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Fault Tree Analysis (FTA), an indispensable tool used in Probabilistic Risk Assessment (PRA), has been
used throughout the commercial nuclear power industry for safety and reliability analyses. However,
large fault tree analysis, such as those used in nuclear power plant requires significant computer
resources, which makes the analysis of PRA model inefficient and time consuming. This paper describes

a fault tree pre-processing method used in the reliability and probabilistic safety assessment program
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RiskA that is capable of generating minimal cutsets for fault trees containing more than 10,000 gates
and basic events. The novel feature of this method is not only that Boolean reduction rules are used
but also that a new objective of simplification is proposed. Moreover, since the method aims to find more
fault tree modules by the linear-time algorithm, it can optimize fault tree modularization, which further
reduces the computational time of large fault tree analysis.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fault Tree Analysis (FTA), an indispensable tool in Probabilistic
Risk Assessment (PRA), has been used throughout the commercial
nuclear power industry for safety and reliability analyses. How-
ever, large fault tree analysis for nuclear power applications
require significant computer resources, which makes the analysis
of PRA model inefficient and time consuming. Fault tree pre-
processing mainly includes fault tree simplification and fault tree
modularization, which are performed before qualitative and quan-
titative fault tree analysis. Pre-processing significantly influences
the calculation speed and is also important in the overall process
of fault tree analysis.

The primary purpose of fault tree simplification is to simplify
the fault tree structure by pruning the redundant nodes or sub-
trees. Simplification reduces the size of large fault tree, which
reduces the calculation complexity. The earliest algorithm
(Bengiamin et al., 1976) proposed to simplify the fault tree, which
eliminates repeated events inputted to OR gates, was very simple.
The algorithm based on Program Package for Evaluation of Fault
Trees (FAUNET) rules (Platz and Olsen, 1976) was one of the widely
used traditional simplification approaches. Its’ process used several
Boolean reduction rules to reduce the fault tree size without
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changing the logic structure. Additional rules, such as elimination
(Sun and Andrews, 2004) were added by later scholars. A new fault
tree reduction methodology in Integrated Reliability and Risk
Analysis System (IRRAS) algorithms (Russell and Rasmuson, 1993)
was proposed by using some bottom-up techniques, which took
advantage of several optimization methods to restructure and prune
the fault tree including independent sub-trees, probability pruning,
and coalescing of gates. Fault tree optimization algorithms used in
the Finnish Centre for Radiation and Nuclear Safety (STUK) PSA
(SPSA) code (Niemela, 1994) did not use any Boolean reduction rule,
since the fault tree itself contains simplification rules.

Modularization (Chatterjee, 1975) of fault trees is performed on
the simplified fault tree structure. It further reduces the computing
complexity significantly by dividing a large fault tree into small
pieces which can be translated into cutsets independently. Many
improvements of modularization were performed (Wilson, 1985;
Camarinopoulos and Yllera, 1986; Kohda et al., 1989). After a
linear-time algorithm to find fault tree modules was developed
by Dutuit and Rauzy (1996), modularizing the fault tree itself
requires little processing time in comparison with the tree process-
ing time. However, different structures of the same fault tree
would result in different accounts of modules. Use of this method-
ology will results in modules that are either too large or too small;
therefore, it is difficult to obtain appropriate sizes of modules.

All of the simplification methods discussed above do not
consider the effect of fault tree structure with respect to
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modularization. A simplification algorithm, based upon process of
paging stored fault trees and a heuristic decision of when to recon-
struct fault tree pages in order to obtain more modules, is presented
by this paper. The novel feature of the proposed algorithm is not
only that Boolean reduction rules were used but also that a new
objective of simplification was proposed. The objective is aimed
on obtaining more modules. Therefore, this pre-processing algo-
rithm can help both the fault tree simplification and the modular-
ization, which significantly reduces the computation time.

2. Methodology
2.1. A brief review of Boolean rules

A brief review of Boolean rules is presented here, which usually
consist of four rules.

(1) Contraction: subsequent gates of the same type are con-
tracted to form a single gate. This reconstructs the fault tree
as an alternating sequence of AND gates and OR gates.

(2) Extraction: the purpose is to identify the common factor.

(3) Factorization: pairs of events that always occur together
under the same type of gates are identified and combined
to form a single complex event.

(4) Elimination: using the Boolean law of absorption, like:
a+(a*b)=a,a*(a+b)=a.

The application of the above rules is to simplify a fault tree to its
minimal form; that is, the fault tree cannot be simplified further by
using the above simplification rules. However, it does not work
very well with the fault tree structure stored in pages.

2.2. Paging storage

Fault tree structure can be imported from the code database or
models in other codes, like the FTP format model used by CAFTA
(Jim et al., 1986), RSA format model used by RiskSpectrum (Berg,
1990), and XML format model used by XFTA (Rauzy, 2012). When
the fault tree model is very large similar to those developed for
nuclear power plant, it requires large amount computer resources
(RAM) and computation time, so it is difficult to be imported and
stored directly.

In order to optimize use of computer memory and to improve
the importing speed, fault trees are stored by pages which are con-
nected by transfer gates. This results in the same fault tree struc-
ture existing in more than one place which can be stored
independently as a single page. This single page is linked by a
transfer gate which replaces the position of the top gate of the

Fig. 1. Fault tree structure without paging storage.

structure. For example, Fig. 1 shows a fault tree that is not stored
by pages, and Fig. 2 depicts the fault tree as two pages which are
connected by a TRANSFER gate T_G2.

2.3. Pre-processing method

After importing the fault tree structure, simplification will be
performed in order to reduce the fault tree to its most concise form
without changing its logic functions.

In order to simplify the paging stored fault trees to its minimal
form, a heuristic fault tree reduction method is proposed here. In
this method, three supplements are provided in order to make
the reviewed Boolean rules of simplification more suitable for pag-
ing stored fault trees.

(1) TRANSFER gate is treated as the same type of basic event
while implementing those rules.

(2) Simplify every page from bottom to top to its minimal form
first, and the last page that is the whole fault tree is simpli-
fied last.

(3) A new rule is added after those four rules, and iterations of
these five rules will continue until the fault tree structure
converges. This important rule is to rename each gate
according to the sub-tree structure where its top event is
this gate, then to restore the whole fault tree as pages
according to the rules mentioned above. That is, all of the
sub-trees with a same certain structure will be represented
by a TRANSFER gate with a unique name according to its
structure characteristics. And this TRANSFER gate will be
connected to a single sub-tree page which stores the certain
fault tree structure.

Figs. 3 and 4 are examples which show the importance of the
three supplements. The fault tree page linked by TRANSFER gate
A can be simplified to its minimal form by supplement two, and
TRANSFER gate A can be looked as a basic event based on supple-
ment one, then G4 will disappear by the elimination rule. After all
rules of simplification, both G3 and G5 have the same structure
representing (A + B) which is stored as a page after renaming them
as the same gate from supplement three.

A fault tree module is a sub-tree which is completely indepen-
dent of the rest of the tree, which means one event cannot appear
both inside and outside of the module. In the practice of the large
fault tree analysis for many nuclear power plants, it is found that
the simplification had a substantial effect on the modularization
which significantly influences the computational speed of the large
fault tree analysis. Therefore, a heuristic reconstruction method is
proposed here in order to obtain more modules. In this method,
pages will be broken down in the modularization process of the
fault tree simplified based on paging stored structures.

Consider the fault tree shown in Fig. 5 for example, which has
three pages. According to the simplification rules described above,
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Fig. 2. Fault tree structure with paging storage.
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Fig. 5. Fault tree with paging storage after simplification.

this fault tree cannot be simplified further; therefore it can only be
treated as a single module because the event A repeats. If this fault
tree is not stored in pages, it would be simplified as depicted in
Fig. 6, which can be divided as two smaller modules. These pages
will be broken down which allows the fault tree to be recon-
structed. Therefore, more modules are developed when detecting
such cases which will hinder further simplification.

3. Results and discussion

The proposed method has been implemented in reliability and
probabilistic safety assessment program RiskA (Wu et al., 2007,
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Fig. 6. Fault tree without paging storage after simplification.

Table 1
Fault tree node counts in different data structures.

No. Node counts Percentage (%)

Directly stored Paging stored

1 377,945 1655 0.44
2 51,280 1122 2.19
3 100,437 2995 2.98
4 2,737,058 4270 0.16
5 2,686,621 4465 0.17
6 287,584 3053 1.06
7 287,584 3053 1.06
8 133,363 2756 2.07
9 165,226 3141 1.90
10 98,416 2248 2.28
11 10,712 939 8.77
Table 2

Description of 8 test cases.

No. Node Counts Truncation Cutset number
Event Gate Rank Probability

1 1616 1030 6 10710 2541

2 1616 1030 8 1010 2540

3 1616 1030 6 1012 8668

4 1616 1030 8 1012 8868

5 6963 5723 6 1010 22,827

6 6963 5723 8 1010 33,723

7 6963 5723 6 1012 407,612

8 6963 5723 8 10712 899,788

2011; Wu and FDS Team, 2015; Wang et al.,, 2015; Yin et al.,
2014). RiskA has been successfully applied in FDS series Fusion
Power Plants (Wu and FDS Team, 2006, 2008; Hu and Wu, 2006),
the International Thermonuclear Experimental Reactor (ITER) Test
Blank Module (Wu and FDS Team, 2007), Fusion-Driven Hybrid
System (Wu et al., 2006, 2011) and China LEAd-based Reactor
CLEAR-I (Wu et al,, 2014).

After the implemented of this method, RiskA is capable of gen-
erating minimal cutsets for fault trees containing more than 10,000
gates and basic events faster. Fault trees for Third Qinshan Nuclear
Power Plant were used to test the proposed method, and the test-
ing environment was Intel Core(TM) 2 Duo CPU E7200 @ 2.53 GHz,
2.00 GB Memory.

The first test was designed to prove the effectiveness of paging
storage. Fault tree node counts of different data structures are
described in Table 1 for 11 cases. From the “percentage” column,
it shows that the node counts of the paging stored fault trees will
be only 0.16-8.77% of the fault trees without paging storage.

The second test was designed to verify the efficiency of the sim-
plification method for the paging stored fault trees. The description



S. Chen et al./Annals of Nuclear Energy 90 (2016) 22-25 25

Table 3
Test results.

No. Before improving After improving Memory elimination Speed comparison
Memory (MB) Time (ms) Memory (MB) Time (ms)
1 13 5703 8 657 38.5% 8.7
2 13 5687 8 641 38.5% 8.9
3 21 7578 11 2500 47.6% 3.0
4 21 7640 11 2625 47.6% 2.9
5 134 269,422 60 24,703 55.2% 109
6 217 270,015 66 25,297 69.6% 10.7
7 546 391,016 234 146,875 57.1% 2.7
8 1487 470,563 486 226,110 67.3% 2.1
Table 4 Special Projects of Chinese Academy of Sciences (No. XXH12504-

Cases and test results.

Module counts
before improving

No. Node counts Module counts Improvement

Event  Gate after improving (%)

1 18,830 6822 784 1206 53.8
2 12,800 6419 478 865 80.9
3 16,905 6484 612 983 60.6

of 8 test cases is shown in Table 2, and results are presented in
Table 3. From the results, it shows that the heuristic fault tree
reduction method based on fault tree paging storage can eliminate
38.5-69.6% computer resources requirements and improve the
computation speed by up to a factor of 2.1-10.9.

The third test was designed to show the improvement made by
the heuristic reconstruction method. From the results shown in
Table 4, it concludes that the heuristic reconstruction method is
efficient in increasing the number of modules for the paging stored
fault trees. The number of modules has been raised by 53.8-80.9%,
which significantly enhances the computation speed of the fault
tree analysis by reducing the occurrences of the extremely large
modules due to the effect of modularization.

The proposed pre-processing method is suitable for all kinds of
methods of FTA. However, it will be more helpful for the methods
that is more sensitive to fault tree structure. For example, the
methods based on Shannon decomposition such as Binary Decision
Diagram method, the methods based on matrix such as Petri net
method, and the traditional methods such as Fussell-Vesely
method. The proposed method will be less helpful for the methods
based on Boolean algebra and Set theory such as Branch-and-
deduce method.

4. Conclusion

The fault tree pre-processing methods used in RiskA are
presented, which include the fault tree paging storage, the fault
tree simplification and the fault tree modularization. Moreover,
three simplification supplement rules based on the paging storage
were provided, and a method of breaking down a page for more
efficient modularization is proposed. Test results shows that these
methods can significantly reduce computer resources needs (RAM)
and improve computation speed when solving large fault trees as
typical for the PRA models of nuclear power plants.
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