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ABSTRACT
Mapping inland water bodies is important for relevant research fields
and water resource management. Satellite remote sensing is a routine
approach, and various remotely sensed images have been applied to
map waterlines. MODerate-resolution Imaging Spectroradiometer
(MODIS) images have advantages for waterline mapping in large
areas, thanks to its wide scan width and high frequent revisiting
period; however, the spatial resolution of MODIS images is too coarse
to map waterlines accurately. In this article, a super-resolution map-
ping (SRM) model was proposed for fine spatial resolution waterline
mapping with MODIS images. The proposed SRM model was directly
applied in the MODIS band 2 images, which have a fine spatial resolu-
tion and a high spectral separability between water and land. In order
to further take account of the spatial heterogeneity of endmembers,
the reflectance values of water and land were locally calculated for
each coarse resolution pixel. The proposed SRMmodel was assessed in
two study areas located in the Tibetan Plateau, China and Wisconsin,
United States, including water bodies with different areas and bound-
ary shapes. The results showed that the accuracy values of the pro-
posed SRMmodel using local endmembers were higher than those of
hard classification and the SRM model using average endmembers,
showing the effectiveness of the proposed model in fine spatial
resolution waterline mapping with MODIS imagery.
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1. Introduction

Inland water bodies are important parts of the Earth’s water resource and play a significance
role for global hydrological system. Satellite remote sensing can provide real-time informa-
tion, and is a routine approach to monitor inland water bodies (Crétaux et al. 2016; Alsdorf,
Rodríguez, and Lettenmaier 2007). In the last decades, a variety of remotely sensed images,
such as Landsat satellite images (Frazier and Page 2000; Pardo-Pascual et al. 2012; Yang
et al. 2015; Li et al. 2013b; Yamazaki, Trigg, and Ikeshima 2015), and MODerate-resolution
Imaging Spectroradiometer (MODIS) images (Gao, Birkett, and Lettenmaier 2012; Chen et al.
2013; Sun, Yu, and Goldberg 2011) have been widely applied in inland water bodies
monitoring.
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In general, there always is a trade-off between the spatial and temporal resolutions of
remotely sensed images (Priestnall and Aplin 2006). For example, the Landsat series
image can map waterlines at the spatial resolution of 30 m; however, it is hard to
monitor waterline changes rapidly because of its 16-day revisited time and the impact of
cloud. By contrast, the MODIS image has a wide scan width and can be acquired several
times every day, making it be suitable for timely water bodies monitoring in a large area.
However, its coarse spatial resolution limits the accuracy of waterline mapping. Given
the popular applications of MODIS imagery for global inland water bodies monitoring,
improving the accuracy of waterline mapping is becoming increasingly important.

Recently, super-resolution mapping (SRM) has been a promising method to
address the mixed pixel problem of remotely sensed images (Atkinson 2009; Ling
et al. 2013, 2014). SRM can produce a fine spatial resolution land cover map with the
input coarse spatial resolution image. SRM has been applied to improve the spatial
resolution of waterlines mapped with various remotely sensed images (Huang, Chen,
and Wu 2014; Li et al. 2015; Ling et al. 2008; Muslim, Foody, and Atkinson 2007;
Foody, Muslim, and Atkinson 2005). Specially, several studies have been applied for
MODIS images. For example, Muad and Foody (2012) fused multi-temporal sub-pixel
shifted MODIS to map lakes. Li et al. (2013a) used MODIS and Shuttle Radar
Topography Mission data to derivate 30-m-resolution water body maps. Wu and
Liu (2015) used a statistical regression method to downscale water inundation
maps. All these methods improved the accuracy of mapped waterlines; however,
the results were often heavily affected by water fraction errors brought by spectral
unmixing, and multiple images or additional dataset were needed in some situations,
making the application is inconvenient.

The goal of this article is to propose a method to map fine spatial resolution water-
lines from a single MODIS image by SRM without any other extra dataset. Different with
SRM methods that use fraction images as input, the image SRM model (Ling et al. 2012;
Li, Ling, and Du 2012), which can be applied on remote sensing imagery directly, was
applied. Moreover, in order to overcome the shortcoming of existing image SRM models
that endmember spectra are assumed to be invariant, the proposed SRM model extract
locally adaptive endmember spectra for each mixed pixel, by considering the spatial
relationship between water and land.

2. Study area and dataset

Two study areas were chosen in this study. Figure 1(a) shows the first area (125 km × 75 km)
located in the Tibetan Plateau, China. Figure 1(b) shows the second area (36 km × 36 km)
located in Wisconsin, United States. The original MODIS Level-1B file was used in order to
avoid the re-projection and resampling error in standard MODIS produces. For the first
study area, a cloud-free MODIS L1B swath from the Aqua satellite acquired on 25 August
2011, in which the region of interest is located close to the nadir location, was down-
loaded from http://reverb.echo.nasa.gov/reverb/. A Landsat Thematic Mapper (TM) image
acquired on the same day was downloaded from United States Geological Survey website
http://earthexplorer.usgs.gov/ and was used as the reference. For the second study area,
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the used MODIS swath was acquired on 14 September 2015, and a Landsat Operational
Land Imager image acquired on 15 September 2015 was used as the reference.

3. Methodology

3.1. MODIS band selection

In order to accurately extract fine spatial resolution waterlines from MODIS imagery by
SRM, the crucial issue is reasonably using spectral and spatial information included in the
image. From the spatial information, the MODIS bands 1 and 2 images have the spatial
resolution of 250 m, while the MODIS bands 3–7 images have the spatial resolution of
500 m. Previous studies have shown that coarser the spatial resolution of the input image,
worse the result of SRM. Then, only the first two bands are considered. For the spectral
information, the band which has a high spectral separability between water and land
should be used. Figure 2 shows the histograms of the MODIS bands 1 and 2 images in the
first study area. The MODIS bands 2 image has a higher spectral separability between
water and land than the MODIS bands 1 image, and is then more suitable for waterline
mapping. Therefore, the MODIS bands 2 image is used as the input of the SRM model,
because it has a fine spatial resolution and a high spectral discrimination, simultaneously.

Figure 1. The MODIS band 2 images (near infrared, 841–876 nm, 250 m) in two study areas.

Figure 2. The histogram of reflectance of the first two 250 m bands of MODIS imagery.
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3.2. Image-based super-resolution mapping

Let the coarse spatial resolution MODIS band 2 image be represented by an M� N array
with M and N denoting the width and length of the image, respectively. We aim to map
waterlines at the spatial resolution of Landsat images, that is, a spatial resolution of
30 m. Then, the zoom factor is set to be 8, and the resultant fine resolution water map
has 8�M� 8� N pixels. It is supposed that the reflectance value of water Rwater and the
reflectance value of land Rland are spatial invariant and have been known. The method
applied to estimate their actual reflectance values will be discussed in detail in the next
section.

Using the MODIS band 2 image as well as the water reflectance value and the land
reflectance value as input, the image SRM model proposed by Ling et al. (2012) was
used to produce the fine resolution waterline map x in a manner that minimizes an
objective function EðxÞ, which exploits both spectral and spatial information and is
expressed as:

Min EðxÞ ¼ EspectralðxÞ þ λEspatialðxÞ (1)

where EspectralðxÞ is the spectral term incorporating the spectral constraints provided by
the input image. EspatialðxÞ is the spatial term describing the spatial pattern of waterlines
in the final result. λ is the parameter used to balance the spectral term and the spatial
term.

The spectral term is based on the linear mixture model and can be mathematically
expressed as:

EspectralðxÞ ¼
XM
m¼1

XN
n¼1

ðRm;n � ðRwater � fm;nÞ � ðRland � ð1� fm;nÞÞ2 (2)

where m and n represent coarse resolution pixel coordinates; Rm;n is the reflectance
value of the coarse resolution pixel ðm; nÞ; fm;n is the water areal proportion in the pixel
ðm; nÞ and 1� fm;n is the land areal proportion in the pixel ðm; nÞ.

The spatial term is based on the maximal spatial dependence principle and can be
calculated as the sum of local spatial dependences for all fine spatial resolution pixels in
the final map:

EspatialðxÞ ¼
X8�M�8�N

i¼1

XW�W

j¼1

λi;jφi;j (3)

λi;j ¼ 1
Ω
expð�dði; jÞ=wÞ (4)

φi;j ¼ 1 if fine resolution pixels i and j are same classes
0 otherwise

�
(5)

where W is the size of neighbouring window, and W �W fine spatial resolution pixels
are considered as neighbouring pixels of the target pixel i. λi;j is the distance-dependent
weight determined by the distance dði; jÞ between fine spatial resolution pixel i and its
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neighbour pixel j. Ω is a normalization constant chosen in order that
PW�W

j¼1
λi;j ¼ 1. w is

the non-linear parameter of the distance-decay model.

3.3. Locally adaptive endmember selection

In the image SRM model, besides the MODIS band 2 image, the reflectance values of
water and land also need to be provided. In the simplest case, we can manually select
representative water and land pixels from the MODIS image, and assign their averages
as the reflectance values used in the model. However, it has been widely recognized that
the reflectance values of different pixels belonging to the same land cover class are
always much different, and the average reflectance values cannot fully explore the
variability of reflectance values. For example, as shown in Figure 3(a), the difference
between reflectance values of land pixels is easy to be noticed. In area A, the reflectance
value is obviously higher than that in the area B. Therefore, in order to address this issue,
the reflectance values of water and land are not assigned as the averages, but are locally
adaptively calculated for each pixel one by one.

In order to find the local adaptive reflectance values for each coarse spatial resolution
pixel in the MODIS band 2 image, pure water and land pixels are found at first. Generally,
for large water bodies such as lakes and reservoirs, water and land are adjacent, and the
boundary between them is the waterline. In this situation, pure water pixels are often
surrounded by mixed pixels, which are in turn surrounded by pure land pixels.
According to the histogram of reflectance of the MODIS band 2 image (Figure 2),
water and land pixels have two respective peaks, and mixed pixels are located in the

Figure 3. (a) The MODIS band 2 image of the lake indicated by the box in Figure 1(a), ‘A’ indicates
land pixels with high reflectance values and ‘B’ indicates land pixels with low reflectance values; (b)
extracted pure water pixels; (c) extracted mixed pixels; (d) reflectance values of land for extracted
mixed pixels; (e) the SRM result; (f) the Landsat TM band 5 image; (g) the extracted reference lake
from Landsat TM image; (h) the result of hard classification.
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middle of the two peaks. Compared with land, the reflectance value variability of water
is much less and extracting pure water pixels is expected to be more robust than
extracting mixed pixels and pure land pixels directly. Therefore, in the proposed
model, pure water pixels are first extracted by using a threshold that is determined
with the histogram, and then mixed pixels and pure land pixels are determined accord-
ing to their spatial relationship with pure water pixels.

Accurately determining pure water and land pixels from coarse spatial resolution
images directly is a hard task, and they are easy to be over-estimated or under-
estimated. Therefore, an iterative method is proposed to further refine the extracted
pure water and land pixels. In the proposed iterative method, firstly, pure water pixels
that are extracted by the threshold method are dilated using the mathematical mor-
phology method. The expanded pixels are considered as possible mixed pixels, and rest
pixels are considered as possible land pixels. Then, for each pixel, its neighbouring
window with a predefined size is extracted and its water and land reflectance values
are calculated from these neighbouring pixels. Specially, the reflectance values of water
and land are assigned as the average values of neighbouring pure water pixels and pure
land pixels, respectively. If no pure pixel can be found within the neighbouring pixel
window, the reflectance value of the closest pure pixel is set to be the corresponding
endmember reflectance value. Thirdly, using the estimated endmember reflectance
values, the image SRM model is applied to produce an intermediate fine spatial resolu-
tion map, from which pure coarse spatial resolution water and land pixels can be
determined directly. For each pixel, endmember reflectance values are re-estimated
within the neighbouring window and a new intermediate fine spatial resolution map
is produced. The iteration is repeated unless the estimated fine spatial resolution map
does not change any more, which is considered as the final result.

The proposed method is illustrated using the lake indicated by the box in Figure 1(a)
as an example. First, pure water pixels were extracted from the MODIS band 2 image
shown in Figure 3(a). According to the histogram, the threshold value was set to be 0.04,
and the resultant pure water pixels map are shown in Figure 3(b). Then, possible mixed
pixels were extracted by dilating water pixels, with the 5 × 5 matrix of ones dilate
template, and the result is shown in Figure 3(c). Using the extracted water pixels and
land pixels, the reflectance values of endmembers were estimated for each pixel, where
the size of searching neighbouring window was set to be 7 × 7. The reflectance values of
land for all mixed pixels are shown in Figure 3(d), and it was found that these land
reflectance values were much different. Using these estimated reflectance values, the
fine spatial resolution water map was produced and refined iteratively. The resultant re-
projected fine spatial resolution water map is shown in Figure 3(e).

3.4. Accuracy assessment

Landsat images were used as the reference to validate the performance of the proposed
approach. Water bodies were extracted by the threshold method and used as the
reference. For comparison, water bodies were also mapped from the MODIS images
by using the hard classification method, and the SRM model using the average reflec-
tance values. The user’s accuracy and the producer’s accuracy were calculated. The
overall accuracy, which is computed using the number of correctly classified pixels to
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the total number of all pixels assigned to water and actually belonging to water in the
image, was also used to assess different approaches quantitatively.

4. Results

The performance of the proposed SRMmodel was first visually compared. Figure 3(f) shows
the Landsat band 5 image and Figure 3(g) shows the extracted water map. Figure 3(h)
shows the result of hard classification after re-projection. Compared with the reference
high spatial resolution map, the result produced by hard classification could not represent
the lake accurately. Extracted waterlines had jagged boundaries because the map pro-
duced by hard classification was based on the coarse spatial resolution. By contract, the
map produced by the SRM model (Figure 3(e)) was more accurate. Extracted waterlines
became smoother, and were more similar with the reference.

Figure 4 shows the results in the second study area. Similarly, maps produced by both
SRM models had smooth boundaries and were superior to that produced by hard
classification. Compared with the reference (Figure 4(a)), many small water bodies
were not mapped by all these methods. The main reason is that no pure water pixels
can be extracted in these areas. Most large water bodies, which include at least one pure
water pixel, were extracted correctly. The result of the SRM model using local end-
members (Figure 4(b)) was more accurate than that of the SRM model using average
endmembers (Figure 4(c)). For example, in the enlarged area shown in Figure 4, two
water bodies were wrongly connected by the SRM model using average endmembers.
By contrast, using local endmembers in the SRM model can overcome this problem, and
two water bodies were mapped more accurate.

Quantitative statistics of maps produced by both SRM models and hard classification
are shown in Table 1. In both study areas, the overall accuracy values of the SRM model
using average endmembers were higher than those of hard classification. However, the
user accuracy values of the SRM model using average endmembers were lower than
those of hard classification. When the SRM model using local endmembers was used,
values of the user accuracy, the produce accuracy and the overall accuracy were all
higher than those of hard classification and the SRM model using average endmembers,
showing the effectiveness of the proposed model.

Figure 4. Water maps in the second study area produced by (a) the reference Landsat image; (b) the
SRM model using local endmembers; (c) the SRM model using average endmembers and (d) hard
classification.
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5. Conclusion

This article proposed a super-resolution waterline mapping model with MODIS imagery.
The MODIS band 2 image, which has a fine spatial resolution and a high spectral
separability between water and land, was used as the input image. In the SRM model,
the reflectance values of water and land are locally calculated for each pixel in order to
take account of the spatial heterogeneity. The experiment results showed that the SRM
model using local endmembers produced water bodies with a higher accuracy than
those produced by the SRM model using average endmembers and hard classification.
The results also indicted that when the size of water bodies was too small and no pure
water pixel existed, the water bodies could not be mapped correctly.

The proposed SRM model can use a single MODIS band to map waterlines at the sub-
pixel scale and does not need any other additional dataset, making the application
convenient. In practice, because MODIS has a wide-swath and a high temporal resolution,
it could be used for timely inland water bodies monitoring in a large area. Therefore,
applying the proposed SRM model on MODIS imagery provides an alternative solution
when other fine spatial resolution satellite images, such as Landsat images, are unavailable.
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