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Abstract
Motivated by the discovery of the iron-based superconductors, we present the theoretical results
on the superconducting phase diagram, the temperature-dependent Fermi surface structures in
normal state and the angle-resolved photoemission spectroscopy (ARPES) character of
quasiparticles of the two-orbital t–t ′–J–J ′ model. In the reasonable physical parameter region
of LaFeAsO1−x Fx , we find the superconducting phase is stable, and the pairing symmetry is
weakly anisotropic and nodeless dx2−ηy2 + Sx2 y2 -wave, qualitatively in agreement with the
ARPES experiments in iron pnictide superconductors. Nevertheless, the two ratios of the
energy gaps to Tc deviate from the ARPES data, suggesting that a more elaborate theoretical
model is needed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Following the discovery of the first high-transition temperature
superconductivity in copper-based compounds two decades
ago [1], a second class of high-transition temperature super-
conductors has been recently reported in iron pnictides [2–6],
in which the transition temperature Tc is as high as 56 K [7].
So far, intensive experimental [8–15] and theoretical [16–21]
efforts have been devoted to understanding the nature of the
new superconductors. Similar to cuprates, layered iron pnic-
tides consist of conducting FeAs layers and ReO layers (Re
represents rare earth elements, such as La, Ce, Pr, Nd, Sm, etc)
which provide carriers for the FeAs layers. The ground state
is an antiferromagnetic spin-density-wave (SDW) phase in un-
doped parent compounds LaOFeAs and BaFe2As2; the SDW
order is suppressed by substituting a few per cent of O with F or
Ba with K, and the new compounds enter the superconducting

3 Author to whom any correspondence should be addressed.

(SC) phase below Tc. On the other hand, iron pnictides differ
from cuprates in many aspects. Firstly, the undoped iron oxyp-
nictides with the SDW order are poor but metallic conductors,
rather than the Néel antiferromagnetic insulators in undoped
cuprates; secondly, there exist well-defined and complicated
Fermi surfaces (FS) in the normal state in NdFeAsO1−xFx [22]
and Ba1−x Kx Fe2As2 [23–25], significantly different from the
situation in cuprates; and so on. These facts suggest that
the ground states and the nature of SC of iron pnictides and
cuprates are profoundly different.

To date, first-principles electronic structure calcula-
tions [16, 26–30] have shown that, in iron pnictides, Fe 3d or-
bits contribute the major spectral weight close to the Fermi en-
ergy; and the FS of LaFeAsO consists of two hole-type circles
around the � point and two electron-type co-centered ellipses
around the M point [31]. This implies that the multi-orbital
character is dominant in the FeAs SC, in contrast to the single-
orbital character in cuprates. Since the electron–phonon me-
diated pairing mechanism was precluded by Boeri et al [27],
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the electronic and spin fluctuation mechanisms have been pro-
posed as the driving force of the SC pairing [18, 19, 21, 32].
Presently, a few tight-binding multi-orbital models, such as the
two-orbital models [33–35], the three-orbital ones [19] and the
four-orbital ones [36], even the five-orbital models [17, 37],
have been proposed to reproduce the FS character and the
band structures near the Fermi level EF in ReFeAsO1−x Fx

and Ba1−x Kx Fe2As2. Among these models, the two-orbital
t–t ′–J–J ′ model [33, 34] is minimal and can reproduce the
key characteristics of iron pnictides, such as the complicated
FS topology, the multi-orbital degeneracy of the Fe 3d elec-
trons [33, 34] and the band structures near EF, as well as the
stripe antiferromagnetic or SDW ground state [38].

In this newly discovered SC, the most intriguing is-
sues are the pairing mechanism and pairing symmetry.
To date, various possibilities of SC mechanism and pair-
ing symmetry in iron-based SC have been proposed the-
oretically [18, 19, 21, 32, 33, 39–45] and experimen-
tally [22, 24, 25, 46, 47]. Theoretically, the proposed SC pair-
ing symmetries range from spin singlet d-wave [48, 49], s-
wave [21, 32] or a mixture of Sx2 y2 -wave and dx2−y2 -wave [39]
to spin triplet p-wave [18, 19]. Experimentally, the nature of
the SC gap observed is also very different from author to au-
thor and from sample to sample, ranging from one gap [8]
to two gaps [25, 46, 50], and from isotropic gap [24, 25] or
anisotropic full gap [22] to line node [46]. Among these, the
angle-resolved photoemission spectroscopy (ARPES) experi-
ments [22, 24, 25], a kind of direct measurement of the quasi-
particle spectra and the SC gaps, observed that the SC iron
pnictides have two gaps. Both of the gaps are nodeless around
their respective FS sheets. This is also different from the singly
gapped cuprates. These disagreements among the experimental
data and the theoretical results on the SC nature of iron pnic-
tides show that more efforts are needed to unveil the mysterious
nature of SC in iron pnictides.

To date, many experiments and theories have demon-
strated that the electronic correlation in iron pnictides is
strong, implying that iron pnictides are strongly correlated sys-
tems [51–56]. On the one hand, the ARPES experiment in
Ba0.6K0.4Fe2As2 showed that the bandwidths near the Fermi
surface display strong narrowing by a factor of 2 and strong
mass renormalization by a factor of 4 [52], indicating a strong
correlation effect; and the resonant excitations observed in the
inelastic neutron scattering [51] and the anomalous electrical
resistivity and thermopower in transport [54] are common ev-
idence of strongly correlated superconductors. On the other
hand, the dynamic mean-field theory has suggested that un-
doped iron pnictide is strongly correlated and close to the edge
of a metal–insulator transition [55]; and the LDA + DMFT
calculation based on the Monte Carlo solver by Anisimov et al
[56] showed that the electron correlation plays an important
role in the density of states near EF and the band narrowing.

Then a question naturally arises as to why the parent iron
pnictides display metallic behavior, rather than Mott insulators
as in high-Tc cuprates. We attribute this to the multi-orbital
character and the absence of the Jahn–Teller effect. In undoped
cuprates, the Jahn–Teller distortion removes the degeneracy
of the twofold eg orbit in copper and leads to an effective

single-orbital model. In contrast, the multibands involved
in the formation of the Fermi surfaces in iron pnictides are
almost degenerate, so the low-energy process in iron pnictide
SC should be described by a multi-orbital model. When
the Hund’s coupling JH is not large, the orbital fluctuation
considerably suppresses the critical value of the intra-orbital
Coulomb interaction, Uc, for the metal–insulator transition in
the multi-orbital systems, in comparison with that in the single-
orbital systems. For example, on the triangular lattice, the
critical value Uc = 12 in the single-orbital system [57, 58],
while, Uc = 18.2 in the two-orbital system [59]. Thus, for
two systems in the strong correlation regime, the single-orbital
system may be a Mott insulator, as seen in the parent phases of
cuprates. However, the multi-orbital system may be a metal, as
seen in the parent phases of iron pnictides.

To develop qualitative insight into the underlying physics,
in this paper, we start with the minimal two-orbital t–t ′–
J–J ′ model [34, 60], which has the same topology as the
FS and the band structures of the iron-based SC, and obtain
the mean-field phase diagram of the t–t ′–J–J ′ model, the
quasiparticle spectra in normal state and SC phase, and the
ARPES manifestation of the SC gaps. Our results demonstrate
that the pairing symmetry dx2−ηy2 + Sx2 y2 wave is stable
in the reasonable parameter region for iron pnictides; two
SC gaps qualitatively agree with the observations in ARPES
experiments. However, a quantitative comparison between
theory and experiment shows a more elaborate theoretical
model is needed. The rest of this paper is organized as follows:
we describe the t–t ′–J–J ′ model Hamiltonian and the self-
consistent mean-field solution in section 2 and present the
theoretical results on the SC phase diagram, the temperature
evolution of the FS and SC gaps, and the ARPES spectra of the
quasiparticle in sections 3 and 4 is devoted to the summary.

2. Model Hamiltonian and formulae

We describe the low-energy processes in iron pnictides with
the two-orbital t–t ′–J–J ′ model:

H = Ht−t ′ + HJ−J ′, (1)

on a quasi-two-dimensional square lattice. This Hamiltonian
consists of the tight-binding kinetic energy Ht−t ′ and the
interaction part HJ−J ′ . The kinetic energy term is

Ht−t ′ =
∑

kσ

[(εkxz − μ)c†
k1σ ck1σ + (εkyz − μ)c†

k2σ ck2σ

+ εkxy(c
†
k1σ ck2σ + c†

k2σ ck1σ )]
with the notations

εkxz = −2t1 cos kx − 2t2 cos ky − 4t3 cos kx cos ky,

εkyz = −2t2 cos kx − 2t1 cos ky − 4t3 cos kx cos ky,

εkxy = −4t4 sin kx sin ky,

where c†
iασ creates a dxz (α = 1) or dyz (α = 2) electron with

orbit α and spin σ at site Ri . The intra-orbital components
of the nearest-neighbor (NN) hopping integrals tαβ

i j are t11
x =

2
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t1 = −1, and t22
x = t2 = 1.3. The components of the

next-nearest-neighbor (NNN) hopping integrals, t ′αβ

i j , are t3 =
t4 = −0.85 [34]. μ is the chemical potential. Throughout
this paper, all the energies are measured in units of |t1|. The
carrier concentration is equal to 0.18, which is a typical doping
concentration in the iron-based SC [61].

The interaction term contains an NN and an NNN
antiferromagnetic spin coupling:

HJ−J ′ = J
∑

〈i j〉αβ

(�Siα · �Sjβ − 1
4 niα · n jβ)

+ J ′ ∑

〈〈i j〉〉αβ

(�Siα · �Sjβ − 1
4 niα · n jβ) (2)

where J and J ′ are the NN and the NNN spin coupling
strengths, respectively. �Siα is the spin operator of the electron
in the α orbit at Ri and niα is the particle number operator. The
orbital indices α and β run over 1 and 2. Formally, the t–t ′–J–
J ′ model can be derived from the two-orbital Hubbard model
in the atomic limit [60], which is believed to describe the SDW
ground state in undoped iron-based oxypnictides [38, 62].

Notice that the dxz and dyz orbits are spatially anisotropic,
in other words, the intra-orbital hopping integral along the
x direction is inequivalent to that along the y direction for
each orbital, as one can see from |t1| �= |t2|. Due to the
inequivalence of the different directions in different orbits,
the amplitude of the SC gap of the local pairing along the
x direction may be not equal to that along the y direction
in each orbit. Thus, the single-orbital d-wave or s-wave SC
order parameter, in which the SC gap has fourfold symmetry
of rotational invariance in the xy plane, is not suitable for
describing the pairing symmetry of the intra-orbital SC order
parameters in this multi-orbital system. Considering all of the
possible kinetic correlations and the SC pairings for the NN
and NNN sites along different directions, we introduce the
following order parameters:

Pα
x/y = 〈c†

iασ c jασ 〉, ( j = i ± x̂/ŷ)

P1/2
xy = 〈c†

i1σ c j2σ 〉, ( j = i ± x̂/ŷ)

Pα
3 = 〈c†

iασ c jασ 〉, ( j = i ± (x̂ ± ŷ))

P3/4
xy = 〈c†

i1σ c j2σ 〉, ( j = i ± (x̂ ± ŷ))

�1α
x/y = J 〈c†

iα↑c†
jα↓〉, ( j = i ± x̂/ŷ)

�2α
x±y = J ′〈c†

iα↑c†
jα↓〉, ( j = i ± (x̂ ± ŷ)).

(3)

Here Pα
x/y and P1/2

xy (Pα
3 and P3/4

xy ) are the kinetic average of
the NN (NNN) intra-orbital and inter-orbital hopping integrals.
These terms are neglected in Seo et al’s mean-field ansatz [39].
�1α

x/y (�2α
x±y ) is the mean-field amplitude of the local NN

(NNN) pairing order parameter in the α orbit. The inter-
orbital pairing parameter 〈c†

i1↑c†
j2↓〉 is very small and hence is

neglected [39].
With these parameters, one can decouple the interaction

terms in equation (2) within the framework of the self-
consistent mean-field approximation and obtain the mean-field
Hamiltonian, HMF = ∑

k 	(k)† A(k)	(k) + const. Here

	(k) = (ck,1,↑, c†
−k,1,↓, ck,2,↑, c†

−k,2,↓):

A(k) =
⎛

⎜⎝

εk1↑ − μ �∗
1(k) εk12 0

�1(k) −εk1↓ + μ 0 −εk12

εk12 0 εk2↑ − μ �∗
2(k)

0 −εk12 �2(k) −εk2↓ + μ

⎞

⎟⎠ ,

(4)
and const is the collection of all the constant energy terms
from the mean-field decoupling. The modified intra-orbital and
inter-orbital kinetic energy is

εk1σ = εkxz − 2J (P1
x cos kx + P1

y cos ky)

− 4J ′ P1
3 cos kx cos ky − 4(J + J ′)(〈n1σ 〉 + 〈n2σ 〉)

εk2σ = εkyz − 2J (P2
x cos kx + P2

y cos ky)

− 4J ′ P2
3 cos kx cos ky − 4(J + J ′)(〈n1σ 〉 + 〈n2σ 〉)

εk12 = εkxy − 2J (P1
xy cos kx + P2

xy cos ky)

− 4J ′(P3
xy cos(kx + ky) + P4

xy cos(kx − ky)).

(5)

The SC order parameter �α(k) of each orbital channel in
the momentum space is

�α(k) = −4(�1α
x cos kx + �1α

y cos ky)

− 4(�2α
x+y cos(kx + ky) + �2α

x−y cos(kx − ky))

= −4�1α
x [(cos(kx) ± η1α cos(ky))

+ ξα(cos(kx + ky) ± η2α cos(kx − ky))]. (6)

Thus the SC pairing symmetry of the α orbit is determined
by (cos(kx)±η1α cos(ky))+ξα(cos(kx+ky)±η2α cos(kx−ky)).
Where ξα = �2α

x+y/�
1α
x , the anisotropic factors, η1α =

|�1α
y /�1α

x | and η2α = |�2α
x−y/�

2α
x+y |, are positive. ± denotes

the relative phase of �1α
y with respect to �1α

x or �2α
x−y to �2α

x+y .
To characterize the complicated SC order parameters in

different parameter regions, we define the Sx2+ηy2 wave or
dx2−ηy2 wave as the SC symmetry when �α ∝ cos(kx) +
η cos(ky) or �α ∝ cos(kx) − η cos(ky). It reduces to the
conventional Sx2+y2 wave or dx2−y2 wave SC symmetry at
η = 1. We also define the Sηx2 y2 wave or dηxy wave as the
SC symmetry when �α ∝ cos(kx + ky) + η cos(kx − ky) or
�α ∝ cos(kx + ky) − η cos(kx − ky). It reduces to the familiar
Sx2 y2 -wave or dxy -wave SC symmetry at η = 1.

Diagonalizing the matrix A(k) by an unitary transforma-
tion U(k), U(k)† A(k)U(k), and minimizing the free energy of
the system with respect to these parameters in equation (3), one
obtains the self-consistent equations:

n(1/2)↑ = 1

N

∑

k,α

U∗
(1/3)α(k)U(1/3)α(k) f (Eα(k))

n(1/2)↓ = 1

N

∑

k,α

U∗
(2/4)α(k)U(2/4)α(k)(1 − f (Eα(k)))

P1/2
x/y = 1

N

∑

k,α

cos kx/yU∗
(1/3)α(k)U(1/3)α(k) f (Eα(k))

P1/2
3 = 1

N

∑

k,α

cos kx cos kyU∗
(1/3)α(k)U(1/3)α(k) f (Eα(k))

P1/2
xy = 1

N

∑

k,α

cos kx/yU∗
1α(k)U3α(k) f (Eα(k))

3
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P3/4
xy = 1

N

∑

k,α

cos(kx ± ky)U
∗
1α(k)U3α(k) f (Eα(k))

�
1(1/2)

x/y = J

N

∑

k,α

cos kx/yU∗
(1/3)α(k)U(2/4)α(k) f (Eα(k))

�
2(1/2)
x±y = J ′

N

∑

k,α

cos(kx ± ky)U
∗
(1/3)α(k)U(2/4)α(k) f (Eα(k))

(7)

where Eα(k) is the Bogoliubov quasiparticle eigenvalues
obtained from HMF, and f (E) is the Fermi–Dirac distribution
function, f (E) = 1/(1 + exp(E/kBT )). Uαβ(k) denotes the
(α, β) element of the 4 × 4 unitary matrix U(k).

With these self-consistent equations, we could obtain not
only the ground state phase diagram, but also the temperature
dependence of the FS in the normal state and the quasiparticle
spectra in the normal and SC states. In fact, the intra-orbital
hopping integral of the dyz orbit is symmetric with that of
the dyz orbit under a coordinate transformation (x, y, z) ←
(y, x, z). Due to this symmetry, the SC order parameters
�2(k) can be obtained from �1(k) under the coordinate
transformation. Therefore, we mainly focus the properties
of the SC order parameters �1(k) in the first orbit dxz .
Nevertheless, the global SC pairing order parameter of the two-
orbital t–t ′–J–J ′ model should be rotationally symmetric in
the xy plane, as we can see from the Hamiltonian equation (1),
and later in figure 3.

3. Theoretical results and discussions

In this section, we first present the phase diagram of the t–t ′–
J–J ′ model and discuss the SC pairing symmetry. Then we
compare the theoretical results with the ARPES experimental
observations.

The J ′–J phase diagram of the t–t ′–J–J ′ model at carrier
concentration x = 0.18 is shown in figure 1(a). Different
from Seo et al’s phase diagram [39], we obtain five stable
phases in the present model. The first one is a normal phase
in the small J and J ′ region, denoted by N in figure 1(a).
Obviously, when the superexchange coupling J and J ′ are
too small to provide the SC pairing glue, the kinetic energy
is dominant, and the electrons stay in the normal state, which
is analogous to the single-orbital t–J model [63]. Among the
four SC phases mediated through the spin fluctuations, a large
NN spin coupling J and a small NNN spin coupling J ′, or
J � J ′, favor the Sx2+ηy2 (here and below η1 = η) SC
phase with the gap �1(k) ∝ cos(kx) + η cos(ky), where the
pairing symmetry is the combination of the Sx2+y2 -wave and
the dx2−y2 -wave components, as seen in the shadowed region
with no line in figure 1(a). The Sx2+ηy2 symmetry arises from
the major contribution of the NN spin coupling J term. The
NNN spin coupling contributes very little to �1(k) due to
J � J ′.

On the other hand, small NN spin coupling J and large
NNN spin coupling J ′ favor the Sx2 y2 SC phase with the
symmetry �1(k) ∝ cos(kx + ky) + cos(kx − ky), as seen
in the shadowed region with the vertical line in figure 1(a),
which is mainly attributed to the NNN spin coupling. In this

Figure 1. (a) SC phase diagram of the t–t ′–J –J ′ model for the dxz

orbit at the carrier concentration x = 0.18. N denotes the normal
state, the other four phases are SC with different pairing symmetries.
(b) The energy difference �E between Seo et al’s [39] and our
ground states versus the NNN spin coupling J ′ at different J ,
J = 1, 2 and 3, respectively.

situation, �1(k) is almost isotropic in the xy plane due to the
isotropy of the dominant NNN hopping integrals in the xy
plane. The SC order parameter becomes complicated when
J and J ′ compete with each other. As seen in figure 1(a),
the pairing symmetry of the SC phase in the shadowed region
with the transverse line of figure 1(a) is the combination of the
Sx2+ηy2 and the Sx2 y2 components, and the symmetry of the SC
phase in the shadowed region with the slash of figure 1(a) is
the combination of the dx2−ηy2 and the Sx2 y2 components.

It is interesting to ask in which region the realistic
parameters of the iron pnictides fall. From the first-
principles calculations, Ma et al suggested that J ≈ J ′ ≈
0.05 eV/S2 [62], where S is the spin of each Fe ion. When the
hopping integral |t1| ≈ 0.1–0.5 eV, such a set of parameters
falls in the yellow region in figure 1(a), implying that the FeAs
SC should have the dx2−ηy2 + Sx2 y2 SC symmetry and the
anisotropic factor η is not equal to 1. Also, some other authors
suggested other parameters for the FeAs SC, for example, Seo
et al [39] proposed that J = 0.25 and J ′ = 0.5; and Si et al
[38] thought that J > J ′/2. This shows that further effort is
needed to obtain more accurate interaction parameters in iron
pnictides.

4
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Figure 2. The Fermi surface topology in the large Brillouin zone at
different temperatures: T = 0.15 (solid line), 0.2 (dashed line) and
0.7 (dot-dashed line). Dashed square outlines the reduced Brillouin
zone. The theoretical parameters: J = 0.3, J ′ = 0.7; the other
parameters are the same as those in figure 1.

We notice that Seo et al’s J–J ′ parameters also fall in
the yellow region in figure 1(a), i.e. the SC pairing symmetry
is dx2−ηy2 + Sx2 y2 type, rather than the δsSx2 y2 ± δddx2−y2

SC type with η = 1 (here δs and δd are the weights of the
Sx2 y2 wave and the dx2−y2 wave component, respectively). In
figure 1(b), we compare the ground state energy difference
between theirs and ours, and find that the ground state energy
in the present SC phase, Eη, is lower than the Ed in Seo et al’s
paper [39]. Figure 1(b) shows the J ′ dependence of the ground
state energy difference, �E = Ed − Eη, between the two
SC phases at different J . It is clearly that, over a wide J–
J ′ range, the dx2−ηy2 + Sx2 y2 phase is always more stable than
the δsSx2 y2 ± δddx2−y2 phase. Thus the dx2−ηy2 + Sx2 y2 wave is
most likely the SC pairing symmetry in iron pnictide SC.

To concretely discuss the properties of the SC state and
the normal state, and compare the theory with the ARPES
experimental results, in what follows we focus on two sets of
typical superexchange coupling parameters, case I: J = 0.3
and J ′ = 0.7, i.e. the NN spin coupling is weaker than the
NNN coupling; and case II: J = 0.7 and J ′ = 0.3, i.e. the NN
spin coupling is stronger than the NNN coupling. In both of
the situations, the parameters fall in the shadowed region with
the slash in figure 1(a), so the SC pairing symmetries are the
dx2−ηy2 + Sx2 y2 wave. We present the temperature evolution of
the FS in the normal state in figure 2 for case I with J = 0.3
and J ′ = 0.7. The FS topology for case II with J = 0.7
and J ′ = 0.3 is almost identical to figure 2, and hence is not
plotted. From figure 2, one sees that, in the large Brillouin
zone (BZ) associated with the present t–t ′–J–J ′ model with
one Fe atom per unit cell, there exist two hole-like FS sheets
(α1 and α2) around the � point and two electron-like FS sheets
(β1 and β2) around the M point. This is in agreement with the
ARPES experiment [25] and consistent with the first-principles

Figure 3. The angle dependence of the SC gaps near the small hole
FS (α1) and the large hole FS (α2) around the � point in the polar
coordinate system. The doping concentration x = 0.18. Theoretical
parameters: case I, J = 0.3, J ′ = 0.7 (open squares and circles); and
case II, J = 0.7, J ′ = 0.3 (solid squares and circles).

electronic structures calculations [16, 26–30]. Interestingly,
the hole-like FS sheets expand a little with the increasing
temperature; in contrast, the electron-like FS sheets shrink
considerably. This indicates that the electron-like FS sheet may
play a more important role in the low-energy processes in finite
temperatures.

The ARPES experiment provides direct information about
the quasiparticle spectra in the normal state and the pairing
symmetry of the SC gaps in the SC state. In this paragraph,
we present our theoretical results and compare them with
experimental observation. Figure 3 shows the SC gap
characteristics of the t–t ′–J–J ′ model for the two sets of
parameters in cases I and II. In both cases, two distinct gaps
open on the hole-like FS sheets, α1 and α2, as seen in figure 2.
The presence of two different SC gaps demonstrates the nature
of a multi-gap SC in the t–t ′–J–J ′ model. Our results show
that, for case I, the SC gap structure exhibits a nearly isotropic
symmetry with invisible anisotropy, as seen in figure 3. A large
SC gap opens on the small hole FS sheet (α1) and a small SC
gap opens on the large hole FS sheet (α2). For case II, the
angular dependence of the SC gaps is visible, exhibiting weak
spatial anisotropy. The oscillation amplitude is about 16%.
However, the amplitudes of the SC gaps on the different FS,
α1 and α2, are in contrast to these in case I, i.e. a small SC gap
opens on the small FS sheet (α1) and a large SC gap opens on
the large hole FS sheet (α2).

One finds that, in case I, the anisotropy of the SC gaps
is very weak, consistent with Zhou et al’s [24] and Ding
et al’s [25] ARPES data. In case II, the SC gaps with
about 16% anisotropy are in agreement with the ARPES
experiment by Kondo et al [22]. Note that, in case II, such
spatial anisotropy is still under the resolution of the ARPES
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Figure 4. The temperature dependence of the SC gaps near the small
hole FS (α1) and the large hole FS (α2) around the � point along the
θ = 0◦ direction in the polar coordinate system. The theoretical
parameters are the same as those in figure 3.

experiment and hence does not conflict with Zhou et al’s [24]
and Ding et al’s [25] observation. It is the dx2−ηy2 +Sx2 y2 -wave
pairing symmetry that leads to weakly anisotropy and nodeless
SC gap structures, although the dx2−ηy2 -wave pairing has nodes
in the line cos kx −η cos ky = 0 and the Sx2 y2 -wave pairing has
nodes in the lines kx = ±π/2 or ky = π/2. The mixed SC
pairing symmetry, dx2−ηy2 +Sx2 y2 , diminishes the nodes, so the
system exhibits weakly anisotropic and nodeless s-wave-like
SC gaps on the FS sheets.

Figure 4 shows the temperature dependence of the
SC energy gaps on the two hole-like FS sheets along
the θ = 0◦ direction in the polar coordinate system
for the two sets of parameters. With the increasing
temperature, the two SC energy gaps decrease monotonically
and vanish simultaneously, as observed in the ARPES
experiments [24, 25]. Obviously, the SC–normal state
transition is a second-order phase transition. For case I, the
magnitude of the gap on the small FS (α1) is larger than
that on the large FS (α2) in the � point, in agreement with
the ARPES results [24, 25]. In contrast, for case II, the
magnitude of the gap on the small FS (α1) is smaller than
that on the large FS (α2) in the � point, which disagrees with
the experiment [24, 25]. These indicate that the first set of
parameters in case I is more suitable for describing the FeAs
SC.

From the present theoretical results in figure 4, we find
that, in case I, the ratios of the SC energy gaps to the transition
temperature are 2�1/kBTc = 3.6 for the large gap and
2�2/kBTc = 2.9 for the small gap, respectively. The ratio
of the large SC gap around the small FS sheet to the small
one around the large FS sheet gives rise to �1/�2 = 1.25.
These theoretical results significantly deviate from the ARPES
experimental data [25]. In case II, �1/�2 = 2, in agreement

with [23]: however, the ratios of these two gaps with respect to
Tc, 2�α/kBTc, also strongly disagree with [23]. These facts
demonstrate that there exist some essential shortages in the
present t–t ′–J–J ′ model or in the self-consistent field method.
One also notices that, for case II, the decline of the two SC gaps
with increasing temperature is not smooth, which comes from
the fact that the different local pairing order parameters, �1α

x/y

and �2α
x±y , interplay with each other, reflecting the anisotropic

pairing symmetry in case II.
From the preceding discussions, we find that many

unusual properties in the normal state and the SC phase of
newly discovered FeAs SC could be qualitatively interpreted
in the two-orbital t–t ′–J–J ′ model, showing that, to some
extent, this model is a good approximation to describe the
iron pnictide SC. Within this scenario, the mixing pairing
symmetry with the dx2−ηy2 + Sx2 y2 wave contributes to the
weakly anisotropic and nodeless SC gaps. Such a pairing
symmetry assembles the characteristics of the usual d-wave
and s-wave, and hence shares the properties of the usual d-
wave SC, like cuprates, and the s-wave SC, such as MgB2 [24].
Nevertheless, to quantitatively compare the theoretical results
with the experimental observation, more subtle band structures
of the t–t ′–J–J ′ model are expected.

We notice that Chubukov et al [64] suggested another
possibility for the pairing symmetry of the iron pnictide SC.
They found that, in the itinerant and weak-interacting multi-
orbital model, the extended s-wave symmetry is stable in
the SC ground state, similar to the Sx2 y2 pairing state in the
sufficiently large J ′ parametric region in our phase diagram.
Such a resemblance is not surprising since the fermiology and
the fluctuation wavevector in the reciprocal space, i.e. the
magnetic excitations in our scenario and the orbital excitations
in Chubukov et al’s, predetermine the same pairing symmetry,
as pointed out by Mazina et al [65]. However, one should
keep in mind that our pairing mechanism is different for theirs.
In their scenario, the pairing mechanism is mediated through
the intra-band pairing hopping term, not necessarily due to
spin fluctuations in our theory. So, there is a great difference
between their theory and ours.

Also, one should keep in mind that a completely
quantitative comparison between the theory and experiment is
still difficult, since the present two-orbital t–t ′–J–J ′ model
only describes the topology structure of the FS of the FeAs
SC, and does not contain all the details of the FS and the band
structures in iron pnictide compounds. On the other hand, in
the realistic material, the spin couplings, J and J ′, might be the
strong asymmetry [66, 67], which is not taken into account in
the present t–t ′–J–J ′ model. Hence, we expect that the more
elaborate tight-binding parameters and anisotropic coupling J–
J ′ model will improve the present results in a future study.
Also the present constrained mean-field approximation needs
to be further improved.

4. Summary

In summary, starting with the two-orbital t–t ′–J–J ′ model,
we obtain the mean-field superconducting phase diagram at
the carrier concentration x = 0.18 and find four stable
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superconducting phases with different pairing symmetries. For
the possible LaO1−xFx FeAs parameters, a nodeless and weakly
anisotropic dx2−ηy2 + Sx2 y2 -wave gap structure emerges. Due
to the multi-orbital character, the ratio of the gaps open on
the small hole Fermi surfaces to that on the large hole Fermi
surfaces disagrees with the angle-resolved photoemission
spectra data. A more elaborate theoretical model is expected
for describing the nature of FeAs superconductors.
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