
414 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 1, JANUARY 2016

Large Margin Multi-Modal Multi-Task Feature
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Abstract— The features used in many image analysis-based
applications are frequently of very high dimension. Feature
extraction offers several advantages in high-dimensional cases,
and many recent studies have used multi-task feature extraction
approaches, which often outperform single-task feature extrac-
tion approaches. However, most of these methods are limited
in that they only consider data represented by a single type
of feature, even though features usually represent images from
multiple modalities. We, therefore, propose a novel large margin
multi-modal multi-task feature extraction (LM3FE) framework
for handling multi-modal features for image classification. In par-
ticular, LM3FE simultaneously learns the feature extraction
matrix for each modality and the modality combination coef-
ficients. In this way, LM3FE not only handles correlated and
noisy features, but also utilizes the complementarity of different
modalities to further help reduce feature redundancy in each
modality. The large margin principle employed also helps to
extract strongly predictive features, so that they are more suitable
for prediction (e.g., classification). An alternating algorithm is
developed for problem optimization, and each subproblem can
be efficiently solved. Experiments on two challenging real-world
image data sets demonstrate the effectiveness and superiority of
the proposed method.

Index Terms— Feature extraction, image classification,
multi-task, multi-modal, large margin.
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I. INTRODUCTION

IMAGE classification [1]–[3] lies at the heart of many
image analysis-based applications, such as face recogni-

tion, web image browsing, and medical and remote sensing
image analysis. In these applications, very high-dimensional
feature vectors are usually used to represent the images. For
example, some widely-used global (such as GIST [4]) and
local (such as SIFT [5]) descriptors can have dimensionality
of up to several hundred or thousand when used for image
classification [6].

Feature extraction [7] is therefore a useful tool for remov-
ing irrelevant or redundant information and reducing feature
dimensionality. It makes the learning process more efficient,
reduces the chance of over-fitting, and improves the general-
izability of the model [8], [9]. Feature selection and feature
transformation are the two main approaches used for feature
extraction; in the former, a subset of features is selected
from the original, while in the latter the original feature is
transformed into a new feature space. The former is often the
preferred method [10]. Although traditional feature selection
methods usually select features from a single task [11]–[13],
there has recently been a focus on joint feature selection across
multiple related tasks [8], [9], [14]–[16]. This is because joint
feature selection exploits task correlations in order to estab-
lish the importance of features, and this approach has been
empirically demonstrated to be superior to feature selection on
separate tasks [14]. Since all the joint selection methods aim
to learn feature selection matrices, which can also be used for
feature transformation, we regard these as feature extraction
methods in this paper.

Multi-task feature extraction can effectively handle
correlated and noisy features but it is not suitable for image
classification problems that contain images represented
by multi-modal features. Although all the features can be
concatenated into a long vector, this strategy ignores the
diversity between features and may lead to a severe “curse
of dimensionality”. One recent work considers unsupervised
multi-modal feature extraction [16] based on spectral
analysis [17], but this method is unsuitable for multi-task
feature extraction in the supervised scenario considered
in this paper. A supervised multi-modal multi-task feature
learning algorithm is proposed in [18], but the learned
features do not have strong prediction power and thus are not
appropriate for classification. The tensor-based multi-modal
feature selection method presented in [19] utilizes the
strongly predictive model SVM (support vector machine) to
eliminate features, but disregards the relationships between
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tasks (classes), and the computational complexity is very
high.

To overcome the limitations of existing methods, this paper
presents a novel large margin multi-modal multi-task feature
extraction (LM3FE) algorithm that effectively explores the
complementary nature of different modalities obtained from
multiple tasks. In particular, LM3FE learns a projection matrix
for each modality that transforms the data from the original
feature space to a latent feature space. In the latent space, a
weighted combination of all the transformed features is then
used to predict the ground-truth labels of the training data. The
l2,1-norm constraints on the projection matrices make them
suitable for both feature selection and feature transformation.
The prediction loss is chosen as the hinge loss for classifi-
cation, and the margin maximization principle enhances the
prediction power of the selected or transformed features.
All the projection matrices of different modalities, the combi-
nation weights, and the prediction matrix are learned as a sin-
gle optimization problem. This approach exploits both the task
relationship and the complementary nature of different modal-
ities for effective and strongly predictive feature extraction.

We thoroughly evaluate the proposed LM3FE algorithm on
a real-world web image dataset, NUS-WIDE (NUS) [20], and
a challenge social image dataset, MIR Flickr (MIR) [21].
Extensive experiments demonstrate the superiority of the
proposed large margin approach by comparing it with other
supervised multi-task feature extraction algorithms with
feature concatenation (MTFS [14] and RFS [8]), and a com-
petitive multi-modal multi-task feature learning method [18],
as well as a recently proposed multi-modal feature selection
algorithm [19].

II. RELATED WORK

Our work is a multi-modal extension of the multi-task
feature extraction methods.

A. Multi-Task Feature Extraction

Dozens of feature extraction (selection or transformation)
methods have been proposed in the literature due to the
significance of this technique in pattern recognition and
machine learning [7], [22]–[25]. We refer to [7] for a survey
of traditional feature extraction approaches, and only focus
in this paper on joint feature extraction across multiple tasks.
An early work of this kind was done by Obozinski et al. [14],
in which the l2,1-norm was introduced to encourage similar
sparsity patterns for related tasks in feature selection. This
was extended in [8] by emphasizing l2,1-norm on both the loss
and regularization term for the sake of efficiency and robust-
ness. Considering that labeled data might not be available,
Yang et al. developed an unsupervised feature selection
method [15], in which feature correlation is exploited via the
l2,1-norm, and discriminative information is incorporated in
learning by the defined local discriminative score. The discrim-
inative information is also exploited in [9] for unsupervised
feature selection by making use of the spectral clustering to
learn pseudo class labels. We differ from them in that multiple
types of features are utilized.

B. Multi-Modal Learning

The multiple modalities we refer to here are the various
descriptions of a given sample [26], [27], and our goal is
to fuse the multiple feature representations [28]–[32] of an
object. We classify the multi-modal learning algorithms into
three families:

• Weighted modality combination: most multiple kernel
algorithms belong to this family. For example, the kernels
built on different feature sets were weighted combined
in [33] for protein prediction. McFee and Lanckriet [34]
presented a partial order embedding algorithm to induce a
unified similarity space by weighted combining multiple
kernels. In addition, a weighted combination of multiple
graph Laplacians was proposed in [35] for multi-modal
spectral embedding.

• Multi-modal subspace learning: canonical correlation
analysis (CCA) [36] is a highly representative work of
this family. The given two modalities are transformed
into a subspace where they are maximally correlated.
In [37], a convex formulation was proposed for multi-
modal subspace learning with conditional independence
constraints.

• Modality agreement exploration: most of the methods
in this family aim to find agreement of different
modalities on the unlabeled data, and thus are semi-
supervised [38], [39] or unsupervised [40]. For example,
the co-training framework presented in [38] utilizes
the classifiers trained on two modalities to classify the
unlabeled samples and then selects the classified
samples with high confidence to boost the classifi-
cation performance. A co-regularization strategy was
presented in [40] to maximize the clustering agree-
ment of different modalities for multi-modal spectral
clustering.

The proposed LM3FE belongs to multi-modal subspace
learning but utilizes a weighted modality combination training
strategy. Recently, a multi-modal feature selection method [19]
has been proposed that explores the correlations between
different modalities by taking the tensor product of their
feature spaces. However, this method cannot handle the multi-
class problem naturally and must train an SVM classifier to
eliminate one feature at a time. The relationships between
different classes are therefore discarded, and the training cost
is very high. The closest work to our method is the multi-
modal feature learning approach presented in [18] since it
also utilizes the l2,1-norm to discover the task relationships,
but it differs from our method in that the group l1-norm is
employed to capture the correlations between modalities. The
main drawback of this approach is that the feature weight
matrices of different modalities are concatenated and directly
utilized as the prediction matrix. Also, least squares loss
is adopted, therefore the prediction (e.g., classification [41])
power of the learned features is limited. In the proposed
LM3FE, a prediction matrix is learned in addition to the
feature extraction matrices, and strongly predictive features
are obtained by minimizing the hinge loss under the maximum
margin principle.
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Fig. 1. The main procedure of the LM3FE framework. Different features, such as CH, EDH, WT, etc., are extracted to represent images from different
modalities. The obtained features X (v), v = 1, . . . , V are then transformed into the latent spaces as {Z (v)} using the feature extraction matrices {U (v)}.
Subsequently, the latent features are weightedly combined as Z to predict the ground-truth label Y . Lastly, the extraction matrices {U (v)}, the modality
combination weights {θv }, and the prediction matrix W are learned alternately by minimizing the prediction errors on the training data. The obtained
{U (v)} and {θv } are used for final feature extraction.

III. MULTI-TASK FEATURE EXTRACTION

We first briefly introduce the multi-task feature selec-
tion (MTFS) framework [14] and its efficient and robust
version [8], both of which can be regarded as feature
extraction methods. Let the training set be denoted as
D = {x pn, ypn}, n = 1, . . . , Np , p = 1, . . . , P , where P is
the number of tasks, and Np is the number of training samples
of the p’th task. Here, the p’th task is to decide whether or
not a sample belongs to the p’th category; the sample feature
x pn ∈ R

d and the corresponding label ypn = 1 if the p’th
class label is manually assigned to it, and 0 otherwise. The
general formulation of MTFS is given by

argmin
U

P∑

p=1

1

Np

Np∑

n=1

L(u p, x pn, ypn) + γ

d∑

m=1

‖um‖2, (1)

where U ∈ R
d×P is a matrix with the model variable

u p for the p’th task in a column. The row um represents
the variables across tasks associated with the m’th feature.
The regularization is actually the l2,1-norm ‖U‖2,1 which
encourages sparsity in rows, and thus the importance of an
individual feature is evaluated by simultaneously considering
multiple tasks. In this way, different tasks help each other to
select features assumed to be shared across tasks. Since the
input features for different tasks are commonly the same and
only the labels change, the formulation (1) can be rewritten as

argmin
U

P∑

p=1

1

N

N∑

n=1

L(u p, xn, ypn) + γ ‖U‖2,1, (2)

Following on from this work, Nie et al. [8] present a robust
formulation by adopting the popular least squares loss for
L and utilizing the l2,1-norm for both the loss function and
regularization, i.e.,

argmin
U

‖X T U − Y‖2,1 + γ ‖U‖2,1, (3)

where X = [x1, . . . , xN ] ∈ R
d×N is the feature matrix and

Y = [y1, . . . , yN ]T ∈ R
N×P is the corresponding label matrix.

An efficient algorithm is developed in [8] to solve it with
proven convergence.

IV. LM3FE: LARGE MARGIN MULTI-MODAL

MULTI-TASK FEATURE EXTRACTION

To handle multi-modal image classification, we generalize
MTFS and present LM3FE. Fig. 1 illustrates the main pro-
cedure of LM3FE. First, various features, such as the color
histogram (CH), edge direction histogram (EDH), wavelet
texture (WT), etc., are extracted to represent each image
in the dataset from different modalities. Then the feature
extraction matrix U (v) is learned for each modality by trans-
forming the features from the original space X (v) into a latent
space Z(v), and the transformed features Z (v), v = 1, . . . , V
are weightedly combined as Z = ∑V

v=1 θv Z (v). Lastly, the
combined latent features are used to predict the class labels Y
of the training data. Using an alternating algorithm, the extrac-
tion matrices {U (v)}, the combination weights {θv}, as well
as the prediction matrix W are learned by minimizing the
prediction errors, and the learned {U (v)} and {θv} are utilized
to transform or select features for further classification. The
technical details are given below.

A. Problem Formulation

Let V be the number of modalities and v be the modality
index. The general formulation of LM3FE is given by

argmin
W,{U (v)},θ

F(W, {U (v)}, θ)

= �(W, {U (v)}, θ) + �(W, {U (v)}, θ),

s.t. θv ≥ 0, v = 1, . . . , V , (4)

where �(W, {U (v)}, θ) is the empirical loss given by

�(W, {U (v)}, θ) =
P∑

p=1

N∑

n=1

g
(

h̄ p({x (v)
n }V

v=1), ypn

)
,
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and �(W, {U (v)}, θ) contains all the regularization terms:

�(W, {U (v)}, θ) = γA‖W‖2
F + γB

V∑

v=1

‖U (v)‖2,1 + γC‖θ‖2
2.

In problem (4), g can be any convex loss function such as the
least squares loss and hinge loss, and

h̄ p({x (v)
n }V

v=1) = wT
p

V∑

v=1

θv(U
(v))T x (v)

n + bp, (5)

is the prediction of the p’th category. Here, wp is the p’th
column of the large margin prediction matrix W , bp is the bias
and can be absorbed into the learning of wp , U (v) is the feature
selection matrix for the v’th modality, and θ = [θ1, . . . , θV ]T

is a vector of the modality integration weights. The regu-
larization term ‖W‖2

F is used to control model complexity,
‖U (v)‖2,1 is to perform multi-task feature selection, and ‖θ‖2

2
is served as a smoothing term to avoid model over-fitting to
only one or a small number of views. All γA, γB and γC

are positive trade-off parameters. The features of different
modalities x (v)

n , v = 1, . . . , V are assumed to have been
normalized.

In this paper, we choose g as the hinge loss so that the
extracted features are particularly suitable for classification,
i.e., g(h̄ p({x (v)

n }V
v=1), ypn) = max(0, 1 − ypnh̄ p({x (v)

n }V
v=1)).

The loss function g is non-differentiable. Hence, we first
smooth the loss according to [42], and the smoothed version
of the hinge loss g can be given by

gσ = max
νp∈Q

νpn

(
1 − ypnh̄ p({x (v)

n })
)

− σ

2
‖xn‖∞ν2

pn, (6)

where Q = {νpn : 0 ≤ νpn ≤ 1, νpn ∈ R
N },

νp = [νp1, νp2, . . . , νpN ]T , xn is a concatenation of {x (v)
n }

and σ is the smooth parameter, which is set at 5 in this
paper. By setting the objective function of (6) to zero and
then projecting νpn on Q, we obtain the following solution:

νpn = median

{
1 − ypnh̄ p({x (v)

n })
σ‖xn‖∞

, 0, 1

}
. (7)

By substituting the solution (7) back into (6), we have the
piece-wise approximation of g, i.e.,

gσ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, ypnh̄ p({x (v)
n }) >1;

(
1 − ypnh̄ p({x (v)

n })
)
− σ

2
‖xn‖∞,

ypnh̄ p({x (v)
n })

< 1 − σ‖xn‖∞;(
1 − ypnh̄ p({x (v)

n })
)2

2σ‖xn‖∞
, otherwise.

(8)

Using the smoothed hinge loss gσ in problem (4), we can
obtain the solutions for the three sets of variables W , {U (v)},
and θ by optimizing them alternately until convergence.

B. Optimization

Due to the efficiency of Nesterov’s optimal gradient
method [42], we adopt it to solve the sub-problems w.r.t.
W and {U (v)}. The sub-problem w.r.t. θ is a constrained

optimization problem and thus is solved using a non-negative
optimal gradient method [43]. The details of optimizing each
sub-problem are presented as follows:

1) Update for W: By using the smoothed hinge loss gσ ,
and fixing {U (v)} and θ , the problem (4) becomes:

argmin
W

F(W ) =
P∑

p=1

N∑

n=1

gσ
(

h̄ p({x (v)
n }), ypn

)
+ γA‖W‖2

F

=
P∑

p=1

(
N∑

n=1

gσ
(

h̄ p({x (v)
n }), ypn

)
+ γA‖wp‖2

2

)
,

(9)

The problem (9) can be decomposed to solving for each wp

independently, and the formulation of the p’th sub-problem is
given by

argmin
wp

F(wp) = �(wp) + �(wp), (10)

where �(wp) = ∑N
n=1 gσ (zn, ypn, wp) and �(wp) =

γA‖wp‖2
2. Here, gσ (zn, ypn, wp) is a reformulation of gσ

w.r.t. wp . That is, the term h̄ p({x (v)
n }) in gσ is rewritten as

h̄ p(zn, wp) = wT
p zn + bp, where zn = ∑V

v=1 θv(U (v))T x (v)
n .

We adopt Nesterov’s method to solve problem (10) since it
is able to achieve the optimal convergence rate at O(1/t2),
where t is the number of iterations. To utilize Nesterov’s
method for optimization, we have to compute the gradient
of the smoothed hinge loss to determine the direction of the
descent, as well as the Lipschitz constant to determine the
step size of each iteration. We summarize the results in
the following theorem.

Theorem 1: The sum of the gradient of the smoothed hinge
loss gσ w.r.t. wp over all the N samples is

∂gσ (wp)

∂wp
= −ZYpνp, (11)

where Z = [z1, z2, . . . , zN ], Yp = diag(yp) and
yp = [yp1, yp2, . . . , ypN ]T . The Lipschitz constant of
gσ (wp) is

Lσ
g (wp) = N

σ
max

n

‖znzT
n ‖2

‖xn‖∞
. (12)

The proof can be found in the Appendix.
In addition, it is easy to deduce that the gradient of �(wp)

is 2γAwp and the Lipschitz constant is 2γA. Therefore, the
gradient of F(wp) is

∂ F(wp)

∂wp
= −ZYpνp + 2γAwp, (13)

and the Lipschitz constant is

L F (wp) = N

σ
max

n

‖znzT
n ‖2

‖xn‖∞
+ 2γA. (14)

Based on the obtained gradient and Lipschitz constant, we
apply Nesterov’s method to minimize the smoothed primal
F(wp). In the t’th iteration round, two auxiliary optimizations
are constructed and their solutions are used to build the
solution to problem (10). We use wt

p , yt and zt to represent
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the solutions of (10) and its two auxiliary optimizations at
the t’th iteration round, respectively. The Lipschitz constant
of F(wp) is L F (wp) and the two auxiliary optimizations are

min
y

〈∇F(wt
p), y − wt

p〉 + L F (wp)

2
‖y − wt

p‖2
2,

min
z

t∑

i=0

i + 1

2
[F(wi

p) + 〈∇F(wi
p), z − wi

p〉]

+ L F (wp)

2
‖z − ŵp‖2

2,

where ŵp is an estimated solution of wp . By directly setting
the gradients of the two objective functions in the auxiliary
optimizations as zeros, we can obtain yt and zt , respectively,

yt = wt
p − 1

L F (wp)
∇F(wt

p), (15)

zt = ŵp − 1

L F (wp)

t∑

i=0

i + 1

2
∇F(wi

p). (16)

The solution after the t’th iteration round is the weighted sum
of yt and zt , i.e.,

wt+1
p = 2

t + 3
zt + t + 1

t + 3
yt . (17)

The stopping criterion is |F(wt+1
p ) − F(wt

p)|/|F(wt+1
p ) −

F(w0
p)| < ε, where ε is a predefined threshold which we set

as 10−3 in this paper. The initialization w0
p and the estimated

solution ŵp are set as the zero vectors. The bias bp can be
learned by letting wp = [wp; bp] and Z = [Z; eT ], where
e is a vector of all ones. The gradient of �(·) w.r.t. bp is zero
since it is not penalized using a l2-norm. The last entry of the
output solution wp is the bias bp.

2) Update for {U (v)}: For fixed W and θ , and by using the
smoothed hinge loss gσ , the problem (4) becomes

argmin
{U (v)}

F({U (v)}) =
P∑

p=1

N∑

n=1

gσ
(

h̄ p({x (v)
n }), ypn

)

+ γB

V∑

v=1

‖U (v)‖2,1, (18)

We can update for each U (v) alternately by fixing all the
other U (v ′), v ′ �= v until convergence. The sub-problem for
optimizing each U (v) is given by

argmin
U (v)

F(U (v)) = �(U (v)) + �(U (v)), (19)

where �(U (v)) = ∑P
p=1

∑N
n=1 gσ (x (v)

n , ypn, U (v)), and

�(U (v)) = γB‖U (v)‖2,1. Here, gσ (x (v)
n , ypn, U (v)) is a refor-

mulation of gσ w.r.t. U (v). That is, the term h̄ p({x (v)
n }) in

gσ is rewritten as h̄ p(x (v)
n , U (v)) = θvw

T
p (U (v))T x (v)

n + c(v)
pn ,

where c(v)
pn = wT

p
∑

v ′ �=v θ ′
v (U

(v ′))T x (v ′)
n +bp consists of all the

terms that are irrelevant to U (v). Similar to the optimization
of wp , we adopt Nesterov’s method to solve problem (19),
and the gradient and Lipschitz constant are summarized in the
following theorem.

Theorem 2: The sum of the gradient of the smoothed hinge
loss gσ w.r.t. U (v) over all the N samples and P class labels is

∂gσ (U (v))

∂U (v)
=

P∑

p=1

−θv X (v)YpνpwT
p , (20)

The Lipschitz constant of gσ (U (v)) is

Lσ
g (U (v)) = P Nθ2

v

σ
max

p
max

n

‖x (v)
n wT

p ‖2‖(x (v)
n )T ‖2‖wp‖2

‖xn‖∞
.

(21)
The proof can be found in the Appendix.

In addition, it is well known that the gradient of �(U (v)) is
2γB D(v)U (v) [8], and the Lipschitz constant is 2γB‖D(v)‖2,
where D(v) is a diagonal matrix with the entry D(v)

ii =
1

2‖u(v),i‖2
, and u(v),i is the i ’th row of D(v). Note that although

D(v) is dependent on U (v), we regard it as a constant term in
the calculation of the Lipschitz constant and update it after
each iteration of Nesterov’s method. A modified Nesterov
method for solving U (v) and its convergence analysis will be
presented later. The gradient of F(U (v)) is then

∂ F(U (v))

∂U (v)
=

P∑

p=1

−θv X (v)YpνpwT
p + 2γB D(v)U (v), (22)

and the Lipschitz constant is

L F (U (v)) = P Nθ2
v

σ
max

p
max

n

‖x (v)
n wT

p ‖2‖(x (v)
n )T ‖2‖wp‖2

‖xn‖∞
+ 2γB‖D(v)‖2, (23)

Based on the obtained gradient and Lipschitz constant,
we apply Nesterov’s method to minimize the smoothed primal
F(U (v)). We use U (v)

t , Y t and Zt to represent the solutions
of (19) and its two auxiliary optimizations at the t’th itera-
tion round, respectively. The Lipschitz constant of F(U (v))

is L F (U (v)
t ), which changes at each iteration, and the two

auxiliary optimizations are

min
Y

〈∇F(U (v)
t ), Y − U (v)

t 〉 + L F (U (v)
t )

2
‖Y − U (v)

t ‖2
F ,

min
Z

t∑

i=0

i + 1

2
[F(U (v)

i ) + 〈∇F(U (v)
i ), Z − U (v)

i 〉]

+ L F (U (v)
t )

2
‖Z − Û (v)‖2

F ,

where Û (v) is an estimated solution of U (v). By directly setting
the gradients of the two objective functions in the auxiliary
optimizations as zeros, we can obtain Y t and Zt , respectively,

Y t = U (v)
t − 1

L F (U (v)
t )

∇F(U (v)
t ), (24)

Zt = Û (v) − 1

L F (U (v)
t )

t∑

i=0

i + 1

2
∇F(U (v)

i ). (25)

The solution after the t’th iteration round is the weighted sum
of Y t and Zt , i.e.,

U (v)
t+1 = 2

t + 3
Zt + t + 1

t + 3
Y t . (26)
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Algorithm 1 Modified Nesterov Optimal Gradient Method for
Solving U (v)

The diagonal matrix D(v) is then updated using the
obtained U (v)

t+1, and we summarize the algorithm for solving

U (v) in Algorithm 1. The stopping criterion is |F(U (v)
t+1) −

F(U (v)
t )|/|F(U (v)

t+1) − F(U (v)
0 )| < ε. The initialization U (v)

0
and the estimated solution Û (v) are set as the results of the
previous iterations in the alternating optimization of U (v). The
convergence of Algorithm 1 is guaranteed by the following
theorem.

Theorem 3: The objective of the problem (19) will
monotonically decrease in each iteration of Algorithm 1.

The proof can be found in the Appendix.
3) Update for {θv}: For fixed W and {U (v)}, and by using

the smoothed hinge loss gσ , the problem (4) becomes

argmin
θ

F(θ) = �(θ) + �(θ),

s.t. θv ≥ 0, v = 1, . . . , V , (27)

where �(θ) = ∑P
p=1

∑N
n=1 gσ (z pn, ypn, θ), and �(θ) =

γC‖θ‖2
2. Here, gσ (z pn, ypn, θ) is a reformulation of gσ w.r.t. θ .

That is, the term h̄ p({x (v)
n }) in gσ is rewritten as h̄ p(z pn, θ) =

θT z pn + bp , where z pn = [z(1)
pn , z(2)

pn , . . . , z(V )
pn ]T with each

z(v)
pn = wT

p (U (v))T x (v)
n . In contrast to the optimization of

wp and U (v), there is an additional non-negative constraint
on θ . We thus utilize the non-negative optimal gradient
method (OGM) [43] to solve (27). Similar to the gradient of
gσ w.r.t. wp , the gradient of gσ w.r.t. θ for the n’th sample is

∂gσ (z pn, ypn, θ)

∂θ
= −ypnz pnνpn, (28)

Thus the sum of the gradient over all the N samples and
P labels is

∂gσ (θ)

∂θ
= ∂

∑P
p=1

∑N
n=1 gσ (z pn, ypn, θ)

∂θ
=

∑

p

(−Z pYpνp),

(29)

where Z p = [z p1, z p2, . . . , z pN ]. The Lipschitz constant
of gσ (θ) is

Lσ
g (θ) = P N

σ
max

p
max

n

‖z pnzT
pn‖2

‖xn‖∞
. (30)

Algorithm 2 The Optimal Gradient Method for Solving θ

In addition, the gradient of �(θ) is 2γCθ and the Lipschitz
constant is 2γC . Therefore, the gradient of F(θ), is

∂ F(θ)

∂θ
=

P∑

p=1

(−Z pYpνp) + 2γCθ, (31)

and the Lipschitz constant is

L F (θ) = P N

σ
max

p
max

n

‖z pnzT
pn‖2

‖xn‖∞
+ 2γC . (32)

Based on the obtained gradient and Lipschitz constant,
we apply the optimal gradient method presented in [43] to
minimize the smoothed F(θ). We summarize the procedure in
Algorithm 2 cited from [43] (Algorithm 1 therein), where the
operator P[x] projects all the negative entries of x to zero. The
algorithm is guaranteed to converge and achieves the optimal
convergence rate O(1/t2) according to [43]. The stopping
criterion we utilized here is |F(θ t+1) − F(θ t )|/|F(θ t+1) −
F(θ0)| < ε. The initialization θ0 is set as the result of
the previous iterations in the alternating optimization of W ,
{U (v)}, and θ .

We now summarize the learning procedure of the proposed
LM3FE in Algorithm 3. The stopping criterion for termi-
nating the algorithm is the difference of the objective value
F(W, {U (v)}, θ) between two consecutive steps. Alternatively,
we can stop the iterations when the variation in θ is smaller
than a predefined threshold. Our implementation is based on
the difference of the objective value, i.e., if |Ok+1 − Ok |/
|Ok+1 − O0| < ε, then the iteration stops, where Ok is the
objective value of the k’th iteration step. Once the solutions
of {U (v)} and {θv} have been obtained, we can use them in
two different ways: 1) feature selection, i.e., sort the features
according to ‖u(v),i‖2, i = 1, . . . , dv in descending order
for the v’th modality and then train additional classifiers
on top-ranking features; 2) feature transformation, i.e., use∑V

v=1 θv(U (v))T x (v)
n as the projected features in the low-

dimensional space and then train additional classifiers on
these low-dimensional features. Both of these strategies are
investigated in the experiments.

C. Convergence Analysis

In this section, we discuss the convergence of the proposed
LM3FE algorithm. Let the initialized value of the objective
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Algorithm 3 The Optimization Procedure of the Proposed
LM3FE Algorithm

function (4) be F(W K , {U (v)
K }, θ K ). Since (9) is convex, we

have F(W K+1, {U (v)
K }, θ K ) ≤ F(W K , {U (v)

K }, θ K ). The prob-
lem (18) is solved alternately for each U (v) and all the other
U (v ′), v ′ �= v are fixed. Theorem 3 ensures that the objective
value of (18) decreases at each iteration of the alternating pro-
cedure, i.e., F(U (v)

k+1, {U (v ′)
k }v ′ �=v ) ≤ F({U (v)

k }). This indicates

that F(W K+1, {U (v)
K+1}, θ K ) ≤ F(W K+1, {U (v)

K }, θ K ). Finally,

we have F(W K+1, {U (v)
K+1}, θ K+1) ≤ F(W K+1, {U (v)

K+1}, θ K )
according to the convergence result provided in [43]. There-
fore, the convergence of our algorithm is guaranteed.

D. Complexity Analysis

To analyze the time complexity of the proposed LM3FE
algorithm, we first present the computational cost of optimiz-
ing W , {U (v)}, and θ respectively: 1) optimizing W includes a
pre-calculation of the P × N matrix Z , and the optimizations
of P sub-problems, where the p’th optimization is to find
the solution for wp . The time cost of the pre-calculation
is O(d̄v V P N), where d̄v is the average feature dimensions.
In each iteration of solving for wp , the main cost is spent on
the calculation of the gradient ∇F(wt

p), where the complexity
is given by O(P N2). Therefore, the complexity of optimizing
W is O(d̄v V P N) + k1O(P2 N2), where k1 is the number of
iterations and is typically small due to the fast convergence
property of Nesterov’s method; 2) the solutions for {U (v)}
are obtained by alternating between each U (v). Although the
Lipschitz constant L F (U (v)) changes at each iteration in the
optimization of U (v), the first term is a constant value and
can be calculated beforehand in O(d̄v V P3 N) time. In each
iteration of optimizing U (v), the complexity is dominated by
the time cost O(d̄v (P2 N + P N2)) of computing the gradient
∇F(U (v)

t ). Therefore, the complexity of optimizing {U (v)} is
O(d̄v V P3 N) + kout

2 V kin
2 O(d̄v (P2 N + P N2)), where kin

2 is
the number of iterations of the modified Nesterov method
presented in Algorithm 1, and it is often small. Here, kout

2 is the
number of iterations of the alternating procedure for updating
{U (v)}, and we set it as 1 since this setting does not impact on
the convergence property of the proposed LM3FE algorithm,

and we found little decline in performance in our experiments;
3) the optimization of θ involves a pre-calculation of the
matrices {Z p}, the time cost of which is O(d̄v V P N). The
complexity of optimizing θ is dominated by the time cost
O(V P N2) of computing the gradient ∇F(θ t ), and thus is
given by O(d̄v V P N)+ k3 O(V P N2), where k3 is the number
of iterations of the optimal gradient method presented in
Algorithm 2 and is also typically small.

Lastly, according to the above analysis, we conclude that
the computational cost of LM3FE is K (O(d̄v V P3 N) +
k1O(P2 N2) + V kin

2 O(d̄v (P2 N + P N2)) + k3 O(V P N2)),
where K is the number of iterations in Algorithm 3. The
second and last terms are usually very small compared with
the third term, and thus the time complexity is approximately
K (O(d̄v V P3 N) + V kin

2 O(d̄v (P2 N + P N2))). This is linear
w.r.t. the average feature dimension, and quadratic in the
number of training samples, and thus is not very high.

V. EXPERIMENTS

In the experiments, we evaluate the effectiveness of the pro-
posed LM3FE algorithm on the image classification problem
by first applying it for feature selection and then regarding it as
a feature transformation approach. Prior to these evaluations,
we present the used datasets and features, as well as our
experimental settings.

A. Datasets, Features and Evaluation Criteria

Our experiments are conducted on two challenging real-
world image datasets, NUS-WIDE (NUS) [20] and MIR
Flickr (MIR) [21].

The NUS dataset contains 269,648 images, and our
experiments are conducted on a subset that consists of 16,519
images belonging to 12 animal concepts: bear, bird, cat,
cow, dog, elk, fish, fox, horse, tiger, whale, and zebra. We
randomly split the images into a training set of 8,263 images
and a test set of 8,256 images. Distinguishing between these
concepts is very challenging, since many of them are similar
to one another, e.g., cat and tiger. We randomly choose
{4, 6, 8} labeled instances for each concept in the training
set to determine the performance of the compared methods
w.r.t. the number of labeled instances. Six different features,
namely 500-D bag of visual words based on SIFT [5]
descriptors, 64-D color histogram, 144-D color auto-
correlogram, 73-D edge direction histogram, 128-D wavelet
texture, and 225-D block-wise color moments are used to rep-
resent each image. The 1-nearest neighbour (1NN) classifier is
adopted and the evaluation criterion is classification accuracy.
We also use F1-score ( [44]) to measure the performance for
individual classes, and macroF1 score, which is an average of
the F1-scores for all classes is served as another criterion to
evaluate the performance of different methods.

The MIR dataset consists of 38 classes and 25,000 images,
which are randomly split into equally sized training and test
sets. The number of labeled positive instances are set as
{20, 30, 50} for each category, and the same number of nega-
tive samples is selected. The images are represented by three
features: 1000-D bag of visual words based on the local SIFT,



LUO et al.: LARGE MARGIN MULTI-MODAL MULTI-TASK FEATURE EXTRACTION 421

Fig. 2. Accuracies of the compared feature selection methods vs. percent of the original features being selected on the NUS-WIDE animal subset.

512-D global GIST descriptions [4], and the tags (457-D).
MIR is a multi-label dataset (i.e., an image can have multiple
labels). Therefore, we adopt regularized least square (RLS) as
the classifier and introduce a popular criterion in multi-label
classification for evaluation, average precision (AP) [6], [45].
In this paper, AP is the ranking performance computed under
each label. Usually, the mean value over all labels, i.e., mAP,
is reported.

In both of the datasets, twenty percent of the test images
are used for validation, with the parameters performing best
on the validation set used for testing. In all the following
experiments, five random choices of the labeled instances are
used, and the average performance with standard deviations is
reported.

B. Feature Selection Evaluation

In this set of experiments, we use the obtained solutions
of {U (v)} for feature selection. For the v’th modality, the
features are sorted in descending order according to the values
‖u(v),i‖2, i = 1, . . . , dv , and then the rv top-ranked features
are selected. The features are assumed to have been normalized
and the selected features of all modalities are concatenated as
the input of a subsequent classifier. Specially, we compare the
following methods:

• BSF: using the single-modal feature that achieves the best
performance in 1NN/RLS-based classification.

• CAT: concatenating the normalized features of all the
modalities into a long vector, and then performing
1NN/RLS-based classification.

• MTFS [14]: a supervised multi-task feature selection
algorithm, where the formulation is given by (1) and
the trade-off parameter γ is set in the range {10i |i =
−5,−4, . . . , 5}.

• RFS [8]: an efficient and robust supervised multi-task
feature selection algorithm that utilizes the l2,1-norm for
both the least squares loss and the regularization term.
The formulation is given by (3) and the trade-off para-
meter γ is chosen from the set {10i |i = −5,−4, . . . , 5}.

• SSMVFS [18]: a competitive multi-modal multi-task fea-
ture learning algorithm that utilizes structured sparsity to
explore the interrelations between multi-modal features.
The two trade-off parameters γ1 and γ2 are tuned on the
grid {10i |i = −5,−4, . . . , 5} following [18].

• TMFS [19]: a recently proposed multi-modal feature
selection algorithm that utilizes the tensor-product to
leverage the underlying multi-modal correlations. It elim-
inates features with the smallest ranking value one at
a time and thus the task relationships are ignored. This
method was originally designed for binary classification,
and we extend it for the multi-class problem using the
“one-vs-all” strategy, where multiple binary problems are
created. The feature weights obtained from these binary
problems are averaged to compute the final ranking value
for each feature.

• LM3FS: the proposed multi-modal feature selection
method. The candidate set for the parameters γB is
{10i |i = −9,−8, . . . , 1}, and γA, γC are optimized over
the set {10i |i = −5,−4, . . . , 5}.

In MTFS, RFS, and SSMVFS, the feature weight
(or selection) matrices {U (v)} are learned by concatenating
them as a single matrix U . The features are selected according
to U (v) for the v’th modality, and the number of selected
features rv varies in {0.1, 0.2, . . . , 1.0} of the original feature
dimensions. The accuracies and macroF1 scores on the NUS
animal subset are shown in Fig. 2 and Fig. 3 respectively.
From these results, we observe that: 1) the performance of all
the compared methods improves with an increased number of
labeled instances; 2) the simple concatenation strategy (CAT)
is superior to the best single modality (BSF), and by feature
selection, we obtain further improvements. In particular, by
selecting only 20 to 30 percent of the original features,
most of the selection methods obtain results comparable to
or better than the use of all features; 3) the robust feature
selection algorithm (RFS) is better than the traditional multi-
task feature selection (MTFS) and seems to be comparable
with the multi-modal feature selection approach (SSMVFS).
This may be because SSMVFS is not particularly designed
for classification, and thus weakly predictive features may
be selected. The proposed LM3FS outperforms both of them
significantly. This demonstrates the significance of selecting
features that have strong prediction power for classification;
4) although TMFS is able to select predictive features, it is
only comparable with MTFS. This may principally be that
TMFS was originally developed for binary classification, and a
more sophisticated algorithm than the simple strategy adopted
here should be designed for multi-class classification. This also
indicates that exploring the task (label) relationships is also
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Fig. 3. MacroF1 scores of the compared feature selection methods vs. percent of the original features being selected on the NUS-WIDE animal subset.

Fig. 4. mAPs of the compared feature selection methods vs. percent of the original features being selected on the MIR Flickr dataset.

critical for the feature selection of multiple concepts; 5) the
performance under the accuracy and macroF1 score criteria
are consistent.

We show the results on the MIR dataset in Fig. 4. The
main differences from the results on the NUS dataset are that:
1) all MTFS, RFS, and SSMVFS are comparable to each
other, and significantly superior to TMFS. This is because
MIR is a multi-label dataset, and most images have more than
one class label. This increases the significance of the label
relationships in feature selection, thus the multi-task feature
selection algorithms tend to be very competitive. For example,
when the number of labeled samples for each category is 50,
the best performance (peak of the curve) of all other multi-
task based approaches is comparable to our method; 2) the
dimensions (percentage shown here) that achieve the best
performance are smaller than those on the NUS dataset. The
main reason is that the bag of SIFT visual words (BOVW)
and tags utilized are both very sparse features, which are often
more suitable for feature selection or transformation than the
compact features. Although BOVW is also used in the NUS
dataset, the dimension is smaller, thus the features tend to be
more compact.

C. Feature Transformation Evaluation
This set of experiments is conducted by applying the

obtained solutions of {U (v)} and {θv} for feature transforma-
tion, i.e., the transformed representation

∑V
v=1 θv(U (v))T x (v)

n
is used for the subsequent classification. Most of the feature
selection methods compared in Section V-B can also be used
for feature transformation, with the exception of the TMFS
algorithm, which eliminates features with the least predictive
power one by one and does not learn extraction matrices.

The other feature selection approaches that can be used for
feature transformation are termed MTFT, RFT, SSMVFT,
and LM3FT respectively in this section. The final feature
dimension is equal to the number of class labels P , and
the parameters are tuned in the same way as in the last
set of experiments. To facilitate comparison, we also present
the results of MTFS, RFS, SSMVFS, and LM3FS at the
number of selected features (percentages) that achieve their
best performance.

We first show the F1 scores for the individual classes on the
NUS-WIDE animal subset in Fig. 5. From the results, we can
see that most categories are hard to distinguish since they are
similar to other categories (e.g., “cat” is similar to “tiger”),
or have large intra-class variability (such as “bird”). Some
categories are a bit easier since they have low similarity to
other categories (such as “bear”) or small intra-class variability
(such as “cow”). Overall, it is a challenge dataset due to its
high inter-class similarity and large intra-class variability.

We also report the performance over all classes on the
two datasets in Table I and Table II respectively. It can be
seen from the results that: 1) the performance of the feature
transformation strategy is better than the CAT baseline, as
well as its corresponding feature selection strategy in most
cases. This is mainly because the selection process may
discard some useful information, which is usually preserved
in transformation; 2) feature selection is more stable than
transformation, since performance of the latter will be very
unsatisfactory (e.g., RFT on the MIR dataset) if the learned
transformation matrix is unreliable. This never occurs with
feature selection, since it can never be worse than the CAT
baseline if enough features are selected; 3) on the NUS dataset,
SSMVFT is superior to both MTFT and RFT, which are
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Fig. 5. F1 scores for the individual classes on the NUS-WIDE animal subset. 6 labeled samples for each animal concept are utilized. (Left: the feature
selection methods at their best dimensions; Right: the feature transformation methods.)

TABLE I

ACCURACIES AND MACROF1 SCORES OF THE COMPARED FEATURE TRANSFORMATION METHODS (AS WELL AS THE
FEATURE SELECTION METHODS AT THEIR BEST DIMENSIONS) ON THE NUS-WIDE ANIMAL SUBSET

TABLE II

mAPs OF THE COMPARED FEATURE TRANSFORMATION METHODS

(AS WELL AS THE FEATURE SELECTION METHODS AT THEIR
BEST DIMENSIONS) ON THE MIR FLICKR DATASET

comparable to the CAT baseline, and the proposed LM3FT
significantly outperforms all the other transformation methods.
Although SSMVFT is comparable to our method when 50
labeled positive instances are utilized, the proposed LM3FT
still achieves the best performance overall on the MIR dataset;
4) On the NUS dataset, the standard deviation of the pro-
posed LM3FS is less than or comparable to the compared
MTFS, RFS, and SSMVFS. However, the standard deviation
of LM3FT is larger than the compared MTFT, RFT, and
SSMVFT. This is mainly because the proposed method learns
an additional large margin prediction parameter “W” compared
with the other methods. Although it helps to approximate the
true underlying model, a large variance (standard deviation)
may be obtained according to the machine learning theory

on bias and variance trade-off ([46], [47]). We therefore add a
regularization term ‖W‖2

F to control the model complexity, so
that the resulted standard deviation is tolerable for real world
applications. In addition, the standard deviations of the pro-
posed method are comparable to other approaches on the MIR
dataset. This indicates a good bias and variance trade-off of the
proposed model.

VI. CONCLUSION

This paper presents a large margin multi-modal multi-
task feature extraction (LM3FE) framework. The framework
simultaneously utilizes the information shared between tasks
and the complementarity of different modalities to extract
strongly predictive features for image classification. The
framework can either be used for feature selection (LM3FS) or
as a feature transformation (LM3FT) method. We investigated
these two strategies and experimentally compared them with
other multi-modal feature extraction approaches. We mainly
conclude that: 1) both the label relationships and modality
correlations are critical for multi-modal feature selection in
multi-class or multi-label image classification, and by select-
ing features with strongly predictive power we can usually
obtain significant improvements; 2) sparse features seem to be
more appropriate for feature selection or transformation than
compact features; and 3) it seems that feature transformation
is better than feature selection when the same feature weight
matrix is used, but the performance of feature selection tends
to be more stable. In the future, we aim to apply the pro-
posed method to big data [48] and cloud media [49], [50]
analysis.
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APPENDIX A
PROOF OF THEOREM 1

Proof: According to (6), (8) and the reformulation
h̄ p({x (v)

n }) = h̄ p(zn, wp) = wT
p zn + bp, the gradient of gσ

w.r.t. wp for the n’th sample is

∂gσ (x (v)
n , ypn, wp)

∂wp

=

⎧
⎪⎪⎨

⎪⎪⎩

0, νpn = 0;
−ypnzn, νpn = 1;
(−ypnzn)(1−ypnh̄ p(zn, wp))

σ‖xn‖∞
, νpn = 1−ypnh̄(zn, wp)

σ‖xn‖∞
.

(33)

This indicates that

∂gσ (x (v)
n , ypn, wp)

∂wp
= −ypnznνpn. (34)

Thus the sum of the gradient over all the N samples is

∂gσ (wp)

∂wp
= ∂

∑N
n=1 gσ (zn, ypn, wp)

∂wp
= −ZYpνp . (35)

Given function g(x), for any x (1) and x (2), the Lipschitz
constant L satisfies

‖∇g(x (1)) − ∇g(x (2))‖2 ≤ L‖x (1) − x (2)‖2. (36)

Hence the Lipschitz constant of gσ w.r.t. wp can be calculated
from

max

∥∥∥∥
∂gσ

∂w
(1)
p

− ∂gσ

∂w
(2)
p

∥∥∥∥
2

‖w(1)
p − w

(2)
p ‖2

≤ Lσ
g (zn, ypn, wp). (37)

According to (33), we have

∂gσ

∂w
(1)
p

− ∂gσ

∂w
(2)
p

=
⎧
⎨

⎩

0, ypnh̄ p(xn) >1 or <1 − σ‖xn‖∞;
znzT

n (w
(1)
p − w

(2)
p )

σ‖xn‖∞
, else.

(38)

Therefore,

max
‖znzT

n (w
(1)
p − w

(2)
p )‖2

σ‖xn‖∞‖w(1)
p − w

(2)
p ‖2

≤ ‖znzT
n ‖2

σ‖xn‖∞
= Lg(zn, ypn, wp).

(39)

To this end, the Lipschitz constant of gσ (wp) is calculated as
∑

n

Lg(zn, ypn, wp) ≤ Nmaxn Lg(zn, ypn, wp)

= N

σ
maxn

‖znzT
n ‖2

‖xn‖∞
= Lσ

g (wp). (40)

This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Proof: According to (6), (8) and the reformulation
h̄ p({x (v)

n }) = h̄ p(x (v)
n , U (v)) = θvw

T
p (U (v))T x (v)

n + c(v)
pn , the

gradient of gσ w.r.t. U (v) for the n’th sample is

∂gσ (x (v)
n , ypn, U (v))

∂U (v)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, νpn = 0;
−ypnθv x (v)

n wT
p , νpn = 1;

(−ypnθv x (v)
n wT

p )(1 − ypnh̄ p(x (v)
n , U (v)))

σ‖xn‖∞
,

νpn = 1 − ypnh̄(x (v)
n , U (v))

σ‖xn‖∞
.

(41)

This indicates that

∂gσ (x (v)
n , ypn, U (v))

∂U (v)
= (−ypnθvx (v)

n wT
p )νpn . (42)

Thus the sum of the gradient over all the N samples and
P labels is

∂gσ (U (v))

∂U (v)
= ∂

∑P
p=1

∑N
n=1 gσ (x (v)

n , ypn, U (v))

∂U (v)

=
P∑

p=1

−θv X (v)Ypνpw
T
p . (43)

According to (36), the Lipschitz constant of gσ w.r.t. U (v) can
be calculated from

max

∥∥∥ ∂gσ

∂U (v),(1) − ∂gσ

∂U (v),(2)

∥∥∥
2

‖U (v),(1) − U (v),(2)‖2
≤ Lσ

g (x (v)
n , ypn, U (v)). (44)

According to (41), we have

∂gσ
p

∂U (v),(1)
− ∂gσ

p

∂U (v),(2)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0,
ypnh̄ p(xn) > 1 or

< 1 − σ‖xn‖∞;
(θ2

v x (v)
n wT

p )[(x (v)
n )T (U (v),(1) − U (v),(2))wp]

σ‖xn‖∞
,

else.
(45)

Therefore,

max
‖(θ2

v x (v)
n wT

p )[(x (v)
n )T (U (v),(1) − U (v),(2))wp]‖2

σ‖xn‖∞‖U (v),(1) − U (v),(2)‖2

≤ θ2
v ‖x (v)

n wT
p ‖2‖(x (v)

n )T ‖2‖wp‖2

σ‖xn‖∞
= Lσ

g (x (v)
n , ypn, U (v)).

(46)



LUO et al.: LARGE MARGIN MULTI-MODAL MULTI-TASK FEATURE EXTRACTION 425

To this end, the Lipschitz constant of gσ
p (U (v)) is calculated as

∑

p

∑

n

Lg(x (v)
n , ypn, U (v))

≤ P N max
p

max
n

Lσ
g (x (v)

n , ypn, U (v)) = P Nθ2
v

σ
max

p
max

n

× ‖x (v)
n wT

p ‖2‖(x (v)
n )T ‖2‖wp‖2

‖xn‖∞
= Lσ

g (U (v)). (47)

This completes the proof.

APPENDIX C
PROOF OF THEOREM 3

Proof: It can easily be verified that (22) and (23) are the
gradient and Lipschitz constant of the following problem:

argmin
U (v)

�(U (v)) + γB tr
(
(U (v))T D(v)U (v)

)
. (48)

Thus U (v)
t+1 in (26) is the solution of (48) after the t’th iteration

round if the Nesterov optimal gradient method is applied. This
indicates that

�(U (v)
t+1) + γB tr

(
(U (v)

t+1)
T D(v)

t U (v)
t+1

)

≤ �(U (v)
t ) + γB tr

(
(U (v)

t )T D(v)
t U (v)

t

)
, (49)

That is to say,

�(U (v)
t+1) + γB

∑

i

‖u(v),i
t+1 ‖2

2

2‖u(v),i
t ‖2

≤ �(U (v)
t )+ γB

∑

i

‖u(v),i
t ‖2

2

2‖u(v),i
t ‖2

.

(50)

Using a simple trick (simultaneously adding and subtracting a
term), we have

�(U (v)
t+1) + γB‖U (v)

t+1‖2,1 − γB

(
‖U (v)

t+1‖2,1 −
∑

i

‖u(v),i
t+1 ‖2

2

2‖u(v),i
t ‖2

)

≤ �(U (v)
t ) + γB‖U (v)

t ‖2,1

− γB

(
‖U (v)

t ‖2,1 −
∑

i

‖u(v),i
t ‖2

2

2‖u(v),i
t ‖2

)
. (51)

According to Lemma 1 presented in [8], we have

‖U (v)
t+1‖2,1 −

∑

i

‖u(v),i
t+1 ‖2

2

2‖u(v),i
t ‖2

≤ ‖U (v)
t ‖2,1 −

∑

i

‖u(v),i
t ‖2

2

2‖u(v),i
t ‖2

.

(52)

Thus we obtain

�(U (v)
t+1) + γB‖U (v)

t+1‖2,1 ≤ �(U (v)
t ) + γB‖U (v)

t ‖2,1. (53)

This completes the proof.
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