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Abstract: Chessboard corner detection is a necessary procedure of the popular chessboard pattern-based camera
calibration technique, in which the inner corners on a two-dimensional chessboard are employed as calibration
markers. In this study, an automatic chessboard corner detection algorithm is presented for camera calibration. In
authors’ method, an initial corner set is first obtained with an improved Hessian corner detector. Then, a novel strategy
that utilises both intensity and geometry characteristics of the chessboard pattern is presented to eliminate fake
corners from the initial corner set. After that, a simple yet effective approach is adopted to sort the detected corners
into a meaningful order. Finally, the sub-pixel location of each corner is calculated. The proposed algorithm only
requires a user input of the chessboard size, while all the other parameters can be adaptively calculated with a
statistical approach. The experimental results demonstrate that the proposed method has advantages over the popular
OpenCV chessboard corner detection method in terms of detection accuracy and computational efficiency.
Furthermore, the effectiveness of the proposed method used for camera calibration is also verified in authors’
experiments.
1 Introduction

Camera calibration is an important technique which has been widely
used in many machine vision applications such as stereo vision [1],
visual surveillance [2] and intelligent transportation [3]. In the last
few decades, various camera calibration methods have been
introduced, which can be generally grouped into three categories:
self-calibration, two-dimensional (2D) planar pattern-based
calibration and 3D object pattern-based calibration. Among them,
the calibration methods using 2D planar pattern like circles [4, 5],
grid squares [6–8] and concentric circles [9, 10] are very popular
for their practical convenience. In particular, the planar chessboard
with black-and-white squares is one of the most commonly used
patterns for its flexibility. All the chessboard pattern-based
calibration methods are on the premise of the accurate detection of
chessboard inner corners, which are also known as X-corners for
their intuitive perception. Datta et al. [11] verified that the accurate
detection of these control points is of great importance to camera
calibration. However, compared with the great concentration on
developing robust algorithms for the calculation of camera
parameters, less attention has been paid to the bottleneck of
X-corner detection.

In general, the existing X-corner detection methods can be broadly
classified into two categories: intensity-based methods [12–15] and
geometry-based methods [16–18]. The intensity-based methods
mainly focus on the greyscale characteristics of the local regions
around X-corners. This category of methods usually relies on a
generic or specific corner detector. Harris corner detector [19],
smallest univalue segment assimilating nucleus (SUSAN) [20],
Hessian matrix and 2D Hilbert transform are employed in
publications [12–15]. In these methods, a response map is
generated to decide whether a pixel is a corner with a given
threshold. Due to the impacts of noise, illumination and clutter, it
is usually difficult to set the response threshold. As a result, some
real X-corners are often missed while some fake corners are
misdetected, which will negatively affect the calibration accuracy.
The geometry-based methods aim to detect the X-corners using
the geometry characteristics of the chessboard pattern, such as the
rectilinear distribution of X-corners and the cross-connection of
the black-and-white squares. In [16], Hough transform is
performed to detect straight lines for corner detection. The
characteristic that black-and-white squares appear in sequence on a
chessboard is fully considered by Ha [17]. Chu et al. [18]
exploited the property of chessboard pattern after a morphological
dilation operation. Since the prior knowledge of the chessboard
pattern is well utilised, the detection results of these methods are
often more accurate. However, this category of methods tends to
produce unstable results when the distortion of camera lens is too
severe or the projection angle of chessboard plane is too large.
Furthermore, there usually exist many free parameters that need to
be set manually in these methods, which is not an easy task in
practical applications.

Currently, there are two widely used camera calibration interfaces.
The first one is a MATLAB toolbox developed by Bouguet [21].
This toolbox is very effective for it has many powerful functions.
However, its X-corner detection step asks users to click on the
four extreme corners of the chessboard for each calibration image,
which limits its practicability to a large extent. The second one is
the camera calibration module included in the OpenCV library
[22]. In this module, a chessboard corner detection function named
findChessboardCorners is offered. Unlike the manual approach
adopted in the MATLAB toolbox [21], this OpenCV function only
requires users to input the size of chessboard (the number of
X-corners in 2D). Generally, the OpenCV method can achieve
satisfactory results even in the scene with complex background.
However, it usually fails in working when the area of square is too
small or the projection angle is too large. Meanwhile, the
computational efficiency of this method will significantly decrease
when the number of X-corners increases.

In this work, we present a new automatic X-corner detection
method for camera calibration. In our algorithm, a Hessian corner
detector proposed in [14] is first improved to construct an initial
corner set. Then, a novel strategy that takes both intensity and
geometry characteristics of the chessboard pattern into account is
employed to eliminate fake corners from the initial corner set.
After that, a simple yet effective approach is adopted to sort the
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detected corners into a meaningful order. Finally, the sub-pixel
location of each corner is calculated. Like the OpenCV method,
our method only requires users to provide the chessboard size,
while all the other parameters can be adaptively calculated with a
statistical approach.

A preliminary version of this work was appeared in [23], where
we only introduced an incomplete pixel-level X-corner detection
approach. In [23], the detected corners were not meaningfully
sorted and precisely located. We also did not make an attempt on
camera calibration. In this paper, the whole detection process is
completed. Moreover, we conduct more experiments on location
precision and calibration accuracy to further confirm the
effectiveness of the proposed method. The rest of this paper is
structured as follows. The relation to prior work is presented in
Section 2. Section 3 describes the detailed detection algorithm.
The experimental results and discussions are given in Section
4. Finally, Section 5 concludes the paper.
2 Related work

The proposed method is improved and extended from Chen and
Zhang’s [14] corner detection method, in which they introduced a
novel X-corner detector based on Hessian matrix. In this section,
we first have a brief review of the Hessian corner detector and
then list the main contributions of this paper.

Supposing that f (x, y) is the original chessboard image and r(x, y)
is its Gaussian blur version, the Hessian matrix of r(x, y) is defined as

H = rxx rxy
rxy ryy

( )
, (1)

where rxx, rxy and ryy are the second-order derivatives of r(x, y). As
X-corners locate at the centres of black-and-white squares, one can
easily find that they are the saddle points in r(x, y) (the purpose of
Gaussian blur is to construct these saddle points). It is well known
that Hessian matrix is a suitable tool to detect the saddle points of
a 2D function, and in [14] the determinant of Hessian matrix is
used to construct the response map

S = det (H) = rxx · ryy − r2xy. (2)

For an X-corner, its response should be a negative local minimum in
S. Instead of directly searching for the negative local minima in
Spixel by pixel, the method in [14] searches for the local minima
in S with the following constraint:

l1 . 0 and l2 , 0, (3)

where l1, l2 = 1/2(rxx + ryy +
���������������������
(rxx − ryy)

2 + 4rxy2
√

) are the larger
and smaller eigenvalues of H, respectively. Actually, since
S = l1 · l2, the above criterion is totally equivalent to only
checking the pixels with S < 0 whether they are local minima or
not. Finally, the X-corners are obtained with a fixed response
threshold.

Compared with some generalised detectors such as Harris detector
[21] and SUSAN [22], the Hessian detector is a specific approach for
the detection of X-corner pattern. However, the method in [14] still
has two main shortcomings:

i. The constraint in (3) is somewhat too weak, which may cause that
many pixels in the ‘flat’ regions of an image also satisfy the
constraint. As a result, the computational efficiency will
significantly decrease. In fact, l1 and l2 represent the maximum
and minimum of the directional derivatives of the image,
respectively. If the value of l1 or l2 is approximate to zero, it is
almost impossible for the corresponding pixel to be an X-corner
although it may be indeed a negative local minimum.
ii. Although the Hessian detector makes good use of the prior
information of the X-corner pattern, it is still impossible to find a
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threshold to ensure that all the real X-corners are detected with no
fake corner mingled. This is mainly because the local greyscale
distribution of some pixels may be very similar to an X-corner,
especially when the background is complex. As fake corners have
adverse impacts on the subsequent calibration steps, it is
worthwhile to eliminate them in the detection step.

We address the above two issues in this work, especially the latter
one. The main contributions of this paper are summarised as follows:

i. An improved Hessian detector is presented on the basis of the
method in [14].
ii. A robust approach for fake corner elimination is proposed.
iii. A simple yet effective approach is introduced to sort the detected
X-corners into a meaningful order.

3 The proposed method

3.1 Improved Hessian detector

To overcome the first shortcoming mentioned above, the constraint in
(3) is replaced by the following one:

l1 . 1 and l2 , −1, (4)

where ɛ is a small positive number. In our algorithm, it is set to
C · lmax, where C is a constant and lmax is the maximum value of
all the pixels in mapl1. Fig. 1 gives an example which exhibits the
effect of this constraint with different constant Cranging from 0 to
0.05 by a stride of 0.01. Please note that the red dots in Fig. 1
denote the local minima in the response map obtained by (2) with
the new constraint (for each pixel in the response map, we first
check whether it satisfies the constraint. Only when the condition is
valid, we further check whether it is a local minimum), so they are
just a subset of the pixels which satisfy the constraint. On one
hand, it can be seen from Fig. 1 that when C = 0, which indicates
the original situation in (3), a large number of pixels in ‘flat’
regions (the wall) are recognised. Actually, as mentioned above,
much more pixels satisfy the constraint (they may be not local
minima), leading to a time-consuming process. On the other hand,
to avoid missing real X-corners, the value of C also cannot be too
large. In this example, when C ranges from 0 to 0.05, the number
of detected dots are 10,129, 1155, 356, 221, 175 and 151,
respectively. Through a quantity of tests, we find that C = 0.03 is
always a reasonable choice, so we fix it to 0.03 in our algorithm.
With this stronger constraint, most of the pixels in ‘flat’ regions will
not be viewed as candidates, so the subsequent procedure of
verifying local minima is not required. Thus, after applying the new
constraint, the computational efficiency can be greatly improved,
especially when the area of ‘flat’ regions in the scene is large.

For the second problem, we would rather involve some fake
corners than miss any real X-corner since there are elimination
approaches later. Therefore, the response threshold is set
conservatively. Empirically, the threshold can be adaptively set to
the value which makes the number of initial X-corners twice that
of the real X-corners. After applying the improved Hessian
detector, an initial corner set can be obtained, and the next step to
eliminate the fake corners in it.

3.2 Fake corner elimination

Three properties of chessboard pattern, namely, centrosymmetry
property, distance property and angle property are developed to
accomplish the elimination task in this work. For the convenience
of description and understanding, an illustration to describe the
elimination process is shown in Fig. 2. The red dots denote the
obtained X-corners after applying the centrosymmetry property in
Section 3.2.1. Some of them are named via uppercase letters for
method description. The intersectional arrows illustrate angles. The
subfigure embedded in the top right is a circular mask employed
in Section 3.2.1.
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Fig. 1 Effect of the constraint in (4) with different constant C ranging from 0 to 0.05 by a stride of 0.01. The red dots denote the local minima in the response
map obtained by (2) with the new constraint. When C ranges from 0 to 0.05, the number of detected dots are 10,129, 1155, 356, 221, 175 and 151, respectively
3.2.1 Centrosymmetry property: As shown in Fig. 2, it is easy
to see that the local intensity distribution around an X-corner is
approximately centrosymmetric. In our method, a circular mask
shown in the top right in Fig. 2 is used to verify whether a
candidate corner satisfies this property.

Let �I i (i [ {1, . . . , 8}) denote the average intensity values of the
eight equal sectors in the circular mask. When the centre of the
circular mask locates at an X-corner, the difference between �I i and
�I i+4(i∈ {1, …, 4}) will be small while the difference between �I i
and �I i+2(i∈ {1, …, 4}) will be large. Consequently, the criterion is

(D1 , pD3 and D2 , pD3) or (D4 , pD6 and D5 , pD6), (5)
Fig. 2 Illustration of fake corner elimination. The red dots denote the
obtained X-corners after applying the centrosymmetry property in Section
3.2.1. Some of them are named via uppercase letters. The intersectional
arrows illustrate angles. The subfigure embedded in the top right is a
circular mask employed in Section 3.2.1

18
where p is a ratio factor ranging from 0 to 1 and

D1 = �I1 − �I5
∣∣ ∣∣, D2 = �I3 − �I7

∣∣ ∣∣, D3 = �I1 + �I5 − �I3 − �I7
∣∣ ∣∣/2,

D4 = �I2 − �I6
∣∣ ∣∣, D5 = �I4 − �I8

∣∣ ∣∣, D6 = �I2 + �I6 − �I4 − �I8
∣∣ ∣∣/2.

(6)

For each corner in the initial set obtained from the Hessian detector,
it will be eliminated if the criterion in (5) is invalid. An adaptive
calculation approach for the circular mask’s radius and the
parameter p will be presented in Section 3.5. It should be noted
that the two terms in (5) are connected with ‘or’ rather than ‘and’.
This is because if the constraint is too strong, some real X-corners
will be eliminated since the noise and illumination changes always
exist in practice.

It can be seen from Fig. 2 that all the real X-corners (such as A, B)
are preserved after using this property, but several stubborn fake
corners (C, D, E, F, G, H, K) still exist because their local
intensity distribution are also approximately centrosymmetric.

3.2.2 Distance property: We can see from Fig. 2 that for a real
X-corner, there are at least three neighbour X-corners around it.
Therefore, some isolated fake corners can be rooted out if they
have less than three neighbours. Therefore, for each candidate
cornerci, the criterion is

#{cj|j [ {1, . . . , N}, j = i, ||ci − cj||2 , d} ≥ 3, (7)

where N is the size of current corner set and d is a distance threshold.
In Fig. 2, four fake corners (C, D, E, F) are successfully eliminated
after applying this property. The calculation of d is also presented in
Section 3.5.

3.2.3 Angle property: Finally, for an arbitrary candidate corner
(such as A), we can search for its nearest two corners (P, Q) and
the intersection angle (PAQ) is employed to distinguish real
X-corners. We can see from Fig. 2 that for a fake corner (G, H,
K), this angle is usually a small acute angle (e.g. 30°). While for a
real X-corner, this angle is usually significantly larger even when
the projection angle of the chessboard plane to camera is large.
IET Image Process., 2016, Vol. 10, Iss. 1, pp. 16–23
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Considering the cosine function is monotonically decreasing from
0°to180°, the criterion is

cos u , t, (8)

where θ is the intersection angle and t is a cosine threshold. The
calculation of t is also given in Section 3.5. If the criterion in (8)
is invalid, the corresponding corner will be viewed as a fake
corner. As shown in Fig. 2, the last three fake corners are
eliminated with this property.

It should be noted that the angle property must be iteratively used.
This is because sometimes a few fake corners tend to get together in
a small area, which makes it impossible to eliminate all of them at
once. For example, if several fake corners locate one by one
closely in a line (this situation is very common in practice), then
only the two terminal points can be eliminated after the first
iteration. Furthermore, to accelerate the computational process, the
iteration procedure is set from the distance property to the angle
property in our method.
3.3 Corner ordering

A reliable X-corner set can be obtained after eliminating the fake
corners, but the corners should be sorted into a meaningful order
before they are used for camera calibration. We introduce a simple
yet effective approach to solve this problem here. Fig. 3 shows the
illustration of the corner ordering process. As shown in Fig. 3, for
a chessboard, its upper left, upper right, lower left and lower right
corners are denoted as A, B, C and D, respectively. The subfigure
embedded in the top right contains four equations used for
determining the four extreme corners, where ciis a candidate in the
detected corner setΛ. In addition, cxi and cyi are the horizontal and
vertical coordinates of ci, respectively.

To sort the detected X-corners, we first identify the four extreme
ones by comparing the sums and differences of the two coordinate
values over all of the corners. For example, the upper left one
owns the minimal sum while the upper right one owns the
maximal difference. The situations of the other two are similar.
Fig. 3 provides the related mathematical description. In most cases
of practical camera calibration, the above approach works well.
The ordering of X-corners will be an easy task after obtaining the
four extreme points. Considering the example shown in Fig. 3, we
can first search for the corners between A (B) and C (D) via the
linearity, and then get the inside corners on each row (there are
nine rows in Fig. 3). As a result, all the detected corners can be
Fig. 3 Illustration of corner ordering. For a chessboard, its upper left,
upper right, lower left and lower right corners are denoted as A, B, C and
D, respectively. The subfigure embedded in the top right contains four
equations used for determining the four extreme corners. The meanings of
the variables in these equations are given in the text
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correctly ordered. Please note that the order shown in Fig. 3 is not
unique since the chessboard has different number of rows and
columns. In practical applications, the order should be adjusted
according to the calibration requirement, but the approach remains
the same.
3.4 Precise location

Finally, we use the squared greyscale centroid method [24] to obtain
the sub-pixel location for each corner. Specifically, the sub-pixel
location (x0, y0) of a corner c is calculated by

x0 =
∑

(i,j)[R i · I2(i, j)∑
(i,j)[R I

2(i, j)
, y0 =

∑
(i,j)[R j · I2(i, j)∑
(i,j)[R I

2(i, j)
, (9)

Where R is a small circular window located at c and I(i, j) indicates
the intensity value at pixel (i, j).
3.5 Adaptive parameter setting

The proposed method has four main parameters: the radius r of the
circular mask in Fig. 2, the ratio factor p in (5), the distance threshold
d in (7) and the cosine threshold t in (8). The radius of window R is
also set to r. To make the method more practical, we present an
effective approach to adaptively estimate these parameters.

Considering the perspective transform, we use amin and amax to
represent the shortest and longest side lengths of all the squares,
respectively. To guarantee the correctness of the above three
properties, it is obvious that both r < amin and d .

��
2

√
amax should

be satisfied. Furthermore, the parameters p and t can also be
estimated by the two side lengths. When the difference between
the two side lengths is larger, that is, the extent of perspective
transform is stronger, both p and t should increase to make the
constraints weakened. In our algorithm, the parameters are set as
follows:

r = 0.7amin, p = 0.3amax/amin, d = 2amax, t = 0.4amax/amin.

(10)

In our method, amin and amax are estimated using the initial corner set
obtained by the improved Hessian detector in Section 3.1. For each
candidate, we can find its nearest neighbour from all the other
candidates and calculate the corresponding distance. Therefore, a
histogram that describes the distribution of nearest distance can be
generated. A typical example is shown in Fig. 4. Then, we get the
peak of the histogram and a reliable subset of distance data shown
Fig. 4 Typical distance histogram used for parameter estimation. The data
contained in the rectangle is used for side-length estimation
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Fig. 5 Two public data sets for camera calibration

a Set contains 20 images, and the chessboard has13 × 12 = 156 corners
b Set contains 14 pairs of stereo images, and the chessboard has 9 × 6 = 54 X-corners

Table 1 Detection rate of the OpenCV method and the proposed
method

Image set 1, % Image set 2, %

OpenCV 20 100
proposed 90 100
as the rectangle in Fig. 4 can be obtained. Particularly, we extend the
subset from the peak to two sides step by step until the number of
elements in the subset reaches 80% of the total number of
candidates. Finally, by employing the Gaussian distribution model,
amin and amax are calculated by

amin = �a− 3s, amax = �a+ 3s, (11)
Fig. 6 Three examples of X-corner detection results. The left, middle and right co
proposed method, respectively

20
where �a and σ are the mean value and the standard deviation of the
distance data in the obtained subset, respectively.
4 Experiments

4.1 Experimental setups

As shown in Fig. 5, two public image data sets for camera calibration
from website [21] are mainly used in our experiments. The first data
set shown in Fig. 5a consists of 20 calibration images, and the size of
chessboard is 13 × 12 = 156. The second data set shown in Fig. 5b
contains 14 pairs of stereo images, with 9 × 6 = 54 X-corners in
the chessboard. The spatial resolution of each image in both the
two data sets is 640 × 480 pixels.

To confirm the effectiveness of our method, we mainly compare it
with the popular OpenCV detection method [22]. The function
findChessboardCorners in OpenCV calib3d module can
lumns show the results of the OpenCV method, the Hessian detector and the
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Table 2 Average distance between the refined locations of the OpenCV
method and the proposed method (unit: pixel)

Image set 1 Image set 2 – left Image set 2 – right

distance 0.013 0.010 0.009

Table 3 Average distance between the reference location and the
location obtained by the OpenCV method or the proposed method (unit:
pixel)

Image set 1 Image set 2 – left Image set 2 – right

OpenCV 0.552 0.438 0.310
proposed 0.465 0.386 0.354

Table 5 Average computational time of the two methods on one image
(unit: s)

Image set 1 Image set 2

OpenCV 1.027 0.133
proposed 0.126 0.104
automatically detect and sort the X-corners at sub-pixel level, and it
also just requires the users to input the size of chessboard. Thus, the
inputs and outputs of the proposed method and the OpenCV method
are completely the same, which guarantees the fairness of the
comparison.

The comparison is conducted on four aspects, namely, detection
rate, location precision, calibration accuracy and computational
efficiency. For each image set, the detection rate equals the ratio of
successfully detected images in the whole set. An image is
successfully detected means that all the real X-corners are detected
with no fake corner involved. The location precision is measured
by the average distance between an obtained sub-pixel location
and its reference location. The reference location is calculated by
the function cornerSubPix in OpenCV imgproc module. This
function adopts an iterative strategy to find the accurate sub-pixel
location of corners. Actually, to refine the location precision for
calibration, the OpenCV library suggests users to apply this
function after obtaining corners by the function
findChessboardCorners. The feasibility of this function used to
calculate the reference location will be experimentally verified
later. The calibration accuracy is measured by camera intrinsic
parameters and the re-projection error. The re-projection error
indicates the average distance between an observed point and its
corresponding projected point (using the calculated camera
intrinsic and extrinsic parameters) from the chessboard pattern. To
compare the computational efficiency, we measure the average
running time of the two methods’ corner detection parts. All the
experiments are carried on a PC with 2.8 GHz central processing
unit and 4 GB random access memory.
4.2 Experimental results

Table 1 lists the detection rate of each image set. It can be seen that
for the second set, both of the two methods can perfectly accomplish
the detection task for all the 28 images. However, for the first set, the
OpenCV method can only successfully handle four images (Nos. 9,
11, 17, 20), while our method only fails in processing two images
(Nos. 5, 18). Fig. 6 shows three examples (Nos. 7, 16, 18 in the
first set) of detection results of the OpenCV method, the Hessian
detector and the proposed method. In all the three examples, the
Hessian detector can obtain all the real X-corners but many fake
Table 4 Camera calibration results of different methods (unit: pixel)

Data Methods Refinement fx

left image set OpenCV no 530.693
OpenCV yes 532.801
proposed no 533.365
proposed yes 532.843

right image set OpenCV no 537.115
OpenCV yes 537.147
proposed no 536.872
proposed yes 537.124
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corners are involved at the same time. In the first example, the
OpenCV method misses four real X-corners (three are extreme
ones) and wrongly detects a fake corner. The proposed method
can successfully detect all the real X-corners with no fake corner
involved. In the second example, the OpenCV method misses two
extreme corners, and we can clearly see that the locations of many
corners are not very accurate. The proposed method also
successfully finishes the detection task. In the third example, the
projection angle of the chessboard plane is larger than the first two
examples. As a result, the OpenCV method misses several corners
in the lower left region. The proposed method obtains all the real
corners, but one fake corner near the chessboard is involved
because all of the above three properties fails in eliminating it.

To measure the location precision, as mentioned above, we use the
function cornerSubPix to obtain the reference location for each
corner. The feasibility of this approach is first verified. For the first
image set, only four images (Nos. 9, 11, 17 and 20) take part in
the calculation since others are not successfully processed by the
OpenCV method or the proposed method. For the second image
set, we further divide it into two subsets: 14 left images and 14
right images. For each new data set, the OpenCV method and the
proposed method are employed to detect the X-corners. Then, we
apply cornerSubPix to refine the obtained results. For each set, let
L1 and L2 denote the refined locations of the OpenCV method and
the proposed method, respectively. The average Euclidean distance
of two corresponding locations in L1 and L2 is given in Table 2. It
can be seen that the distance is only about 0.01 pixel for each set,
which means that the function cornerSubPix is not sensitive to the
inputs. Therefore, it is reasonable to use the refined results as the
reference. In our experiments, for an X-corner, its reference
location is set to the average value of the two refined results.
Table 3 lists the average Euclidean distance between the reference
location and the location obtained by the OpenCV method or the
proposed method for each image set. It can be seen that our
method slightly outperforms the OpenCV method on the first
image set. For the second set, the location precisions of the two
methods are comparable.

In this work, calibration results are obtained by the OpenCV
function calibrateCamera, which is implemented based on the
calibration method [6]. For either the OpenCV method or the
proposed method, the original detection results and the refined
results by cornerSubPix are employed for calibration, respectively.
Since the successfully detected images in the first image set are
not enough, only the second set are used to test here, and we also
divide it into two parts as before. The camera calibration results of
the two methods are listed in Table 4, where fx, fy are the local
lengths and (cx, cy) are the principal points. It can be seen that the
results of the OpenCV method and the proposed methods are very
approximate when the refinement is performed. When there is no
refinement, the proposed method outperforms the OpenCV method
fy cx cy Re-projection error

531.430 342.640 237.703 0.619
532.965 341.773 234.101 0.199
533.298 341.376 235.343 0.492
532.990 341.805 234.110 0.198
536.842 327.776 250.073 0.454
536.722 326.941 249.142 0.211
536.107 326.649 250.495 0.498
536.705 326.958 249.137 0.210
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Fig. 7 Example of fake corner elimination

a Detection results after applying improved Hessian matrix detector
b Detection results after applying the centrosymmetry property
c Detection results after applying the distance property (the first iteration)
d Final detection results
for the left image set, but the situation of the right image set is just on
the contrary. Please note that the results in Table 4 are in accord with
those in Table 3.

Table 5 lists the average computational time of the two methods
on one image. It can be seen that the proposed method is more
efficient than the OpenCV method even though our program is not
well optimised. Furthermore, the computational efficiency of the
OpenCV method significantly decreases when the number of
X-corners increases from 54 to 156. However, our method can still
maintain a high speed in this situation.

In summary, the above experimental results demonstrate that the
proposed method owns clear advantages over the OpenCV method
in terms of detection rate and computational efficiency, which is
the highlight of the proposed method. Furthermore, the location
precision of the detected corners by our method is at least
comparable with the OpenCV method before refinement, which
ensures that the locations after refinement can result in a reliable
calibration performance. In practical calibration applications, the
refinement stage using the function cornerSubPix can be combined
into our method to further improve location precision and
calibration accuracy.

4.3 Further discussions on fake corner elimination

The primary contribution of this paper is the proposed strategy for
fake corner elimination. In this subsection, we have a brief review
of the elimination approach. The centrosymmetry property is an
intensity-based property, which is strictly valid for affine
transforms and approximately valid for perspective transforms. In
real-world camera calibration applications, this property can
always work well as long as the distortion of camera lens is not
too severe. Moreover, the condition in (5) is not very strong, so
the real X-corners have a very high probability to be completely
preserved after using this property. However, for the same reason,
a few stubborn fake corners that have similar local intensity
distributions may still exist. Thus, we present two subsequent
properties, which make good use of the geometry characteristics of
chessboard pattern. The distance property can eliminate isolate
corners, and it is valid even for non-linear transform (lens
distortion). However, if several fake corners distribute closely, it
will lose effectiveness. Fortunately, the angle property is an
effective tool to solve this problem, and it can gradually
disassemble and eliminate those fake corners. Fig. 7 provides a
typical example of the elimination process. For more examples as
well as the experimental results on some other calibration image
sets, please refer to our supplementary material which is available
on http://yuliuustc.weebly.com/.
5 Conclusions

In this paper, we propose an automatic chessboard corner detection
algorithm for camera calibration. We first improve the Hessian
corner detector to make it more efficient. Then, we present an
22
effective strategy which simultaneously employs the intensity and
geometry characteristics for fake corner elimination. Finally, a
simple yet effective approach is introduced to accomplish corner
ordering task. To make the algorithm more practical, we design a
statistical approach to adaptively estimate the free parameters. The
popular OpenCV corner detection method is used for comparison
in the experiments. The effectiveness of the proposed method is
verified from several aspects such as detection rate, location
precision, calibration accuracy and computational efficiency. In the
future, we will develop some new intensity and geometry
characteristics of the chessboard pattern to make the detection
algorithm more robust.
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