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The contamination of Ni(II) on the apple orchards soil is more serious nowadays. The uptake of Ni(II) from aque-
ous solutions on graphene oxide (GO)was investigated by batch, XPS andmodeling techniques. The batch exper-
iments indicated that the uptake of Ni(II) on GO increased significantly with increasing pH from 2.0 to 6.0, and
the high-level uptake of Ni(II) was observed at pH N 6.0. No effect of ionic strength on Ni(II) uptake indicated
inner-sphere surface complexation dominated the uptake of Ni(II) on GO. The maximum uptake capacity of
GO for Ni(II) calculated from Langmuir model was calculated to be 81.97 mg/g at pH 5.0 and 293 K. The results
of XPS spectra indicated that a variety of oxygen-containing functional groups were responsible for the uptake
of Ni(II) on GO. The uptake process of Ni(II) on GO can be satisfactorily fitted by surface complexation modeling
using diffuse layer model with two inner-surface complexes. These findings are crucial for the potential applica-
tion of graphene oxide in the uptake of heavy metals in environmental cleanup.
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1. Introduction

The anthropogenic activities (i.e., tanneries, smelters and sewage
sludge application) could be lead to the contamination of Ni(II) in soils
[1]. Accumulation of excessive amounts of Ni(II) in soil could lead to the
toxic effect on soil plants and/or organisms [2]. Many researchers studied
the uptake of Ni(II) on various adsorbents such as clay minerals [3–10]
and metal (hydr)oxides [11–16]. In these studies, it is found that the up-
take of Ni(II) on various adsorbents decreased with increasing ionic
strength. However, the limited uptake capacities of these natural adsor-
bents couldbe blocked their practical application for the decontamination
of heavy metals from aqueous solutions in environmental cleanup.

Owing to large specific surface area, high chemical reactivity and
various oxygenated functional groups, graphene oxide (GO) has been
extensively regarded as suitable materials for uptake of heavy metal
ions [17–24]. Zhao et al. demonstrated that themaximumuptake capac-
ities of GO on Cd(II) and Co(II) were ~106 and 68 mg/g at pH ~ 6.0 and
T=303 K, respectively [25]. The accuracy inmodeling of uptake behav-
ior is crucial for the design of uptake treatment units. Ding et al. used ex-
tended X-ray absorption fine structure spectra to demonstrate the
specific adsorption between Ni(II) and carbon nanofibers [26]. To the
authors' knowledge, few studies on the uptake mechanism of Ni(II) on
GO by modeling technique was still available nowadays [27–31].
oilphysics@163.com (Y. Wang).
In recent years, surface complexationmodeling has extensively been
employed to fit the uptake behaviors at the solid-water interface exten-
sively [32–35]. Sun et al. studied the uptake of U(VI) onGOusing surface
complexation modeling and found that uptake behaviors can be satis-
factorily fitted by two inner-sphere surface complexes [36]. A thorough
understanding of the uptake behavior ofmetals at thewater-solid inter-
face is therefore of fundamental importance. However, the uptake of
Ni(II) on GO by using surface complexation modeling are still scarcely.

The aims of this study are (1) to synthesize GO and characterize the
nanostructure and surface properties of GO by using scanning electron
microscopy (SEM), transmission electron microscopy (TEM), X-ray
photoelectron spectroscopy (XPS) and Fourier transformed infrared
spectroscopy (FT-IR); (2) to elucidate the effects of water chemistry, in-
cluding pH, ionic strength, initial Ni(II) concentrations and temperature,
on the uptake of Ni(II) on GO by batch technique; (3) to demonstrate
the uptake mechanism of Ni(II) on GO by using surface complexation
modeling. This study gives an insight into the removal of heavy metals
from large volumes of aqueous solutions in environmental cleanup.

2. Materials and methods

2.1. Materials

Graphite (N200 mesh) was purchased from Tianda Co. Ltd. (Qing-
dao, China). All reagents (e.g., KMnO4, H2SO4 and H2O2) of analytical
grade were obtained from Sinopharm Chemical Reagent Co., Ltd. The
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stock solution of Ni(II)wasprepared bydissolvingNiNO3 (spectroscopic
purity, Sigma-Aldrich) into deionized water.

2.2. Synthesis and characterization of GO

The GO was synthesized by the oxidation of graphite under concen-
tration H2SO4 solution conditions according to the modified Hummers
method [37]. Briefly, flake graphite and KMnO4 solid were added into
concentrated H2SO4 under the ultrasonication conditions for 5 days,
then H2O2 was added to eliminate the excess MnO4

− anions. Graphite
oxides were obtained by centrifuging it at 18,000 rpm for 30 min and
washed it several times to remove the redundant H+, and then pastes
were stirred under vigorously ultrasonic conditions. GO was obtained
by centrifugation and ultrasonication conditions. The morphology of
GO was characterized by SEM (field emission scanning electron micro-
scope, FEI-JSM 6320F) and TEM JEOL transmission electronmicroscope,
JEM-2010, Japan). The XPSmeasurements were conducted with a Ther-
mo ESCSLAB 250 electron spectrometer using 150 W Al Kα radiation.
The surface functional groups of GO was recorded by using FT-IR spec-
troscopy measurements (Perkin-Elmer 100 spectrometer) in KBr pellet
at room temperature.

2.3. Batch uptake experiments

The triple uptake experiments of Ni(II) onGOwere conducted under
N2 conditions at T = 293 K in the presence of 0.01 mol/L NaCl. Briefly,
the GO solution and NaCl were pre-equilibrated for 24 h, then Ni(II)
stock solution were provided into the bulk suspension gradually in
order to avoid generating Ni(OH)2 precipitate. The pH values were ad-
justed to be in the range 2.0 to 11.0 by adding negligible volume of
0.1–1.0 mol/L HClO4 or NaOH solution. Then suspensions were reacted
under the stirring conditions for 48 h to ensure that the uptake reaction
could achieve uptake equilibrium (preliminary experiments found that
this was adequate for the suspension to obtain equilibrium). To elimi-
nate the effect of Ni(II) uptake on tube walls, the uptake of Ni(II) with-
out GO was carried out under the same experimental conditions. The
solid phases were separated from liquid phases by centrifugation at
7000 rpm for 20 min, and then the supernatant was filtered by a 0.22-
μmmembrane. The concentration of Ni(II) in aqueous solutionswas de-
termined by atomic absorption spectroscopy (AAS-6300, Shimadzu).
The amount of adsorbed Ni(II) was calculated by the difference in the
initial and equilibrated concentration of Ni(II) in aqueous solutions.

2.4. Surface complexation modeling

The uptake of Ni(II) on GO at different pH and 0.01 mol/L NaCl con-
ditionswasfitted by using the diffuse layermodel (DLM)with the aid of
visual MINTEQL v 2.6 code [38]. The surface acidity constants (log K1

and log K2 values) were calculated as Eqs. (1) and (2):

SOHþ Hþ ¼ SOHþ
2 ð1Þ

SOH ¼ SO− þ Hþ ð2Þ

where the values of log K1 and log K2were obtainedbyfitting thedata of
acid-base titration at I = 0.01 mol/L NaCl solutions.

3. Results and discussion

3.1. Characterization

The morphology and microstructure of GO were characterized by
SEM and TEM. As shown by SEM in Fig. 1A, GOwas tightly accumulated
together by randomly and thin nanosheets [39–41]. As shown in Fig. 1B,
the average size of GO presented ~2.5 × 5.0 nm according to the high
resolution TEM image [21]. Fig. 1C shows the deconvolution of high res-
olution O 1 s XPS spectra of GO. The major O 1 s peak of GO can be
deconvoluted into three sub-peaks, including peaks at 531.55, 532.66
and 533.45 eV, which can be indexed into bridging –OH, –COO and
adsorbed H2O, respectively [21]. The results of XPS analysis indicated
that GO presented a variety of oxygen-containing functional groups
such as hydroxyl, epoxy, carboxyl and carbonyl groups. Fig. 1D shows
the FT-IR spectrum of GO. The main bands at 1105, 1225, 1622 and
1725 cm−1 were ascribed to the C\\H, C-OH, C_C and C_O group, re-
spectively [42–44], indicating that GO displayed the large amounts of
oxygen-containing functional groups such hydroxyl, carboxyl, epoxy
and carbonyl groups. The N2-BET specific surface area (SSA) of the as-
prepared GOwas 114m2/g, whichwas significantly lower than the the-
oretical value (~2700 m2/g). It was assumed that the powder of GO
could be easily aggregated together,which can result in the partial over-
lapping and coalescing of nanosheets [21].

3.2. Effect of reaction time

Fig. 2 shows the effect of contact time on Ni(II) uptake onto GO at
pH 5.0 and I = 0.01 mol/L NaCl solutions. One can see that the uptake
rate of Ni(II) on GO significantly enhanced with increasing reaction
times within 3.0 h, then remained the high level uptake at reaction
time N6.0 h. At reaction time of 12 h, approximate 99.9% of Ni(II)was re-
moved by GO, revealing that GO enhanced the rate and extent of Ni(II)
uptake from aqueous solutions. The uptake data were fitted by pseudo-
first-order kinetic and pseudo-second-order kinetic model. The equa-
tions of pseudo-first-order and pseudo-second-order kinetic models
can be described by Eqs. (3) and (4), respectively:

ln qe−qtð Þ ¼ lnqe–kf � t ð3Þ

t=qt ¼ 1= ks � qe
2� �þ t=qe ð4Þ

where qe and qt (mg/g) are the amount of Ni(II) adsorbed at equilibrium
and at time t, respectively. kf and ks are the pseudo-first-order andpseu-
do-second-order kinetic rate constant, respectively. As summarized in
Table 1, the maximum adsorption capacity obtained from pseudo-sec-
ond-order kinetic model (9.874 mg/g) was more close to theoretical
maximum adsorption capacity (12.5 mg/g) compared to the pseudo-
first-order kinetic model (8.75 mg/g). The correlation coefficient
(R2 = 1) obtained from pseudo-second-order kinetic model was signif-
icantly higher than that of pseudo-first-order kinetic model (R2 b 0.67).
These evidences indicated that the uptake kinetics of Ni(II) onGO can be
satisfactorily fitted be pseudo-second-order kinetic model, which was
in accordance with previous studies [45–49].

3.3. pH and ionic strength effect

Fig. 3 shows the uptake of Ni(II) on GO as a function of pH in 0.001,
0.01 and 0.1mol/LNaCl solutions. Approximate 30%of Ni(II)wasuptake
by GO at pH ~ 2.0, then Ni(II) uptake increased slightly with increasing
pH starting from 2.0 to 6.0, and then kept the high level at pH N 6.0. Sun
et al. demonstrated that the pHPZC (pH at point of zero charge) of GO
was calculated to be ~4.0 [36]. The distribution of Ni(II) in aqueous so-
lutions was Ni2+/Ni(OH)+ and Ni(OH)2(aq) at pH b 9.5 and 9.5–11.0,
respectively [50]. Therefore, the increased uptake of Ni(II) on GO at
pH 2.0 and 6.0 could be attributed to the electrostatic attraction of neg-
ative charged of GO surface and positive charged of Ni(II) species (e.g.,
Ni2+/Ni(OH)+ species). The high level uptake of Ni(II) on GO could be
due to the formation of surface co-precipitate such as Ni(OH)2(s).

The effect of ionic strength on the uptake of Ni(II) on GO was also
showed in Fig. 3. As shown in Fig. 3, it is found that the uptake of
Ni(II) on GO was independent of ionic strength. Previous studies dem-
onstrated that the outer-sphere surface complexation was sensitive to



528.6 530.1 531.6 533.1 534.6
Binding energy (eV)

A B

DC

20 nm

400

Adsorbed 

H2O

-COOH

-OH

GO after Ni(II) uptake

GO

Fig. 1. Characterization of GO. A: SEM image; B: TEM image; C: XPS spectra; D: FT-IR spectrum.
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the effect of ionic strength, whereas inner-sphere surface complexation
was independent of ionic strength [51–53]. Therefore, the ionic
strength-dependent experiments indicated that the uptake of Ni(II) on
GO was inner- sphere surface complexation. The occurrence of plenty
of surface oxygen functional groups on GO surface were favorable to
form strong complexes with Ni(II) ions on the surfaces of GO.

3.4. Effect of Ni(II) concentration and temperature

Fig. 4 shows the uptake isotherms of Ni(II) on GO at pH 5.0 under
T = 293, 323 and 333 K by batch technique. It is observed that the up-
take of Ni(II) on GO significantly increasedwith increasing temperature.
The uptake data of Ni(II) on GOwere fitted by Langmuir and Freundlich
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Fig. 2.Uptake kinetics of Ni(II) on GO, C0= 10.0mg/L, pH 5.0, I=0.01mol/L NaCl, m/v=
0.8 g/L, T = 293 K.
models. The models of Langmuir and Frenudlich models can be
expressed by Eqs. (5) and (6), respectively:

Ce=Qe ¼ 1= qmax � Kað Þ þ Ce=qmax ð5Þ

Qe ¼ K F � Ce
1=n ð6Þ

where Qe (mg/g) and Ce (mg/L) are the amount of adsorbed Ni(II) on GO
and equilibrium concentration in solution, respectively. qmax refers to the
maximum adsorption capacity, and Ka(L/mg) and KF−(mg1 − ng−1Ln)
are the constants of Langmuir and Frenudlich model, respectively. 1/n
refer to the Frenudlich exponent related to isothermnonlinearity, respec-
tively. The fitted parameters of Langmuir and Freundlich models were
summarized in Table 2. As shown in Table 2, one can see that the uptake
behaviors of Ni(II) on GO can be fitted by Langmuir model very well with
high correlation coefficient (R2 N 0.995) compared to Freundlich model
(R2 b 0.985). The maximum uptake capacity of Ni(II) on GO calculated
from Langmuir model was 81.97 mg/g at pH 5.0 and 293 K. As shown
by FT-IR spectrumofGO afterNi(II) uptake in Fig. 1D, the peaks of carbox-
yl (at ~1725 cm−1) and hydroxyl (at ~1225 cm−1) of GO were signifi-
cantly lower than those of GO after Ni(II) uptake (at ~1730 and
1229 cm−1 for carboxyl and hydroxyl group, respectively), suggesting a
covalent linkage of Ni(II) with carboxyl and hydroxyl groups [54]. Such
high adsorption capacity of GO could be attributed to the abundant of
Table 1
Parameters of pseudo-first-order and pseudo-second-order kinetic model for Ni(II) up-
take by GO.

Pseudo-first-order Pseudo-second-order

qe(mg/g) kf(h−1) R2 Qtheo (mg/g) qe(mg/g) ks(g/(mg × h)) R2

8.75 0.003 0.652 12.5 9.874 0.00042 1

Image of Fig. 1
Image of Fig. 2
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Fig. 3. Effect of ionic strength on the Ni(II) uptake on GO under different pH conditions,
C0 = 10.0 mg/L, m/v = 0.8 g/L, T = 293 K.

Table 2
Parameters of Langmuir and Freundlich model for Ni(II) uptake by GO.

Langmuir Freundlich

Ka qmax (L/mg) R2 (mg/g) ln KF (mg/g)/(mg/g)n 1/n R2

293 K 0.240 81.97 0.994 2.705 0.6577 0.979
323 K 0.238 109.9 0.997 3.003 0.6360 0.983
333 K 0.201 156.3 0.995 3.215 0.6849 0.983

Table 3
Thermodynamic parameters for Ni(II) uptake by GO.

Temperature Δ G0(kJ/mol) Δ H0(kJ/mol) Δ S0(J/(mol·K))

293 K −25.48
323 K −27.97 10.12 121.55
333 K −30.33
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various oxygenated function groups such as hydroxyl, epoxy and carbox-
yl groups.

The thermodynamic parameters (Gibbs free energy change-ΔG0, en-
thalpy change-ΔH0 and entropy change-ΔS0) of uptake of Ni(II) on GO
can be calculated from the temperature dependent uptake isotherms.
The values of ΔG0 can be calculated by Eq. (7):

ΔG0 ¼ −RT lnKd
0 ð7Þ

where R and T are the ideal gas constant (8.314 J/(mol·K)) and temper-
ature in Kelvin, respectively. The values of ΔH0 and ΔS0 can be calculat-
ed from the slope and intercept of the plot of ln Kd

0 vs. 1/T:

lnKd
0 ¼ ΔS0=R−ΔH0=RT ð8Þ

These parameters were summarized in Table 3. As shown in Table 3,
the negative ΔG0 values (e.g., −25.48 and −30.33 kJ/mol at 293 and
333 K, respectively) indicated that the uptake of Ni(II) on GO was a fa-
vorably spontaneous process [55]. The decrease of ΔG0 with increasing
temperatures revealed that the uptake of Ni(II) on GO was more favor-
able at higher temperature. The positive ΔH0 value (10.12 kJ/mol) indi-
cated that Ni(II) uptake by GO was an endothermic process. Previous
studies determined that the dehydration of Ni(II) from aqueous Ni(II)
complex ion was an endothermic process, but attachment of Ni(II) to
the surface of GO was an exothermic process [56–63]. It is plausible to
assume that the energy of dehydration exceeded the exothermicity of
the Ni(II) ions attached to the surface of GO. The positive value of ΔS0
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Fig. 4. Uptake isotherms of Ni(II) on GO under different temperature, C0 = 10.0 mg/L,
pH 5.0, I = 0.01 mol/L NaCl, m/v = 0.8 g/L.
(121.55 J/(mol·K)) also demonstrated that the Ni(II) uptake by GO
was a spontaneous process [64].

3.5. Surface complexation modeling

According to the ionic strength-dependent adsorption experiments,
two main uptake reactions were accounted into Eqs. (9) and (10):

SOHþ Ni2þ ¼ SONiþ þ Hþ ð9Þ

SOHþ Ni2þ þ 2H2O ¼ SONiðOHÞ−2 þ 3Hþ ð10Þ
where SOH represents a structurally undefined, average functional
group (assumed to be an amphoteric hydroxyl group) on the surface
of GO. The log K values were optimized by best fitting of the uptake of
Ni(II) on GO (Table 4). As shown in Fig. 5, DLM can give better fit for
the uptake data of Ni(II) on GO. Clearly, the two reactions were suffi-
cient to depict Ni(II) uptake on GO in the pH range from 2.0 to 10.0.
As shown in Fig. 5, one can see that the main Ni(II) species was SONi+

species at pH b 5.0, whereas SONi(OH)2− species dominated the uptake
of Ni(II) onGO at pH N 5.0. The results of surface complexationmodeling
indicated that the uptake of Ni(II) on GO can be satisfactorily fitted by
DLM model with two inner-sphere surface complexes (SONi+ and
SONi(OH)2− species), which was consistent with previous studies [65].
These findings indicated that the uptake mechanism of Ni(II) on GO
was inner-sphere surface complexation over wide pH range starting
from 2.0 to 10.0.

4. Conclusions

The uptake reactions at the water-solid interface generally decrease
solute mobility and often control the fate, bioavailability, and transport
of Ni(II) in soils and groundwater. In this study, uptake of Ni(II) ions on
GO has been systematically investigated as a function of several envi-
ronmental factors including reaction time, pH, ionic strength, concen-
tration and temperature. The pseudo-second-order kinetic model and
Langmuir model given better fits to the uptake kinetics and uptake
Table 4
The optimized parameters for surface complexation modeling of Ni(II) uptake by GO.

Equations Log K

SOH + H+ = SOH2
+ 4.22

SOH = SO− + H+ −5.31
SOH + Ni2+ = SONi+ + H+ 2.18
SOH + Ni2+ + 2H2O = SONi(OH)2− + 3H+ −3.42

Image of Fig. 3
Image of Fig. 4
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isotherms of Ni(II) on GO, respectively. The maximum uptake capacity
of GO for Ni(II) calculated from Langmuir model was calculated to be
81.97mg/g at pH 5.0 and 293 K. The data obtained from isothermal up-
take at different temperature indicated that the uptake of Ni(II) on GO
was an exothermal and spontaneous process. The uptake mechanism
of Ni(II) on GO were demonstrated by XPS analysis and surface com-
plexation modeling. The highly effective uptake of Ni(II) was attributed
to oxygen-containing functional groups of GO according to XPS analysis.
The surface complexation modeling indicated that the uptake of Ni(II)
on GO can be satisfactorily fitted by diffuse layer model with two
inner-sphere complexes (SONi+ and SONi(OH)2− species). These results
indicated that GO can beused as a promising adsorbent for the uptake of
heavy metals from aqueous solutions in environmental remediation
strategies.
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