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Abstract: Inferring gene regulatory networks (GRNs) from microarray expression data are an important but challenging
issue in systems biology. In this study, the authors propose a Bayesian information criterion (BIC)-guided sparse
regression approach for GRN reconstruction. This approach can adaptively model GRNs by optimising the /;-norm
regularisation of sparse regression based on a modified version of BIC. The use of the regularisation strategy ensures
the inferred GRNs to be as sparse as natural, while the modified BIC allows incorporating prior knowledge on
expression regulation and thus avoids the overestimation of expression regulators as usual. Especially, the proposed
method provides a clear interpretation of combinatorial regulations of gene expression by optimally extracting
regulation coordination for a given target gene. Experimental results on both simulation data and real-world
microarray data demonstrate the competent performance of discovering regulatory relationships in GRN reconstruction.

1 Introduction

Since genome-wide gene interactions maintain and mediate the
activity of cells in various environments, modelling gene
regulatory networks (GRNs) plays crucial roles in elucidating
cellular mechanisms at the molecular level and especially in
explaining the causality of gene expression and discovering
regulatory pathways [1, 2]. Many computational methods have
been proposed to find the regulatory relationships among genes
from various types of omics data [3]. However, reverse
engineering of GRN from gene expression data still remains a
challenging problem both computationally and biologically.

Difficulties in reconstructing GRNs mainly lie in three aspects:
non-linearity of regulatory interactions, imbalance between high
dimensionality (gene variables) and small sample, as well as high
noise and outliers [4]. A successful GRN inference method needs
to deal with these issues well. However, most of existing methods
have their pros and cons. For example, many mutual
information-based methods previously proposed to measure mutual
information between genes have the capability of modelling
non-linear dependency between genes [5-7]. However, they fail to
detect the combinatory regulations involving two or more
transcriptional factors (TFs). To cope with the problem, many
Bayesian network (BN)-based methods have been proposed
[8-10]. The main idea behind these BN methods is to estimate the
joint probability distribution of a target (TG) gene and its TFs
based on gene expression profiles. The resulted GRN can be
represented as a joint probabilistic graph that essentially accounts
for the regulatory combinations of TG genes [11]. Other strategies
of GRN reconstruction include Pearson correlation, random forest
[12-14] and analysis of variance [15]. To our knowledge, few
methods can efficiently deal with complex regulatory patterns, e.g.
feed-forward loops, and adaptively model GRNs with a reasonably
sparse network topology [8].

Recently, regression-based methods have been recognised as
powerful players for GRN reconstruction due to their clear
interpretation and relationship discovery power [8, 16, 17]. A basic
assumption behind them is that the expression levels of a TG gene
can be viewed as a linear combination of its TFs. Since real GRNs
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are sparse, a challenging issue for the regression-based methods is
how to infer a relatively small number of TFs from a large number
of candidate TFs. Toward this problem, some researchers employed
regularised regression strategies, e.g. lars [18, 19] and group Lasso
[20]. A representative sample is the Gene Expression Modeling
using Lasso (GEMULA) method, proposed by Geeven et al. [19].
In brief, GEMULA assesses a wide range of candidate regression
models and selects the optimal one subject to the prior knowledge
of TF-TG gene promoter sequence binding. Haury er al. [18]
proposed another kind of lars-based method named Trustful
Inference of Gene REgulation using Stability Selection (TIGRESS).
TIGRESS integrates lars with a stability estimator and employs an
area under stability selection curve-based measure to recognise the
true TFs for a TG gene. Liu et al. [20] proposed a Huber group
Lasso method for GRNs reconstruction, which uses Huber loss
function instead of squared error loss function as usual to optimise
GRN reconstruction. Though many regression-based methods have
been proposed, the challenges of the topological complexity of
GRN and the imbalance of samples and genes still remain unsolved.
It is mandatory and challenging to choose suitable regularised
parameters when applying /;-regularised regression models. Though
model selection criteria such as Bayesian information criterion
(BIC) [21] and Akaike information criterion (AIC) [22] can be used,
substantial evidences have been witnessed that BIC or AIC often
overestimates the number of regulators [23]. The complexity of
GRNs also makes it even harder to choose the parameter. To deal
with these problems, we here propose a novel method, named
Bic-guided sparse regression (BicGSR), which can adaptively model
GRNs based on a modified BIC (mBIC)-GSR model. In brief,
BicGSR decomposes GRN reconstruction into a series of sub-tasks,
and each sub-task recognises the coordinated regulatory mechanism
of a single TG gene based on an mBIC-GSR model. By collecting
the results from each sub-task, the whole GRN can be finally
assembled via a fusion strategy. To evaluate the proposed method,
we generated simulation datasets and collected two real datasets
about Escherichia coli and Saccharomyces cerevisiae from the
Dialogue for Reverse Engineering Assessments and Methods
(DREAM) [24], and the experiential results demonstrate the
superior performance of the proposed method for GRN inference.



The remainder of this paper is organised as follows. In Section 2,
we introduce the theoretical framework of BicGSR based on spare
regression models used for modelling the regulations in a GRN,
and present a mBIC, which is specific to a sparse regression
model for inferring GRN biologically meaningfully. In Section 3,
we evaluate the performance of BicGSR on simulation and real
datasets and compare it with several previous methods. Section 4
concludes this paper.

2 Methods

In general, regulations between a TG gene and its TFs can be depicted ina
sparse linear regression model (or a Lasso regression model) and the
sparsity parameter plays important roles in efficiently recovering the
regulatory relationships. On the basis of the sparse regression model,
the proposed method models GRNs by employing an mBIC criterion
to optimise the sparsity parameter as a model selection problem. The
mBIC can avoid overestimating TFs for a given TG gene. Fig. 1
presents the flowchart of the proposed method, in which the whole
GRN inference problem is decomposed into a series of sub-problems
each aiming to identify TFs for a TG gene and then a regulatory matrix
R is summarised from all the sub-problems to form the whole GRN.

2.1 Sparse linear regression model for GRNs

A GRN is a collection of genes and their regulators including RNA,
protein and complexes of these that interact with each other and with
other substances in the cell to govern the cell behaviours. Two most
important types of regulators are TFs and microRNAs (miRNAs)
[25]: TFs regulate genes at the transcriptional level by binding to
proximal or distal regulatory elements within gene promoters,
whereas miRNAs act at the post-transcriptional levels of genes
[26, 27]. In this paper, we focus on inferring TF—gene or TF-TF
interactions based on sparse regression models.
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Fig. 1 Flowchart of BicGSR. BicGSR is a method that uses the ‘Lasso’
technology integrated with a modified version of BIC (mBIC) to adaptively
model the relationships between TG genes and their candidate regulators.
First, the problem of GRN inference is decomposed into different
sub-problems; second, in each sub-problem the true regulators of a TG
gene are recognised based on Lasso regression, and mBIC. Finally, the
regression coefficients from all the sub-problems are collected to form a
whole gene regulatory matrix for inferring GRN
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Suppose that a vector ¥ = (v, 5, ..., yN)T represents the
expression profile of a TG gene in N samples in a GRN and
X, = (x’i, xé, ey x;'\,)T represents the expression profile of the ith
@i=1, ..., p) candidate TF in the N samples. The following linear
regression model holds

Y=X -B+¢
X=X, X,, ..., X)) 1)
e=(g, &, ..., &y) ~N(, *I,)
where = (B], ey Bp) represents the unknown regulatory

coefficients of the p TFs on the TG gene, € = (g, &, ..., sN)T
represents the measurement noise with a A/(0, a1 ) distribution
and I is an identity matrix of size N.

Generally, the regulatory coefficients can be solved using the
following optimisation problem:

min|[¥ — X - ;= minlel3 &)

However, considering that a TG gene is likely regulated by a small
number of TFs, most of the coefficients in the vector B8 should be
zero in reality. Therefore, one needs to control the sparsity of 8
for an efficient inference of GRN topology. Though the /y-norm
H B“O is ideal to be taken as a sparsity penalty term for (2), a
non-convex optimisation problem could be raised that is hard to
solve in practice [28]. For this reason, we alternatively employ the
l;-norm of B as a sparsity penalty term, which has been proven to
result in an approximate solution of that by the /y-norm [29].
Accordingly, the optimisation problem in (2) can be transformed
into a /;-norm-constrained optimisation problem

minjlel} st |B] <1 3)

where € R" represents the sparsity parameter that controls the
sparsity of 8 and consequently the resulted GRN. In the context of
this paper, we call the model exhibited in (3) a Lasso regression
model. The closer the parameter ¢ is to 0, the fewer the non-zero
elements of B is. Equation (3) also indicates that different 8 can
be obtained with different ¢ parameterised, meaning that 8 can be
viewed as a function of the sparsity parameter 7. Accordingly, an
accurate inference of GRNs depends on the proper choice of ¢
specific to the problem concerned.

2.2 Modified BIC

BIC, which was first introduced by Schwarz [21, 30, 31], is a
criterion for model selection in data analysis. Most real-world
networks are sparse including GRNs. The original BIC has the
tendency to overestimate the degree of model complexity, i.e. the
number of TFs of a TG gene, in the context of regression-based
GRN inference. For improvement, we modify BIC by imposing
different prior probabilities on models with different levels of
complexity and present an mBIC as follows.

According to Bogdan et al. [23] and Claeskens and Hjort [32],
maximising the posterior probability of a candidate model M given
data (X, Y) is equal to maximising

In(P(X, Y|M)) + In(m(M)) “4)

where 7(M) represents the prior probability of the model M and
P(X, Y|M) represents the conditional probability of the observed
data (X, Y) given the model M.

Suppose that g(ﬁ) represents the prior probability density
function of the parameter B and f (X, ¥|B) defines the probability
density of the data given . According to the definition of
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conditional probability, we can get

PX, YIM):jf(X, Y|B)e(B)dB ®)

Since (X, Y|B)g(B) > 0, (5) can be rewritten as

PX., YIM) = jf(x, YIBe(B) dB
©)
- jexp [/ (X. ¥IB)e(B)] dB

We denote O = In[f(X, ¥|B)g(B)]. Suppose that O reaches its
maximum at (3, then we can approximate Q based on Taylor
expansion

0= In[f (X, YIB)g(B)] + (B~ B)Vs0l5
1 ~ -
+5(B—B) Hy(B— B) )
where H is a |B] x || matrix such that H,, = [a2Q/(a/3ia/3j)]‘~
and |B| represents the dimension of B. Since @ reaches itz

maximum at B, the Hessian matrix H} is negative definite. Then
approximate P(X, Y|M)

P(X, Y|M) :jexp {Q|,~; +(B~BV,0l;
- 36 By - | a
Since Q reaches its maximum at B, we see that V0|5 = 0. Hence
P(X, Y|M)~exp(Qlp) j exp{— %(B—B)T(—Hg)(ﬁ—ii)} dB-P)

®)

Since the matrix —H B is symmetric, we can diagonalise it as
—Hﬁ:STAS. Let us make a substitution (B—B)=S"U to
evaluate the integral above. The Jacobian matrix J(U)=
AB—PB);/oU,;=J(U)=S". Thus detJ(U)=1 and

P(X, Y|M)~exp(Qlp) J exp{—%UTAU} (detJ(U))dU
\B\
—exp<Q|B)jexp{ 22)\ Uz}dU )

where A; is the jth eigenvalue of the matrix —Hp. According to
Laplace’s method [33, 34], we rewrite (9) as follows

18] 2Bl
PX, YM)~exp(0) )H ——f (X YB)e(B) 7 (10
B
il
and, taking logarithm of (10), we get
2InPX, ¥Y|M)=21Inf (X, Y|B)+2Ing(B) +|B|In2m)

(~5)

If setting g(ﬂ) = 1, an uninformative flat prior of density of 8 [35],

+1n (11)
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we have
‘—HB‘=N|B|‘13( (12)

where N is the number of samples in the data and 1 is the Fisher
information matrix for a single sample. Substituting (12) into (11),
we can have

In P(X, Y|M)~1nL(i3\X, Y)—|2£|1nN (13)
According to (13), (4) can be rewritten as
InL(BIX, ¥) - |B | In N + In(m(M)) (14)

Considering that gene networks are sparse, we assume that the
models with less complexity should have a larger prior probability
[23, 36, 37]. The prior probability of M is defined as follows

(M) =ulPl(1 — =Pl (15)

where u is a small positive constant, p is the maximum dimension of
candidate models, i.e. the number of candidate TFs. By substituting
(15) into (14) and omitting the constant terms, we can get

8]

InZ(BIX, ¥)~ Tl inN + |ﬂ|ln<1Tuu> (16)

The formulation in (16) is called the mBIC estimate for the candidate
model M. Equation (16) indicates that mBIC has a more additional
term |B|In(u/(1—u)) relative to the original BIC, which can help
avoid the overestimation of the regulators for a given TG gene.
This term will be negative for #<0.5 and positive for u>0.5,
and degrades mBIC to the basic BIC at u=0.5. In this paper, we
set u=3/p, where p is the total number of TFs, according to Zak
et al. [36].

2.3 mBIC-guided sparsity parameter selection

Suppose B, to be the solution for (3) corresponding to a given ¢, the
likelihood function of B, can be written as

= () (- P50

() o 5E) o

Let &, be the number of the non-zero elements in 3, substituting (17)
into (16), we can obtain the mBIC estimate as

2
mBIC, = — % [N In (270%) + —”22}'2 +k In N + 2k 1n<_1 ; ”)}
(18)

By varying ¢ in a range of t € [0, +o0), we can obtain a solution path
{B.}. Along the solution path, an optimal regulatory coefficient can
be finally determined as that corresponds to the maximum of mBIC.

3 Results
To evaluate the performance of BicGSR, we generated two types of

simulation data and collected two real gene expression datasets.
Simulation data I as linear data were generated by revising the



Table 1 Performance comparison
methods on simulation data |

of BicGSR and three previous

Table 3 Performance comparison of BicGSR and the previous methods
on E. coliand S. cerevisiae datasets

Network size Methods AUROC AUPR
30 BicGSR 0.994 0.989
SA’s 0.642 0.192

SSM 0.481 0.091

naive LASSO 0.950 0.935

GL 0.490 0.207

ARACNE 0.520 0.184

300 BicGSR 0.985 0.955
SA’s 0.541 0.089

SSM 0.497 0.063

naive LASSO 0.923 0.755

GL 0.49 0.020

ARACNE 0.49 0.020

1500 BicGSR 0.947 0.956
SA’s 0.473 0.009

SSM 0.532 0.051

naive LASSO 0.913 0.820

GL 0.50 0.004

ARACNE 0.51 0.005

procedure depicted in [5]: first, creating background networks with
the average in-degree of a TG gene set to be around three; second,
simulating the expression levels of the regulators by randomly
sampling from a Gaussian distribution and the expression levels of
the TG genes as a linear combination of their regulators; third,
adding Gaussian noise to the expression levels of TG genes so that
the signal-to-noise ratio was 10%. Considering three background
networks of sizes 30 (10 regulators), 300 (100 regulators) and 1500
(500 regulators), we finally synthesised three expression datasets
with 10, 15 and 20 samples, respectively. Simulation data II as
non-linear data were downloaded from DREAM4 (http:/www.the-
dream-project.org/). There are totally five different network
topologies used, denoted as NET1-5, each consisting of 100 genes.
All of the five networks are transcriptional regulatory sub-networks
of E. coli and S. cerevisiae. All the expression data in the five cases
were generated with 100 samples using GeneNetWeaver [38]. In
addition, two real gene expression datasets, which are about two
model organisms E. coli. and S. cerevisiae, were downloaded from
DREAMS  (http:/www.the-dream-project.org/) for real-world
evaluation. The former dataset contains 4511 genes, of which 334
are TFs, and 805 chips, whose background regulatory network
consists of 2066 experimentally verified TF-TG gene interactions,
while the latter consists of the expression profiles of 5950 TG genes
and 333 TFs in 536 samples, whose background regulatory network
consists of 3940 verified TF-TG interactions.

Two measures, i.e. area under receiver operating characteristic
(AUROC) curve and area under precision—recall (AUPR) curve,
were used for algorithm evaluation. ROC curves plot false positive
rates versus true positive rates while PR curves plot P against
R. Five popular methods including naive Lasso [29], Algorithm
for the Reconstruction of Accurate Cellular Networks (ARACNE)
[39], partial correlation-based graphical Lasso (GL) algorithm [40],
Salzman and Almudevar (SA) [41] and state space model (SSM)
[42] were adopted for comparison. Compared with BicGSR, naive
Lasso fixes the sparsity parameter in (3) to be fgeq=¢€" 3,
ARACNE measures expression similarity between a gene and its
candidate TFs based on mutual information for GRN construction,
and GL models GRN based on Gaussian graphical model and

Methods E. coli S. cerevisiae
AUROC AUPR AUROC AUPR
BicGSR 0.623 0.023 0.549 0.003
naive Lasso 0.609 0.017 0.519 0.002
GL 0.553 0.018 0.502 0.004
ARACNE 0.572 0.069 0.504 0.018

employs a graphical Lasso algorithm for the sparse inverse
covariance matrix estimation. The SA’s method uses a BIC-based
scoring procedure in combination with graphical models for
modelling GRNs, which derives an independent estimate of the
parametric complexity of the model and then modifies the BIC
score. SSM relies on SSMs and uses the original BIC to determine
the number of hidden variables in SSMs for inferring GRNs. All
the experiments were conducted on a personal computer with Intel
Xeon 2.13 GHz and 12.0 GB random access memory.

3.1 Simulation data |

Results of BicGSR, naive Lasso, GL and ARACNE on simulation data
I are shown in Table 1. From Table 1, we can clearly see that BicGSR
outperforms all the previous methods with highest AUROC and
highest AUPR in all the data scenarios. Compared with naive Lasso
which fixes the sparsity parameter, BicGSR can optimise the
parameter to adaptively model GRNs for a TG gene, which makes it
more effective and more efficient in varying scenarios. When
network size is very large (e.g. 500), BicGSR still performed well
but all of the previous methods degraded much, showing that
BicGSR is insensitive to network size and can deal with the
complexity of regulatory networks better than the previous methods.

3.2 Simulation data Il

Table 2 reports the results of BicGSR and the previous methods on
simulation data II. Similar to those for simulation data I, BicGSR
surpasses naive Lasso with higher AUROC values on the
simulation data II, showing the improved ability. BicGSR also
obtained higher AUROC values than those by the two other
methods, GL and ARACNE, on the datasets NET3-5, confirming
the superior performance of BicGSR in reconstructing large
regulatory networks. The degraded performance of ARACNE on
AUROC scores maybe because of the ignorance of combinatorial
regulations compared with BicGSR.

3.3 Real gene expression data

We next evaluated our method BicGSR on two real-world gene
expression data about E. coli and S. cerevisiae. Table 3 reports the
AUROC and AUPR results of the four methods on the two
datasets. From this table, it can be clearly seen that BicGSR
obtained larger AUROC values than those of all the three previous
methods, showing that the superior performance of BicGSR on
real-world data.

Table 2 Performance of GRN reconstruction algorithms on simulation data Il

Methods NET1 NET2 NET3 NET4 NET5
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
BicGSR 0.611 0.138 0.615 0.125 0.695 0.225 0.678 0.208 0.713 0.215
SA’s 0.591 0.219 0.574 0.281 0.647 0.226 0.638 0.239 0.643 0.193
SSM 0.489 0.001 0.492 0.002 0.499 0.001 0.482 0.001 0.463 0.000
naive Lasso 0.559 0.102 0.573 0.107 0.574 0.185 0.600 0.172 0.538 0.123
GL 0.652 0.170 0.636 0.173 0.674 0.297 0.678 0.240 0.691 0.218
ARACNE 0.612 0.203 0.573 0.187 0.667 0.397 0.644 0.345 0.653 0.363
IET Syst. Biol., pp. 1-8
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Fig. 2 Inferred structures of two modules from the E. coli gene network by different methods. Solid arrows represent true regulatory interactions correctly

recognised and dashed arrows represent the missing regulatory interactions

a Network structure estimated by BicGSR

b Network structure estimated by naive Lasso
¢ Network structure estimated by ARACNE
d Network structure estimated by GL

For further evaluation, we did structure analysis of the GRNs
inferred by BicGSR, naive Lasso, ARACNE and GL for the
real gene expression data. For fair comparison, all the four
GRNs were formed to have the same number of edges by
taking different thresholds of regulation coefficients for the
different methods. Consider the E. coli case and take two hub
modules, one simple and another more complex, from the whole
gene network. We compare the structures of the two hubs
recovered by BicGSR, naive Lasso, ARACNE and GL, as
shown in Fig. 2. From Fig. 2, we can clearly see that BicGSR
successfully recovered almost all the regulations (10/12),
irrespective of the simple or complex module, while the three

IET Syst. Biol., pp. 1-8
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previous methods, naive Lasso, ARACNE and GL, correctly
recognised only 4, 7 and 4 regulations, respectively. The genes
in the two modules are correlated with three biological
processes: transcription of genetic information from DNA, ferric
uptake and cytochrome assembly [43-45]. The product of gene
‘rpoH’ is an RNA polymerase subunit which is a kind of heat
shock sigma factor. The product of gene ‘fur’ is the ferric
uptake regulator protein which functions as a repressor on ferric
iron uptake. The product of gene ‘ccmA’ is the cytochrome c
biogenesis protein which is used for cytochrome assembly in
bacteria. These results indicate that our method can uncover real
GRNs more accurately than the previous methods.



Table 4 Running time of the six methods on simulation data | and Il

Networks Methods

BicGSR SA’s SSM naive Lasso GL ARACNE
Simulation data |
30 2.962s 0.733s 1.356 s 0.157 s 0.351s 0.020 s
300 47.489 s 31.561s 1.786 min 2.306 s 4.501 min 0.0392's
1500 21.753 min 247.147 min 16.945 min 46.766 s 498.331 min 23.430 s
Simulation data Il
NET1 1.010 min 1.463s 41.381s 17.940 s 2.668 s 0.034s
NET2 1.108 min 1.557 s 38.379s 18.253 s 2.742s 0.015s
NET3 58.417 s 1.671s 37.715s 16.276 s 3.769 s 0.031s
NET4 1.075 min 1.592s 34.852's 20.012 s 2.986 s 0.028 s
NET5 1.005 min 2.228s 35.598 s 18.713 s 4.484 s 0.027 s

3.4 Running time comparison of algorithms

We have compared the running time among the six methods on
simulation data I-II, as shown in Table 4. Owing to the additional
model selection procedure, BicGSR generally spent more running
times than the other algorithms, which can be thought of to be a
tradeoff with the higher GRN inference accuracies (Tables 1-3).
We also noted that for the simulated data I with 1500 genes, the
running time of GL sharply increased to 498 min. This maybe due
to an exponential increase of network parameters to be estimated
in the graphical model with the number of genes increasing.

3.5 Examination of the improvement of BicGSR over
naive Lasso

BicGSR can be viewed as a modified version of naive Lasso for
GRNs reconstruction. To further assess BicGSR, we examined the
improvement of BicGSR over naive Lasso. Fig. 3 shows the PR
curves of BicGSR and naive Lasso on the non-linear simulation
data I (Netl-Net5, Figs. 3a—e) and the real gene expression data
(E. coli, Fig. 3f). In pattern recognition, P is defined as the number
of true positives over the number of true positives and false

positives, and R as the number of true positives over the number of
true positives and false negatives. From Fig. 3, it can be found that
BicGSR outperforms naive Lasso with an average improvement of
0.04 in AUPR scores on all the six data scenarios, and the smaller
the value of R the more the advantage of BicGSR over naive Lasso
is. Meanwhile, BicGSR obtained higher P than those of naive Lasso
at the same level of R, revealing that BicGSR is more sensitive than
naive Lasso for detecting the expression regulators. Specifically,
BicGSR had a P of about 1.25 times of naive Lasso when the value
of R is among (0, 0.05). Taken altogether, these results indicate that
BicGSR is more applicable and more efficient than naive Lasso to
various types of gene expression data.

Biologically, genes that are regulated by the same regulator tend to
be co-expressed [46—48]. The co-expression of the genes to which a
regulator regulates in a regulatory network can provide an indicator
about reconstruction accuracy [48]. So, we then verified BicGSR by
examining the co-expression of the TG genes regulated by the same
regulator based on Pearson correlation. Fig. 4 shows the distributions
of the absolute Pearson correlation coefficients obtained by BicGSR
and naive Lasso on simulation data II NET1-5 (Figs. 4a—e) and
real-world data E. coli (Fig. 4f). From Fig. 4, we can clearly see
that BicGSR resulted in larger average co-expression levels than
those of naive Lasso on all the six data scenarios, suggesting a
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Fig. 3 PR curves of BicGSR (solid lines) and naive Lasso (dashed lines) for the simulation data Il NETI-5 and the real E. coli data

a—e Simulation data II NET1-5
fReal-world E. coli data
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Fig. 4 Comparison of co-expression distribution of the resulted co-regulated genes between BicGSR and naive Lasso predictions

a—e Simulation data II NET1-5
fReal-world E. coli data

significant improvement of the regulation recovery capability by
BicGSR.

3.6 Influence of sparsity parameter t on GRN
reconstruction

It has been evidenced that biological network often exhibits low
connectivity and high clustering coefficients [49, 50]. In BicGSR,
the sparsity parameter ¢ controls the sparseness of the resulted
GRN, and the larger the parameter ¢ is the denser the resulted
GRN is. In theory, setting ¢ as the full least-square estimate will
lead to a complete graph [29].

To demonstrate how the parameter ¢ impacts the accuracy of GRN
reconstruction, we examined the AUROC changes of BicGSR with
te[e”® ¢! on the simulation and real-world datasets, as shown in
Fig. 5. From this figure, it can be seen that for the simulation data II
(NET1), AUROC first increases and then drops, and reaches its
maximum value (0.619) at 7~ e™*>, which is very close to that of
BicGSR (0.611). For the real expression data (E. coli), the
maximum AUROC value is also close to that of BicGSR. From
the results, a conclusion can be drawn: the optimum value of ¢

1.0
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04 06 08

0.2

0.0

In)

a

changes with data scenarios, and it can be efficiently approximated
using BicGSR via adaptive modelling.

4 Discussion and conclusions

In this paper, we have proposed a novel method BicGSR for GRN
inference. Motivated by the fact that gene networks are sparse, our
method uses sparse regression to infer the relationships between
genes and their TFs. Specifically, an improved BIC criterion,
mBIC, is employed to optimise the sparsity parameter of the
sparse regression model, which allows GRNs to be adaptively
modelled. We evaluated the proposed method on simulation and
real gene expression data and compared with previous methods,
and the experimental results show the effectiveness and efficiency
of BicGSR in GRN reconstruction.

The sparsity parameter makes an important impact on GRN
inference: too small or too large ¢ will degrade the accuracy of
GRN reconstruction. Experiments demonstrated that different
datasets are corresponding to different optima ¢, which are often
missed by naive Lasso, and so a robust rule, such as mBIC, is
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Fig. 5 Changing curves of AUROC with the sparsity parameter t. Dashed lines indicate the AUROC values of BicGSR with optimal t

a Results on simulation data IT (NET1)
b Results on the E. coli data
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needed in practice. A strong correlation between GRN reconstruction
accuracy and sparsity setting suggests the justification of the sparse
regression models in GRN reconstruction. Compared with other
modifications of BIC proposed in [23, 36, 37], our mBIC focuses
on GRNs inference and made three distinctive modifications: (i)
imposing unequal prior probabilities to candidate regression
models with different regulatory complexity; (ii) replacing the
ordinary linear regression model with a /;-regularised version in
modelling TF-TG gene relationships; (iii) combining BIC with a
sparsity parameter for implicitly controlling the structural
sparseness of the resulted GRNs. Even so, considering that all the
methods have their own advantages and biological systems are
very complex, we would like to recommend trying as many
methods as possible for GRN inference in practice. On the other
hand, we are still aware of the complexity of real gene regulation
mechanisms, which maybe more reasonably recovered by
non-linear models, and future work will be improving BicGSR by
introducing non-linear kernel techniques to address the complexity.
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