corresponding tomography results of the reduced
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density matrices by partially tracing over the ancilla
qubit.[20]

(iii) Readout, the final state |Ψ2⟩ =
1√
2
(|0⟩ + 𝑒𝑖2𝛽gp |1⟩) ⊗ |𝜓(𝜋)⟩g will lead to a relative

phase shift between |0⟩ and |1⟩ of the auxiliary qubit.
Taking the input state |Ψ1⟩ = 1√

2
(|0⟩ + |1⟩) ⊗ |𝜓(0)⟩g

as the reference spectrum, we measure the rela-
tive phase information by the phase of the Fourier-
transformed spectra.[21] Figure 6 shows an ex-
ample of the phase measurement at the point
(𝜆, 𝛾) = (1.55, 0.6), in which Figs. 6(b) and 6(c) cor-
respond to the spectra of the state before and af-
ter the two adiabatic evolutions. In the situation
𝛾2 + (𝜆/2)2 < 1, the ground state of the system is
|𝜓(0)⟩g = sin( 𝜃+2 )|𝑊 ⟩001 + cos( 𝜃+2 )|111⟩. Four reso-
nance lines corresponding to this state are visible in
the NMR spectrum as shown in Fig. 6. In the initial
state the four lines appear in absorption, correspond-
ing to the reference phase (equal to zero). During
the adiabatic evolution, the system will acquire a
phase 2𝛽gp. By numerical analysis of the spectra, we
find 𝛽gp ≈ 10.8∘, which is close to the theoretically
expected value of 13.3∘.
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Fig. 7. Experimentally measured geometric phases (sym-
bols) for different anisotropy parameters 𝛾 and external
fields 𝜆, along with the theoretical expectations (solid
lines).

The experimentally measured geometric phases as
a function of 𝜆 are presented in Fig. 7. The symbols
show the experimental data points and the solid lines
represent the theoretically expected geometric phases
for different 𝛾. We find that the observed geometric
phases present an abrupt change near the energy-level
crossing point 𝑔 = 2

√︀
1 − 𝛾2, which agrees with the

theoretical expectation. As for the 𝑋𝑋 spin model
(i.e., 𝛾 = 0), the results of the experiment are close to
the theoretically expected value of zero.

In experiment, the average error is about 4∘, which
mainly comes from the imperfection of the pseudopure
state and the GRAPE pulses. Using the experimen-
tally reconstructed density matrix, we find that the
imperfection of pseudopure state contributes about 1∘

to the errors. Moreover, numerical simulations reveal

that the imperfection of the four GRAPE pulses im-
plemented on the ideal pseudopure state will produce
about 1∘ error in total. The duration of each exper-
iment is about 100ms, which is short compared with
the relaxation time 𝑇 *

2 ≈ 1.2 s. Therefore, the effect of
decoherence should be relatively small. The remaining
errors may result from the inhomogeneities of radio-
frequency fields, static magnetic fields and the varia-
tions of the chemical shifts.

In summary, using the NMR quantum simulator
we have observed the ground-state geometric phase of
the three-spin 𝑋𝑌 model. The experimental results
imply that the geometric phase can be used to charac-
terize the quantum phase transition of many-body sys-
tems with no need to undergo it. This work will con-
tribute to an improved understanding of the ground-
state properties and QPT for many-body quantum
systems. In future, this method could be extended
to larger and more general spin systems for studying
different types of phase transition.
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