氧气对 MWPCVD 制备金刚石膜的影响

舒兴胜¹¹ 邬钦崇 梁荣庆 (中国科学院等离子体物理研究所 合肥 230031)

Influence of O₂ on Growth of Diamond Films by Microwave Plasma Chemical Vapor Deposition

Shu Xingsheng, Wu Qinchong, Liang Rongqing (Institute of Plasma Physics, The Chinese Academy of Sciences Hefei, 230031)

Abstract Diamond films were synthesized from $CH_4/H_2/O_2$ gas mixture by microwave plasma chemical vapor deposition (MW-PCVD) in a water-cooled reaction chamber. Influence of O_2 concentration on the film growth was studied with laser Raman spectroscopy and scanning electron microscopy (SEM). The results show that very low O_2 concentration markedly promotes diamond film deposition but slightly suppresses the anterphous carbon growth. Consequently, the content of anterphous carbon in the diamond films was drastically reduced. In contrast, higher O_2 concentration slows down the deposition of diamond more pronounced than that of amorphous carbon and results in higher content of amorphous carbon in the films. In addition, the existence of O_2 favorably affects the growth of diamond films with smaller grain sizes.

Keywords Microwave plasma chemical vapor deposition, Diamond films, O₂

摘要 在水冷反应室式微波等离子体化学气相沉积装置中以混合的 CH₄/H₂/O₂ 为反应气体,研究了 C₁ 浓度对制备金刚石膜的影响。实验发现,很低浓度的 O₂ 会显著促进金刚石的沉积,并稍稍抑制非晶 C 的沉积,固而沉积膜中非晶 C 的含量急剧下降;较高浓度的 O₂ 会同时抑制金刚石和非晶 C 的沉积,但由于抑制金刚石的作用更强烈,沉积膜中非晶 C 的含量反而有所升高。另外, O₂ 的存在,有利于沉积颗粒较小的金刚石膜。

关键词 微波等离子体化学气相沉积 金刚石膜 氧气 中**图分类号**: 0.253-9748(2001)04-0281-04

微波等离子体化学气相沉积(MWPCVD)法是一种新的薄膜制备工艺[11],具有无电极材料污染、反应基团密度高、活性强等优点,目前被特别应用于沉积金刚石膜的相关研究。MWPCVD法制备金刚石膜过程中使用最多的反应气体为 CH4/H5,混合物,为尽可能降低金刚石膜中非金刚石相 C 的含量、CH4,的浓度必须选择得很低,因此金刚石膜的沉积速率就非常小,故在用 CH4/H2,进行金刚石膜的风WPCVD制备时,就存在沉积速率与沉积质量难以兼顾的矛盾。在反应气体中加入适量的 O2,可以在一定程度上解决这个问题,在保证金刚石膜沉积

质量的同时,提高其沉积速率 然而在实验中发现,过量 O。的添加却存在相反的效果; 既抑制了金刚石膜的生长,又使沉积膜质量发生劣化。本文在较大的 O。浓度范围内,就加 O。对金刚石膜MWPCVD制备的影响进行了讨论。

1 实验过程

沉积金刚石膜实验在自行研制的水冷反应室式 MWPCVD 装置上进行 ⁴、反应气体是 CH₄/H₂/O₂ 混合物, 沉积基片为镜面抛光的 n 型(100)取向的单晶硅片。

收稿日期:2000-08-07

基金项目:863 计划资助项目(863-715-002-0020))

1)通信联系人

1.1 基片预处理

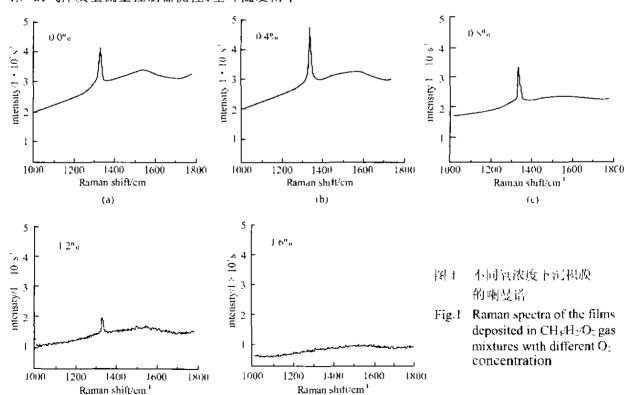
由于金刚石极难于在表面光滑的非金刚石衬底上形核、故在沉积之前、必须首先对硅基片进行预处理。基片预处理的具体步骤为;先用粒度为0.5 pm 的金刚石粉研磨,接着置于粒度为0.5 pm 的金刚石粉的酒精悬浮液中超声振动 30 min,然后取出用去离子水进行漂洗。基片经预处理后、金刚石的形核密度大大提高。

1.2 金刚石形核

鉴于在有 O。存在、反应气压较高或微波输入 功率较大的情况下、金刚石亦难于形核(有关讨论将 另作报道)、故形核时、O。浓度选为 ①、其他工艺参 数如下、气体流量 100 cm³/min(标准状态)、CH、浓 度 2%、反应气压 5.3 kPa、微波输入功率 1000 W、 基片温度 710 ℃, 形核时间 30 min。

1.3 金刚石膜沉积

选择 5 种 O₂ 浓度; 0,0.4%, 0.8%, 1.2%, 和 1.6%, 进行金刚石膜的沉积实验, 其他工艺参数固定如下: 气体流量 100 cm³/min(标准状态). CH₄ 浓度为 2%, 反应气压 8.0 kPa, 微波输入功率 1200 W, 基片温度 860 ℃. 沉积时间 12 b。


实验中、CH,、H,和O,的流量由北京建中机器 厂生产的气体质量流量控制器测控,基片温度由中

(d)

国科学院自动化研究所研制的 CIT 型红外测温仪测量。对沉积出的薄膜用 Spex-1403 型喇曼分析仪进行激光喇曼(Raman)谱分析,以确定沉积膜中是否含有金刚石及确定膜中非金刚石相 C 的种类及其含量的变化趋势。另外,分析时激光功率固定,选为 200 mW,于是在获得的沉积样品的 Raman 谱中,对应特征峰的强度具有可比性,特征峰越强,则说明引起该峰出现的物质的量越多。实验中,用 X-650型扫描电镜观察沉积膜表面的 SEM 形貌。

2 结果与分析

图 1 为不同 O。浓度下所沉积的 5 种样品膜的 Raman 谱、除图 I(e)之外、各谱图中均出现非常强 的位于 1332 cm ¹处的金刚石特征峰、表明在 O、O.4%、O.8%、1.2%的 O。浓度下、沉积温的样品均为金刚石膜。另外、各谱图中还出现十分明显的中心位于 1550 cm ¹处的不对称宽峰、这是由畸变的 动²和 动³杂化键混合构成的非晶 C 的特征峰、说明沉积出的金刚石膜中含有一定量的非晶 C。而在图 I(e)所示的 Raman 谱中、只出现非晶 C 的特征宽峰、几乎未出现金刚石的特征峰、表明在 1.6%的 O。浓度下沉积出的样品为非晶 C 膜

ret

2.1 金刚石膜的沉积速率与 O, 浓度的关系

比较图 1(a),(b),(c),(d),(e) 5 条谱线可以看出,当在 CH,/H₂ 中添加浓度为 0.4%的微量 O₂ 时金刚石峰大大增强;然而随着 O₂ 浓度的继续增加、金刚石峰又逐渐减弱,直至消失。这表明在很小的浓度下、O₂ 能促进金刚石的沉积、但在较大的浓度下,O₂ 对金刚石的沉积反而有阻碍作用、并且浓度越高、O₂ 对金刚石沉积的阻碍作用越大,直至完全抑制金刚石的沉积。

在 CH₄/H₂中,金刚石的沉积是等离子体激发生成的原子氢(H)、金刚石的前驱体 CH₃与基片表面相互作用的结果。等离子体中存在的大量原子 H 扩散到基片表面,引起基片表面发生脱 H 反应,从而生成表面悬挂键;

$$C_d - H + H \longrightarrow C_c \cdot + H_2$$

CH, 和悬挂键结合就完成了金刚石的一步生长[5]:

$$C_a \cdot + CH_3 \longrightarrow C_d \longrightarrow CH_3$$

当在 CH₄/H₂ 等离子体中添加微量的 O₂ 时,等离子体中会出现原子 O 和 OH 自由基¹⁵¹,在 O₂ 浓度很低时,微量的 O 和 OH 一方面引起 CH₄ 的进一步离解:

$$CH_4 + O \longrightarrow CH_3 + OH$$

 $CH_4 + OH \longrightarrow CH_3 + H_2O$

从而使 CH₃ 的浓度增加¹⁵¹,于是金刚石膜的沉积速率将随之提高。另一方面微量 OH 亦引起基片表面进一步脱 H:

$$C_d$$
— $H + OH \longrightarrow C_d \cdot + H_2O$

从而产生更多的表面悬挂键⁵¹, 更利于金刚石的沉积。这两方面的因素使得在很小的浓度下, O₂ 能促进金刚石的沉积。

然而,随着 O_2 浓度的增加, O_2 或 O 对 CH_1 的氧化反应:

$$CH_3 + O \longrightarrow HCHO + H$$

 $CH_3 + O/O_2 \longrightarrow CO/CO_2$

大大增强,CH。倾向于生成稳定化合物 HCHO,CO,CO,CO,于是 CH。浓度反而逐渐降低。另一方面当 O。浓度增加时,等离子体中 O 和 OH 的浓度亦随着上升,其对金刚石的刻蚀作用开始增强。,这两方面的因素促使过量添加的 O。反而会阻碍金刚石的沉积,甚至当 H,O,OH 等对金刚石的刻蚀速率达到金刚石的沉积速率时,还会出现金刚石的生长被完全抑制的现象。

2.2 (0) 浓度与非晶 () 伴随沉积的关系

比较图 1(a)、(b)、(c)、(d)、(e)可以看出、当在 CH,/H。反应气体中添加 0。时、随着 0。浓度的增加、非晶 C 特征宽峰的强度不断降低、表明 0。对非 品 C 的沉积有抑制作用、并且 0。浓度越大、这种抑制作用越强。

在 CH./H. 混合气体中、非晶 C 的沉积过程与 金刚石相似、主要由 C.H. 分子与基片表面经脱 H 反应而生成的表面悬挂键结合而成⁴:

$$C_{\zeta} \cdot + C_{2}H_{2} \cdot \longrightarrow C_{\zeta}C_{2}H_{2},$$

或
$$C_{\zeta} \cdot + C_{2}H_{2} \cdot \longrightarrow C_{\zeta}C_{2}H + H$$

当在 CH/H₂ 等离子体中添加 O₂ 时,随着 O₂ 浓度的增加,C₂H₂ 的浓度不断降低,于是非晶 C 的沉积速率不断减小¹²。

其次,原子日对非晶C有强烈的刻蚀作用,该刻蚀反应的部分产物亦为 C,H,^{E1}, C,H, 浓度的减小使该反应进行的程度更深,即 O, 浓度的增加亦促进了原子日对非晶C的刻蚀作用。

进而,等离子体中的 O₂, O, OH 对非晶 C 亦有直接的刻蚀作用², 并随着 O₂ 浓度的增加而增强上述三方面的因素使得 O₂ 对非晶 C 的沉积有抑制作用,并且,随着 O₂ 浓度的增加,这种抑制作用越来越强。

2.3 O, 浓度对金刚石膜中非晶 C 含量的影响

在沉积膜的 Raman 谱中, 若相对于金刚石特征峰的强度 I_a , 非晶 C 特征峰的强度 I_a , 越大, 即强度比 I_a , I_a 越大, 则表明沉积膜中非晶 C 的含量越高 T。 因此根据强度比 I_a , I_a 随 O_a 浓度的变化情况就能定性推断沉积膜中非晶 C 的含量与 O_a 浓度的关系。

图 2 给出了 O₂ 浓度分别为 0,0.4%、0.8%、1.2%时的 I₂/I₁值(O₂ 浓度为 1.6%时,由于金刚石峰强度 I₄几乎为 0, I₄/I₄值非常大,故未在图上标出)。结合图 1 和图 2 可以看出,当在 CH₄/H₂ 中加入 0.4%的微量 O₂ 时,金刚石峰明显增强、而非晶 C 峰稍稍减弱,于是 I₄/I₄值急剧降低,表明此时沉积膜中非晶 C 含量迅速减小。然而当 O₂ 浓度为 0.8%时、尽管非晶 C 峰强度明显减弱、但由于金刚石峰强度亦明显削弱,并更为剧烈、于是 I₄。 T₄值反而开始问升、说明此时沉积膜中非晶 C 的含量开始增大。进一步增加 O₂ 浓度、由于金刚石峰的强度仍比非晶 C 峰更剧烈地减弱、I₂/I₄值继续增

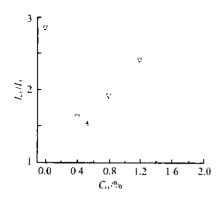


图 2 非晶 C 峰与金刚石峰强度比与 C₂ 浓度的关系 Fig. 2 Ratios, I_{ac}/I_{c} , of amorphous carbon's scattering intensity to that of diamond plotted as a function of O_2 concentration

大,说明沉积膜中非晶(的含量继续上升。

由此可见,在很低的 O_2 浓度下,由于 O_2 会显著促进金刚石的沉积,并稍稍抑制非晶 C 的沉积、因而沉积膜中非晶 C 的含量急剧下降。而在较高的 O_2 浓度下,尽管 O_2 会同时抑制金刚石和非晶 C

的沉积,但由于抑制金刚石的作用更强烈,因此沉积 膜中非晶 C 的含量反而有听升高

2.4 O₂ 浓度对金刚石膜 SEM 形貌的影响

图 3 给出了不同 O₂ 浓度下所沉积的金刚石膜的 SEM 照片。从 SEM 形貌可以看出,O₂ 浓度为 0 时,沉积的金刚石膜中颗粒大小几乎一致,平均大约为 2.3 µm,而尺寸小于 1 µm 的颗粒则很少出现(图 3(a))。 O₂ 浓度为 0.4%时,沉积膜中出现很多尺寸在 1.5 µm 左右的小颗粒。另外与 O₂ 浓度为 0 时沉积的金刚石膜相比,尽管其中的大颗粒尺寸稍稍增大(2.5 µm),但数量却明显减少(图 3(b)),因此颗粒的平均尺寸有所减小。当 O₂ 浓度增加到 0.8%时,一方面,沉积膜中无论大颗粒(2.1 µm)还是小颗粒(0.8 µm),其尺寸都明显减小;另一方面沉积膜中大颗粒数目急剧减少,小颗粒数目急剧增多(图 3(e))。表明 O₂ 的添加,有利于沉积颗粒较小的金刚石膜,并且 O₂ 浓度越大,这种倾向越明显。

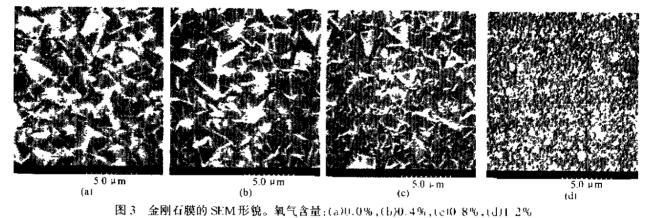


Fig. 3 SEM images of the diamond films deposited at the gas mixture with different (\(\frac{1}{2}\) concentration:

(a)0.0%, (b)0.4%, (c)0.8%, (d)1.2%

在 O。浓度较低时,由于沉积膜中仍存在较多的大颗粒,因此小颗粒的出现使得沉积膜中颗粒大小离散性加大,即较低浓度的 O。不利于沉积颗粒大小一致的金刚石膜。

不过进一步增加 O_0 浓度到 1.2% 时, 沉积膜中颗粒尺寸又趋于一致 $(0.3~\mu m)$, 极少出现较大的颗粒 $(0.6~\mu m)$, 另外颗粒尺寸进一步减小, 表明在 O_2 浓度较高的条件下, 可沉积出颗粒尺寸既小又一致的金刚石膜。

3 结论

在用 MWPCVI) 法制备金刚石膜时, O, 的添加

对金刚石膜的沉积质量有很大的影响。

- (1)在很小的 O₂ 浓度下,O₂ 能促进金刚石的沉积,但在较大的 O₂ 浓度下,O₂ 对金刚石的沉积反而有阻碍作用,并且浓度越高,O₂ 对金刚石沉积的阻碍作用越大。
- (2)O₂ 对非晶 C 的沉积有抑制作用,并且 O₂ 浓度越大,这种抑制作用越强。
- (3)在 CH₄/H₂ 中加入 O₂,随着 O₂ 浓度增加, 沉积膜中非晶 C 的含量先不断降低,到达谷点后又 开始不断上升,直至金刚石的生长被完全抑制。
 - (4)O₂的添加有利于沉积颗粒较小的金刚石膜。 (下转第290页)

的特征发射。

如图 1 所示,在 Eu(DBM)₂(AA)phen 分子里存在乙烯基,乙烯基具有化学活性,容易和其它有机物结合。正是由于它的存在,在薄膜器件里,Eu(DBM)₂(AA)phen/TPD(或 PVK)的接触处的异质结效应降低,所以在低电压下,电流上升得很快,但是,随着电压的升高,其间内部电场增强,在强电场的作用下,有机膜接触处的异质结性增强,这样载流子能够注入到 Eu(DBM)₂(AA)phen 膜层里形成激子,如前所述,激子复合时在器件内部进行能量传递,激发 Eu 离子使其进行特征发射,这就是实验中所观察到的"突然发光"现象的原因。

5 结论

稀土金属Eu的有机配合物Eu(DBM)2(AA)-

phen 具有良好的光致发光性能、可以用于电致发光薄膜的研究。用 Eu(DBM)₂(AA)phen 作发光层、用 TPD 和 PVK 分别作空穴传输层所制作的有机薄膜器件的电致发光颜色为红色、为金属 Eu 离子 Eu³⁺ 的特征发射、器件的电致发光存在着"突然发光"的过程、它们的电致发光的亮度和效率是相对较高的。

参考文献

- 1 Tang C W, Vanslyke S A, Organic Electroluminescent Diodes, Appl Phys Lett, 1987, 51:913
- 2 慈云祥、周天泽、分析化学中的配位化合物、北京、北京大学出版社、1986、275~281
- 3 周公度、段连运 结构化学基础 北京:北京大学出版社、1995、220~305

(上接第 284 页)

参考文献

- Kamo M, Sato Y, Matsumoto S et al. Diamond Synthesis from Gas Phase in Microwave Plasma. J Crystal Growth, 1983,62(3):642
- 2 Kawato T, Kondo K 1. Effects of Oxygen on CVD Diamond Synthesis. Jpn J Appl Phys. 1987, 26(9):1429
- 3 Saito Y, Sato K, Tanaka H et al. Diamond Synthesis from Methane-bydrogen-water Mixed Gas Using a Microwave Plasma. J Mater Sci., 1988, 23:842
- 4 吕庆敖,邬钦崇,微波等离子体化学气相沉积装置的工作

原理.真空与低温、1997、3(2):74

- 5 Frenklath M, Wang H. Detailed Surface and Gas-phase Chemical Kinetics of Diamond Deposition Phys Rev B, 1991,43(2):1520
- 6 Fan W.Y., Ropeke J., Davies P.B. Effect of Oxygen on Methyl Radical Concentrations in a CH₄/H₂ Chemical Vapor Deposition Reactor Studied by Infrared Diode Laser Spectroscopy. J. Vac Sci. Technol. A, 1996, 14(5): 2970.
- 7 Shroder R. E., Nemanich R. J. Analysis of the Composite Structures in Diamond Thin Films by Raman Spectroscopy Phys Rev B, 1991, 41(6):3738