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Abstract Fusion reactors like the International Ther-

monuclear Experimental Reactor (ITER) are generally

complex systems, which demand reliability analysis.

Common-Cause Failures (CCF) are increasingly important

in the reliability analysis of these systems because of the

widespread redundancy or similar components in them.

However, despite the wide research in CCF, there has been

little research on the handling of asymmetries of CCF that

is inevitable in ITER. A concept of Multi-Common-Cause

Failures (MCCF) and its key assumptions are discussed in

this paper. On the basis of MCCF and the assumptions, a

transition method named Common-Cause Breakdown

Structure (CCBS) was designed to manage the asymmet-

rical CCF. The CCBS method can be easily applied to most

fault tree analysis codes because the CCF treated by CCBS

can be handled by traditional CCF models. A redundant

system example was modeled and calculated in the relia-

bility and probabilistic safety analysis program RiskA

developed by FDS Team. The analysis results for water

pumps redundant system applied in Tokamak cooling

water system show that CCBS method is adequate and

effective.

Keywords Reliability analysis � Asymmetrical common-

cause failures � Fault tree � Tokamak cooling water system �
RiskA

Introduction

The International Thermonuclear Experimental Reactor

(ITER) [1] is a very large and complex system, which

demand reliability analysis to ensure safe operation. ITER

has 17 test ports in total, in which 3 of the standard ports

dedicated for 6 test blanket modules (TBM) designed by

different countries. All TBM cooling systems were

assigned in the south east corner of the Tokamak cooling

water system (TCWS) vault. Some of the subsystems of

ITER are very similar, which will generate Common-Cause

Failures (CCF). For example, cooling water subsystems

(CWS), measure and remote handling subsystems in Chi-

nese helium cooled ceramic breeder (HCCB) or dual

functional lithium–lead (DFLL) TBM [2] would also be

applied in many other subsystems of ITER. CCF of these

subsystems need to be analyzed in their reliability analysis.

In the methods of reliability analysis and probabilistic

safety assessment, CCF usually refer to cases that two or

more components fail at the same time or fail one by one

irrevocably in a short time for one or more common causes.

For example, analogous valves, circuit breakers, pumps

and generators are widely used in a same system, and they

will generally subject to CCF results from same designing,

operational environment or other common errors [3].

Researches on the CCF with the symmetrical assumption

are very comprehensive [4, 5], which include the studies of

CCF parameters, CCF models and CCF handling in fault

tree analysis (FTA) codes [6–9], etc. At present the sym-

metrical CCF analytical methods have gradually become a

standard procedure [3, 10].

However, TBM and other similar subsystems in ITER

will generally have some different characteristics, which

will result in asymmetries in their CCF. In fact, all CCF

have some asymmetries caused by the inevitable
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differences in design principles, manufacturing and pro-

cessing, storage, transportation, installation, operation and

maintenance, working environment, etc. Furthermore, in

order to improve reliability as far as possible, redundant

components or facilities are often different in the above

aspects. For example, valves and pumps that are different

in driving motors, running histories or applied at pipes with

different fluids [10–12], these components will subject to

CCF with asymmetries. These asymmetries sometimes are

small enough to be ignored by symmetrical assumptions in

order to reduce the number of probabilities that need to be

estimated in the CCF analysis [3], but other times they

need to be considered to avoid excessive high or low result

of reliability analysis. When the CCF do not satisfy the

symmetrical assumption, they are generally referred to as

asymmetrical CCF. That is, the independent failure prob-

abilities of these components are not exactly the same; or

the probabilities of CCF events combined two components

in a CCF component group will depend on the specific

components but not only on the number of components

combined [3, 10]. However, there has been little research

conducted on asymmetrical CCF. Some examples of the

asymmetrical CCF were mentioned in NUREG/CR-4780 in

1988, including the modeling method of asymmetrical CCF

that add some events to or subtract some events from the

traditional CCF model, but the corresponding parameter

estimation method was not supplied by these reports. Jo

proposed a modeling method in 2005 [11], but the devia-

tion of this method had much to do with the CCF asym-

metry rate, which largely limited the scope of its

application. Kang proposed an approximate formula

method in 2009 [12], in which a CCF event is decomposed

to asymmetrical part and symmetrical part then modeled

them respectively; In his paper, Kang also supplied

parameter estimation methods of Basic Parameter Model

(BPM) and Alpha Factor Model (AFM). Yet just like Jo’s

methods, Kang’s formula cannot be applied to the CCF

analyses of different types of components with different

probabilities. An explicit method based on modified Beta

Factor Model (BFM) for modeling an event within differ-

ent CCF groups was proposed in 2012 by Dusko Kancev

[13], but besides possibly unreasonable increasing of the

dependent portion, the method was also restricted to the

CCF model and the same component types. In 2010, Xing

Liudong [14] proposed a method to analyze probabilistic

CCF (PCCF) in systems with an external common-cause

where different components within a CCF group fail with

different probabilities, and successively proposed two

methods to address PCCF in systems with multiple external

or internal common-cause in 2014 [15]. However, these

PCCF methods can not utilize traditional symmetrical CCF

models that are widely applied in the CCF analysis of

nuclear reactors, such as AFM. Furthermore, for fusion

reactors, it is hard to collect enough information to estimate

those probabilities demanded by PCCF methods in the

analysis of the components and system reliabilities. But

these papers are very enlightening for the method proposed

in this paper.

In order to meet the demands of the asymmetrical CCF

analysis, a transition method named Common-cause

Breakdown Structure (CCBS) was proposed to manage the

asymmetrical CCF, which include those CCF of different

types of components. The asymmetrical CCF events treated

by CCBS can be handled by traditional CCF models such

as AFM, multiple greek letter model, etc. This method can

be easily applied to most FTA codes. The simulation tests

were carried on reliability and probabilistic safety assess-

ment program RiskA, one of the series of integrated

nuclear energy software [16, 17] developed by FDS Team.

RiskA had been applied to Experimental Advanced

Superconducting Tokamak EAST’s reliability analysis

[18], design of fusion-driven subcritical system [19] and

FDS series fusion reactors [20–22], International Ther-

monuclear Experimental Reactor ITER-TBM’s safety

analysis [2], China LEAd-based Reactor (CLEAR), Third

Qinshan nuclear power plant risk monitor (TQRM), etc.

The results show that the asymmetrical CCF events can be

handled by CCBS method adequately.

Methodology

The CCBS method will be presented without model

dependence as far as possible, but in some necessary

occasions, CCF model of Basic Parameter Model (BPM)

will be used because BPM is easy to be understood and can

be converted to other CCF models conveniently.

CCBS Method

Two key assumptions of the CCBS method are introduced

firstly. The first assumption can be expressed as Eq. (1).

The total probability of a CCF component can be divided

into two parts, one is the independent part, and the other is

the CCF part. Here, PT(A) is the total failure probability of

basic event (BE) A representing a CCF component, P0(A0)

is the independent failure probability of A, and Pccf(Accf) is

the total CCF probability of A.

PT Að Þ ¼ P0 A0ð Þ þ Pccf Accfð Þ ð1Þ

The second assumption is that a single common-cause

results in the same CCF probability part of every compo-

nent impacted by it. This assumption is clearly put in

Eq. (2), where basic event A and B represents any of the

two components affected by a same common failure cause
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j. In Eq. (2), j is any one of m common causes that impact

the analyzed system.

Pccf Aj

� �
¼ Pccf Bj

� �
; j ¼ 1; 2; . . .;m ð2Þ

Generally, A and B will be putted into a CCF component

group (CCCG) as shown in Fig. 1 when their failures result

from same common-causes. Here CAB is a compound CCF

event which represents both A and B fails. Therefore,

Eq. (3) can be deduced according to Eqs. (1) and (2).

These assumptions are elaborately abstracted from the

symmetrical assumptions. They are not only weakened but

also reasonable and true in most cases. These assumptions

only bring some errors in rare instances, such as in the case

where the components affected by the CCF have a slightly

different mechanism in the response to the common-cause

and this difference is so tiny that it does not need to be

considered in the analysis and these components still be put

into a same CCCG. However, these errors can be reduced

to appropriate degree by regulating the CCCGs establish-

ing process.

PT Að Þ ¼ P0 A0ð Þ þ Pccf Accfð Þ
¼ P0 A0ð Þ þ Pccf CABð Þ;

PT Bð Þ ¼ P0 B0ð Þ þ Pccf CABð Þ ð3Þ

On the basis of above assumptions, the principium of the

Common-cause Breakdown Structure (CCBS) method can

be explained as bellow. When basic event A is affected by

m common causes, it can be broken down to n ? 1(here

n\=m) events, i.e., A0, A1, A2,…, An. Here A0 is the

representation of A failing independently, and A1 to An

belong to n CCF component groups respectively

(CCCG1 to CCCGn). Thus A becomes a Multi-Common-

Cause Failures (MCCF) event. In contrast, BE that has not

been broken down is called normal CCF event in this

paper. It should be noted that as A1 to An are not real

existent BEs, their single failure parts will be ignored and

added to A0 that will not change in the breaking down

process. Therefore A1 to An represent only the CCF prob-

abilities resulted from the n CCCGs. In order to ensure the

correctness, this breaking down should be carried out

according to the analysis of CCF statistical data, compo-

nent characteristics, CCF mechanisms, etc.

Furthermore, the assigning of BE A to CCCGs should be

subjected to a principle that the CCF portions of different

CCCGs should be mutually exclusive. That is, in the CCF

part of A, which generally resulted from multiple failure

mechanisms, these different failure mechanisms ought to

be mutually exclusive when they belong to different

CCCGs. Because they partition the failure space of A ac-

cording to the impact on other components in the different

CCCGs.

According to Probability theory, this principle can be

expressed in Eq. (4). Here i is one of the n CCCGs that A is

assigned to. As a result, the construction of these multi

CCCGs are much different from Jo and Kang’s methods.

Then according to Eqs. (1) and (4), and the total proba-

bility of A is shown as Eq. (5).

Pccf Accfð Þ ¼
Xn

i¼1

Pccf Aið Þ ð4Þ

PT Að Þ ¼ P0 A0ð Þ þ P1 A1ð Þ þ P2 A2ð Þ þ � � � þ Pn Anð Þ ð5Þ

Here PT(A) is the total failure probability of A; P0(A0) is

the probability of A0, representing A fails independently;

Pi(Ai) is the CCF probability of A brought by CCCGi,

which is the probability of Ai. Then Pi(Ai) can be expressed

as Eq. (6) where 1\= i\=n. In the Eqs. (6)–(8), hi
represents the ratio of the CCF probability brought by

CCCGi to the total probability of basic event A.

Pi Aið Þ ¼ PT Að Þ � hi; i ¼ 1; 2; 3; . . .; n: ð6Þ

Thus, conclusion can be made that the summation of all hi
is always less than or equal to 1, as shown in the Eq. (7).

Then probability of A0 can be putted as Eq. (8). The

summation of hi is possibly equal to 1 in some special cases

and these cases can also be handled by CCBS method.

Because P0 (A0) in Eq. (5) could be zero if all the failure

causes of A are common shared with other basic events

while those events are also modeled in this CCF analysis.

According to Eq. (7), the risk of possible increasing of the

CCF portion is avoided. In fact, the dominating of CCF

portion over the independent portion only suggests that the

assigning of A to CCCGs is not in accord with the actual

situation and rectification should be made to it, for exam-

ple, these CCF are not mutually exclusive.

h1 þ h2 þ � � � þ hnð Þ� 1 ð7Þ
P0 A0ð Þ ¼ PT Að Þ � 1 � h1 � h2 � � � � � hnð Þ ð8Þ

After the CCBS transition, event Ai becomes a normal CCF

event. In each of the CCCGi, each BE fails due to exactly

the same or approximately same common-causes, which is

very the situation of the well-known symmetrical

assumptions given the independent failure probabilities of

BEs in a same CCCG are the same. Therefore, these

CCCGs can be analyzed by the traditional CCF models like

AFM. Most importantly, from the above reasoning and

description, it can be deduced that CCBS method has no

CCF model dependence, which means it can be used in

cases of the CCCGs adopting different CCF models.

B0A0  CAB

Fig. 1 A CCCG of A and B
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Moreover, the CCBS method can be used not only for the

CCF analyses of same type components with same total

failure probabilities but also for different type components

with different total failure probabilities. Finally, the error

introduced by CCBS depends on the suitability and subtle

degree of the break-down of the basic event A, and foras-

much, errors can be minished to an acceptable degree by

adjusting the CCCGs establishing in the CCF analysis

process.

Formulas for Traditional Representative CCF

Models

On the basis of CCBS method, the calculation formulas

will be deduced for widely used CCF models, Multiple

Greek Letter Model (MGLM) and Alpha Factor Model

(AFM), which were recommended in NUREG/CR-5485.

The formulas of Pi(Ai) and hi for these CCF models are

listed below. Formulas for other CCF models can also be

easily deduced without changing of their parameter esti-

mation methods. In the Eqs. (9)–(14), it is assumed that the

CCCGi has m BEs, and only A is a MCCF event. Here PT is

the total failure probability of A, Q1 represents the single

failure probability of a normal CCF event in the CCCGi,

Q
mð Þ
k represents the probability of a normal CCF basic

event involving k specific components in a CCCG of size

m, and QT represents the total failure probability of normal

CCF event. It should be noted that specific CCF events

belonging to CCCG should be picked out in the parameter

estimating process. Furthermore, there are special cases

when more than one CCF BE is broken down to MCCF

event, in which some CCCGs will only contain MCCF

events. In those cases, all the MCCF events in CCCGs will

only represents the CCF probabilities according to the

principium of CCBS. Besides, the symmetry factor of fr
from Jo and Young’s paper also can be used to adjust the

estimating of CCF model parameters or impact vectors,

which will be descripted explicitly in the following.

The Q
mð Þ
k of MGLM is given by Eq. (9), where

q1 ¼ 1; q2 ¼ bM; q3 ¼ c; q4 ¼ d; . . .; qmþ1 ¼ 0, and

1 B kBm. Here bM is the conditional probability of the cause

of a BE failure will be shared by other BEs when one specific

BE fails, and c is the conditional probability of the cause of

one or more BEs failure will be shared by two or some

additional BEs when two specific BEs fail, etc. For the

MGLM, formulas of Pi(Ai) and hi are shown in Eq. (10).

Q
mð Þ
k ¼ m� kð Þ! � k � 1ð Þ!

m� 1ð Þ! �
Yk

i¼1

qi � 1 � qkþ1

� �
� QT ð9Þ

Pi Aið Þ ¼ QT�Q1 ¼ bM � QT; hi ¼ Pi Aið Þ=PT

¼ bM � QT=PT ð10Þ

The AFM defines CCF probabilities from a set of failure

probabilities ratios ak and the total BE failure probability

QT. ak is fraction of the total probability of normal CCF

events that occur in the CCCG involving failure of k BEs

due to a common cause. The Q
mð Þ
k of AFM is given by

Eq. (11) for staggered testing and Eq. (12) for non-stag-

gered testing. And the formulas of Pi(Ai) and hi for the

AFM are shown in Eq. (13) for staggered testing and

Eq. (14) for non-staggered testing.

Q
mð Þ
k ¼ m� kð Þ! � k � 1ð Þ! � ak � QT

m� 1ð Þ! ð11Þ

Q
mð Þ
k ¼ k � m� kð Þ! � k � 1ð Þ! � ak � QT

m� 1ð Þ! � at

; at �
Xm

k¼1

kak

ð12Þ

Pi Aið Þ ¼ 1 � a1ð Þ � QT; hi ¼ Pi Aið Þ=PT

¼ 1 � a1ð Þ � QT=PT ð13Þ

Pi Aið Þ ¼
Xm

k¼2

k � ak

 !

� QT; hi ¼ Pi Aið Þ=PT

¼
Xm

k¼2

k � ak

 !

� QT=PT ð14Þ

A Simple Example

A simple example of assigning A to multiple CCCGs is

brought forth in Fig. 2.

The 3 CCCGs models are {A1, B}, {A2, C} and {A3, D}

for the part I of Fig. 2. According to Eq. (3), P1(A1) =

P(CAB), P2(A2) = P(CAC) and P3(A3) = P(CAD), Eq. (15)

can be deduced from Eq. (5). Then Eq. (16) is a special

form of Eq. (7). It can be seen from part I that CAB, CAC

and CAD will always be part of A. Therefore, Eq. (7) will be

always true given CCCG assigning subjected to the above

principium, no matter how many CCCGs A is assigned to.

PT Að Þ ¼ P0 A0ð Þ þ P CABð Þ þ P CACð Þ þ P CADð Þ ð15Þ
h1 þ h2 þ h3ð Þ� 1 ð16Þ

As for the fault tree (FT) modeling, BE A will become a

transfer CCF fault tree with a top ‘‘OR’’ logic gate, and

there will be 4 events inputs under the gate A0, CAB, CAC

and CAD. This modeling in FT is based on the above

assumptions and principium of CCBS. The FT for whole

system of A, B, C and D was built in RiskA, which can be

show as Fig. 3 given any one of the 4 component operating

successfully will ensure the system function. The original

minimal cutsets (MCS) of the system fault tree include 8

cutsets, but 4 minor cutsets of the type CAB�CAC are iden-

tically zero after the mutually exclusive treatment process.
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However, for the part II of Fig. 2, because the above 3

CCCGs are not mutually exclusive, Eq. (4) is not true for

this case. Then Eqs. (15) and (16) cannot be reasoned out.

According to part II, the regions of CAB and CAC have an

overlap area of F1. Similarly, CAC and CAD also have an

overlap area of F2. If the sum area of F1 and F2 is larger

than that of A0, the summation of 3 CCF portions will be

greater than 1. Actually, this phenomenon suggests that the

above CCCGs establishing is not appropriate for part II.

One proper 5 CCCGs model establishing case can be {A1,

B1}, {A2, B2, C2}, {A3, C3}, {A4, C4, D4} and {A5, D5}.

Here is no mark of C1, D1, D2, and D3 for modeling con-

venience. According to the principium of CCBS, A1 to A5

represent the CCF portions resulted from these 5 CCCGs.

Thus, the new corresponding probability of the CCF

portion from CCCG {A1, B1} can be expressed as Eq. (17).

Here PðCnew
AB Þ deduced from 5 CCCGs model represents the

area of CAB after F1 is subtracted from it, and the area of

total CAB is represented by P(CAB) in Eq. (15) deduced

from 3 CCCGs model.

P A1B1ð Þ ¼ P Cnew
AB

� �
¼ P CABð Þ � P F1ð Þ ð17Þ

The CCF portions of {A3, C3} and {A5, D5} also should

be analogously treated as in Eqs. (18) and (19). In the

meantime, F1 and F2 will be the CCF portion of A from

{A2, B2, C2} and {A4, C4, D4} respectively. Thus, the total

failure probability of A can be expressed as Eq. (20). Then

Eq. (21) is a special form of Eq. (7).

P A3C3ð Þ ¼ P Cnew
AC

� �
¼ P CACð Þ � P F1ð Þ � P F2ð Þ ð18Þ

P A5D5ð Þ ¼ P Cnew
AD

� �
¼ P CADð Þ � P F2ð Þ ð19Þ

Fig. 2 Assigning event A to

multiple CCCGs

Fig. 3 Main FT of the system and 4 CCF transfer FT pages in RiskA
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PT Að Þ ¼ P0 A0ð Þ þ P Cnew
AB

� �
þ P Cnew

AC

� �
þ P Cnew

AD

� �

þ P F1ð Þ þ P F2ð Þ ð20Þ

h1 þ h2 þ h3 þ h4 þ h5ð Þ� 1 ð21Þ

It should be noted here that, in general, the total failure

probabilities of basic events A, B, C and D are different

from each other, i.e., PT(B) = PT(C) = PT(A) = PT(D).

Therefore CCBS can be used in a wider scope, such as the

asymmetrical CCF analyses for different types of compo-

nents whose total failure probabilities are much different.

Results

The CCBS method can be applied to CCF components with

different failure probabilities, but for convenient compar-

ison with other methods, the CCF of same type events with

a same independent failure probability were to be analyzed

in this paper.

System Description

Pumps and valves are widely applied in Tokamak Cooling

Water System (TCWS) and other subsystems of ITER.

TCWS provides enough cooling for removing heat from

test blankets, shield, etc. Normally multiple cooling loops

are applied to accomplish this function. The typical com-

ponents of a pump include the pump itself, motor driver,

circuit breaker, lubrication or cooling systems, and any

sensors, controls, etc. The main components of a valve are

the valve itself and the operator, including their internal

piece-part components. Therefore, the asymmetries for

pumps and valves may come from the differences of

driving factors, operating environment, running history,

etc.

Without loss of generality, an asymmetrical redundant

cooling water system with 3 similar water pumps A, B and

C was considered. The total failure probability of a water

pump is set as QT = 0.00045 from the failure data of

IAEA-TECDOC-478 approved by ITER. The summary of

average impact vectors is shown in Table 1 from the water

pump CCF data of NUREG/CR-5497 [23], in which the

total number of independent failure events is 318 and that

of CCF events is 61. Here the symmetry factor for

this asymmetrical redundant system is set as fr ¼

nCCCG1
2 = nCCCG1

2 þ nCCCG2
2

� �
¼ 0:92 without changing its

meaning defined by Jo and Kang’s paper.

As for the MGLM and AFM used, the CCF model

parameters estimating values of 2 and 3 components

CCCGs are shown in Table 2. According to these models

definitions in the above context and NUREG/CR-4780,

equations for estimating parameters are given by Eqs. (22)

and (23), in which, nk is the number of events involving

k basic events in a failed state.

bM ¼
Pm

k¼2 nkPm
k¼1 nk

; c ¼
Pm

k¼3 nkPm
k¼2 nk

; d ¼
Pm

k¼4 nkPm
k¼3 nk

ð22Þ

ak ¼
nkPm
k¼1 nk

; k ¼ 1; 2; . . .;m ð23Þ

Optimistic Method

The optimistic analysis method was done according to

NUREG/CR-5485. In this method, only A and B were

considered as CCF events in a CCF group of {A, B}, and C

would be an independent event. Thus the CCF factors

between A and C will be ignored, and it is the same for the

CCF between B and C. This method will result in a lower

system failure probability than the actual system failure

probability.

Table 3 shows the results of A and B calculated by

MGLM according to Eq. (9). In Tables 3, 4, 7, and 8, Q1 is

the single independent failure probability of a CCF BE in a

CCCG, and Qi (i[ 1) is the failure probability of i specific

CCF basic events fail togather in the CCCG.

Conservative Method

For a conservative analysis method, A, B and C will all be

considered in a CCF group of {A, B, C} according to in

NUREG/CR-5485. Thus some of the CCF factors that only

exists between A and B will be expanded to affect C. This

method will result in a higher system failure probability

than the actual probability.

Table 4 shows the results A, B and C calculated by non-

staggered AFM according to Eq. (12).

Table 1 Summary of average impact vectors

CCCG size m Adj. ind. events N1 N2 N3

2 129.01 32.3127 6.0422 –

3 193.51 37.7868 10.6786 2.4781

Table 2 Model parameters values

CCCG size m Factor name Values

2(MGLM) 1-b 9.64E-1

b 3.61E-2

3(AFM) a1 9.46E-1

a2 4.37E-2

a3 1.01E-2
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CCBS Method

It is assumed that the number of total failure events of C is

a little bit smaller than that of A and B, or A and B should

be impacted by more common-causes according to the

analysis of components failure. For the CCBS method, A

and B will be considered as MCCF events. Therefore 2

CCCG should be considered {A1, B1, C} and {A2, B2}.

The CCCG1 of {A1, B1, C} will be calculated by the non-

staggered AFM according to Eq. (12), and the CCCG2 of

{A2, B2} will be calculated by the MGLM according to

Eq. (9). The CCF probabilities can be recalculated

according to the CCBS method and the symmetry factor fr.

The numbers of independent events (Adj. Ind. Events) will

not change according to CCBS principium, while consid-

ering the asymmetry between A, B and C. The other

average impact vectors in Table 1 were adjusted to Table 5

according to symmetry factor fr without changing the total

failure probabilities of A and B (i.e., QT = 0.00045). Then

the CCF parameters of these two CCCGs were also esti-

mated again as Table 6 according to Eqs. (22) and (23).

Therefore, according to the proposed CCBS method,

analysis results are shown in Table 7. Finally, the results of

Optimistic method, CCBS and Conservative method are

compared in Table 8.

Discussion

In general, for asymmetrical common-cause failures, there

are three analyzing methods and one modeling method, but

they are all restricted by the CCF models and components

types. The method CCBS is proposed for transition from

asymmetrical CCF to a symmetrical one.

From Table 8, it can be seen that the system unavail-

ability was 1.58 9 10-6 for the optimistic method, for the

conservative method, it was 1.58 9 10-5, and for the

CCBS method, it was 1.50 9 10-5. The result of the CCBS

was between that of the conservative method and opti-

mistic method, which proves that the result of CCBS is

more closed to the true failure probability of the redundant

system.

From the reasoning equations, example and the calcu-

lation process of cooling water system, the conclusion can

be made that CCBS method is not restricted by the CCF

models. In other words, CCBS can treat the CCCG that

adopt different CCF models. Besides, CCBS method is

based on concise and reasonable assumptions and prin-

cipium that are meticulously abstracted from the symmet-

rical assumptions and much closer to the CCF facts.

Foremost, CCBS has no restriction for the different com-

ponents types whose total failure probabilities are much

different, which is inevitable in ITER subsystems. More-

over, CCBS can be adopted conveniently by FTA codes

given the CCCGs parameters, because these CCCGs can be

analyzed by traditional CCF models after treating with

CCBS method.

Table 3 Optimistic method

results
Events Expression Values

A0, B0 Q1 4.34E-4

CAB Q2 1.62E-5

Table 4 Conservative method results

Events Expression Values

A0, B0, C0 Q1 4.00E-4

CAB, CAC, CBC Q2 1.85E-5

CABC Q3 1.28E-5

Table 5 Summary of adjusted average impact vectors

CCCG number Adj. ind. events N1 N2 N3

1 193.51 34.7639 9.8243 2.2799

2 129.01 2.5850 0.4834 –

Table 6 Model parameters adjusted values

CCCG number Factor name Values

1 b 3.66E-3

2 a1 9.54E-1

a2 4.10E-2

a3 9.52E-3

Table 7 CCBS Results

Events Expression Values

A2B2 Q2 (CCCG2) 1.65E-6

A1, B1, C1 Q1 4.03E-4

A1B1, A1C, B1C Q2 (CCCG1) 1.74E-5

A1B1C Q3 1.21E-5

A, B Q1 ?2Q2 ? Q3 ? A2B2 4.50E-5

C Q1 ?2Q2 ? Q3 4.48E-4

Table 8 Final results comparison

Analysis methods Unavailability value of the system

Optimistic method 1.58E-6

CCBS 1.50E-5

Conservative method 1.58E-5
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However, this method will bring some errors in rare

instances while these errors can be reduced to an accepted

degree by regulating the CCCGs establishing. And the CCF

parameters estimating will become more complex, because

the specific CCF events belong to each of the CCCGs have

to be picked out in the estimating process, or the applying

of symmetry factor of fr to help adjust the existing values

of the parameters or impact vectors.

Conclusions

A transition analysis method named CCBS for asymmet-

rical common-cause failures was proposed in this paper.

This method includes two important assumptions and

principium in the process of breaking down the CCF por-

tion of a component into several parts. The CCBS method

is applied to the reliability analysis of an asymmetrical

cooling water system with three similar water pumps

applied in Tokamak Cooling Water System. At the same

time, traditional optimistic and conservative methods are

also applied for comparison. The effectiveness and apply-

ing scope is verified by the example and application results.

In the future, the CCBS method will be applied in RiskA

program, and reliability analysis with Asymmetrical CCF

will be done for the Chinese DFLL TBM to ensure the

systems reliability.

Acknowledgments This work was supported by the Strategic Pri-

ority Research Program of Chinese Academy of Sciences (No.

XDA03040000), the National Special Program for ITER (No.

2014GB112001, No. 2015GB116001), the Informatizational Special

Projects of Chinese Academy of Sciences (No. XXH12504-1-09), and

the Foundation of President of Hefei Institutes of Physical Science

(No. YZJJ201327). The author would like to thank other members of

FDS Team for their helps.

References

1. J.N. Holtkamp, An overview of the ITER project. Fusion Eng.

Des. 82, 427–434 (2007)

2. Y. Wu, Conceptual design and testing strategy of a dual func-

tional lithium–lead test blanket module in ITER and EAST. Nucl.

Fusion 47(11), 1533–1539 (2007)

3. A. Mosleh, K.N. Fleming, G.W. Parry, et al., Procedures for

Treating Common Cause Failures in Safety and Reliability

Studies, NUREG/CR-4780 (USNRC, Washington, DC, 1988)

pp. 1–205

4. E.W. Hagen, Common-mode/common-cause failure: a review.

Ann. Nucl. Energ. 7(9), 509–517 (1980)

5. K.N. Fleming, A. Mosleh, R.K. Deremer, A systematic procedure

for incorporation of common cause events into risk and reliability

models. Nucl. Eng. Des. 93, 245–273 (1986)

6 J.K. Vaurio, Extensions of the uncertainty quantification of

common cause failure rates. Reliab. Eng. Syst. Saf. 78(1), 63–69

(2002)

7. A. Barros, A. Grall, D. Vasseur, Estimation of common cause

failure parameters with periodic tests. Nucl. Eng. Des. 239(4),

761–768 (2009)

8. U. Berg, Reltree and risk spectrum—experience from and

development of Psa Software for Pcs. Reliab. Eng. Syst. Saf.

30(1–3), 323–338 (1990)

9. Y. Wu, FDS. Team, Development of an integrated probabilistic

safety assessment program. Chin. J. Nucl. Sci. Eng. 27, 270–276

(2007)

10. A. Mosleh, D.K. Rasmuson, F.M. Marshall, Guidelines on

Modeling Common-Cause Failures in Probabilistic Risk Assess-

ment, NUREG/CR-5485 (USNRC, Washington, DC, 1998),

pp. 1–212

11. Y.G. Jo, Modeling and quantification of common cause failures

among pumps with different operation histories, in Proc. Top.

Meet. PSA (2005), pp. 1375–1382

12. D.I. Kang, M.J. Hwang, S.H. Han et al., Approximate formulas

for treating asymmetrical common cause failure events. Nucl.

Eng. Des. 239(2), 346–352 (2009)

13. D. Kancev, M. Cepin, A new method for explicit modelling of

single failure event within different common cause failure

groups. Reliab. Eng. Syst. Saf. 103, 84–93 (2012)

14. L. Xing, P. Boddu, Y. Sun et al., Reliability analysis of static and

dynamic fault-tolerant systems subject to probabilistic common-

cause failures. Proc. Inst. Mech. Eng. Part O: J. Risk Reliab.

224(1), 43–53 (2010)

15. C. Wang, L. Xing, G. Levitin, Explicit and implicit methods for

probabilistic common-cause failure analysis. Reliab. Eng. Syst.

Saf. 131, 175–184 (2014)

16. Y. Wu, FDS Team, Development of reliability and probabilistic

safety assessment program riska. Ann. Nucl. Energ. 83, 316–321

(2015)

17. Y. Wu, FDS Team, CAD-based interface programs for fusion

neutron transport simulation. Fusion Eng. Des. 84(7–11),

1987–1992 (2009)

18. L. Qiu, Y. Wu, B. Xiao et al., A low aspect ratio tokamak

transmutation system. Nucl. Fusion 40, 629–633 (2000)

19. Y. Wu, J. Jiang, M. Wang et al., A fusion-driven subcritical

system concept based on viable technologies. Nucl. Fusion

51(10), 532–542 (2011)

20. L. Hu, Y. Wu, Probabilistic safety assessment of the dual-cooled

waste transmutation blanket for the FDS-I. Fusion Eng. Des.

81(8–14), 1403–1407 (2006)

21. Y. Wu, FDS Team, Conceptual design activities of FDS series

fusion power plants in China. Fusion Eng. Des. 81(23–24),

2713–2718 (2006)

22. Y. Wu, FDS Team, Conceptual design of the China fusion power

plant FDS-II. Fusion Eng. Des. 83(10–12), 1683–1689 (2008)

23. F.M. Marshall, D.M. Rasmuson, A. Mosleh, Common–Cause

Failure Parameter Estimations, NUREG/CR-5497 (USNRC,

Washington, DC, 1998), pp. 1–346

228 J Fusion Energ (2016) 35:221–228

123


	Asymmetrical Common-Cause Failures Analysis Method Applied in Fusion Reactors
	Abstract
	Introduction
	Methodology
	CCBS Method
	Formulas for Traditional Representative CCF Models
	A Simple Example

	Results
	System Description
	Optimistic Method
	Conservative Method
	CCBS Method

	Discussion
	Conclusions
	Acknowledgments
	References




