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Abstract: Mobile differential optical absorption spectroscopy (mobile DOAS) is an optical remote
sensing method that can rapidly measure trace gas emission flux from air pollution sources (such
as power plants, industrial areas, and cities) in real time. Generally, mobile DOAS is influenced
by wind, drive velocity, and other factors, especially in the usage of wind field when the emission
flux in a mobile DOAS system is observed. This paper presents a detailed error analysis and NOx
emission with mobile DOAS system from a power plant in Shijiazhuang city, China. Comparison
of the SO2 emission flux from mobile DOAS observations with continuous emission monitoring
system (CEMS) under different drive speeds and wind fields revealed that the optimal drive velocity
is 30–40 km/h, and the wind field at plume height is selected when mobile DOAS observations are
performed. In addition, the total errors of SO2 and NO2 emissions with mobile DOAS measurements
are 32% and 30%, respectively, combined with the analysis of the uncertainties of column density,
wind field, and drive velocity. Furthermore, the NOx emission of 0.15 ± 0.06 kg/s from the power
plant is estimated, which is in good agreement with that from CEMS observations of 0.17 ± 0.07 kg/s.
This study has significantly contributed to the measurement of the mobile DOAS system on emission
from air pollution sources, thus improving estimation accuracy.
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1. Introduction

China has been experiencing severe air pollution problem with the booming growth of
industrialization and urbanization. The key to alleviate air pollution is the measurement, supervision,
and control of its sources. The emission flux of sources is the most important and fundamental data
for pollution source assessment. Currently, the primary technique for detecting emission flux is field
test method, which calculates organized pollution emission based on observations of exhaust flow rate
and air pollutant concentrations. However, the method cannot detect fugitive emissions, especially in
area sources. In addition, the model [1,2] is also an alternative method for estimating source emission;
however, it is limited to spatial scale and real-time data.
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Mobile differential optical absorption spectroscopy (mobile DOAS) [3,4] is a novel optical remote
method that can estimate source emission. The technique was developed from fixed-scanning DOAS [5]
observation of volcanoes and measurement of point emissions (power plants, oil refineries, etc.) and
area (city, industrial areas, etc.) sources with zenith-observation DOAS system mounted on a mobile
platform. Johansson et al. [3,4] and Rivera et al. [6] estimated SO2, NO2, and HCHO emissions from
the industrial areas in Mexico, Beijing, and Tula (Mexico) with mobile DOAS from 2008 to 2009.
NOx emissions in Mannheim, Ludwigshafen, and New Delhi city were observed by Ibrahim et al. [7]
and Shaiganfar et al. [8] in 2010 and 2011 with mobile multi-axis differential optical absorption
spectroscopy (mobile MAX-DOAS). From these studies, mobile DOAS has provided a novel and
rapid method for source emission measurement. However, one disadvantage of this method is that
the observation is affected by actual conditions (such as weather, wind, etc.). Previous studies [6]
suggesting either near-surface wind from a ground meteorological station or wind at plume height
from a model can be used to estimate emission. However, a detailed discussion on errors from different
wind and drive speeds with mobile DOAS observations still lacks. In the current study, one power plant
in Shijiazhuang city is selected as a typical point source to discuss the usage of the appropriate wind
and drive speed for emission measurement using mobile DOAS. Furthermore, the total emission error
of mobile DOAS is estimated based on error analysis for each impact factor of emission measurement.

Meanwhile, as one significant application of mobile DOAS, the NOx emission from a power plant
is estimated. NOx is one of the most important trace gases in the atmosphere [9]. It participates in
the catalytic formation of ozone (O3) in the troposphere, while being a catalyst for O3 destruction
in the stratosphere [10,11]. NOx sources include nature source and anthropogenic source. The main
anthropogenic sources are fossil fuels (coal, oil, etc.) and biomass burning. This study explores the
observation of NOx emission from power plants with mobile DOAS preliminary and compares it with
the CEMS result, showing a good agreement between the two results.

2. Experiment and Principles

2.1. Overview of Experiment

A power plant with stack height of 180 m was located at the south of Shijiazhuang city, a typical
point source surrounded by farmlands. The construction of the power plant was divided into two
stages: The first stage involves the construction of two coal-fired heating units with a total power
of 600 MW, which are currently in operation. The second stage plans the construction of another
two coal-fired heating units with total power of 700 MW, which is currently being actively promoted.
The measurements were conducted from October to November 2011. The entire weather condition
was dominated by clouds, and rain occasionally poured from 3 November to 5 November and
from 7 November to 8 November for each measurement day, we conducted circular measurements
and performed scanning measurements in the north of the power plant, considering good driving
conditions for different drive speeds. The entire circle and scanning route was 12 km and 6 km,
respectively. We took approximately 30 and 15 min to complete the measurements. The measurement
time was from 10:00 to 14:30. Furthermore, one wind LIDAR, MAX-DOAS, and some point instruments
detected NO, NO2, and O3 concentrations established away from the power plant (1.7 km). The setup
of the measurement sites and two different driving routes are shown in Figure 1.
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Figure 1. Setup of measurement sites (a) and two different driving routes (b). Red lines indicate the 
measurement routes and yellow arrows indicate the driving direction in the (b). 

2.2. Mobile DOAS System 

The mobile DOAS system was developed at the Anhui Institute of Optics and Fine Mechanics 
as shown in Figure 2 [12]. The components of the instrument are spectra acquiring unit, data 
processing unit, and global position system (GPS) module. The spectra acquiring unit includes a 
zenith observation telescope and optics miniature spectrometer. The telescope collects scattered 
sunlight in the zenith observation and focuses into a fiber. Light collected by the telescope is 
transmitted to the spectrometer (HR2000+, Ocean Optics, Florida, USA) through the fiber with 
spectral resolution of 0.6 nm and spectral wavelength range of 290–420 nm. The spectra are then 
transmitted to the data processing unit to retrieve the concentration in real time through a USB data 
cable. GPS module is used to record geographic information and drive speed information. The 
system is also equipped with a miniature weather station mounted on top of the measurement van 
to obtain meteorological data (wind direction, wind speed, temperature, pressure, etc.). Details of 
the instrument and its performance are described in our previous study [13]. 
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measurement routes and yellow arrows indicate the driving direction in the (b).

2.2. Mobile DOAS System

The mobile DOAS system was developed at the Anhui Institute of Optics and Fine Mechanics as
shown in Figure 2 [12]. The components of the instrument are spectra acquiring unit, data processing
unit, and global position system (GPS) module. The spectra acquiring unit includes a zenith observation
telescope and optics miniature spectrometer. The telescope collects scattered sunlight in the zenith
observation and focuses into a fiber. Light collected by the telescope is transmitted to the spectrometer
(HR2000+, Ocean Optics, Dunedin, FL, USA) through the fiber with spectral resolution of 0.6 nm and
spectral wavelength range of 290–420 nm. The spectra are then transmitted to the data processing
unit to retrieve the concentration in real time through a USB data cable. GPS module is used to record
geographic information and drive speed information. The system is also equipped with a miniature
weather station mounted on top of the measurement van to obtain meteorological data (wind direction,
wind speed, temperature, pressure, etc.). Details of the instrument and its performance are described
in our previous study [13].
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2.3. Principle of Mobile DOAS

2.3.1. Retrieval of Vertical Column Density

The passive DOAS technique has been employed in numerous applications that use sunlight
with instruments mounted on various fixed or mobile platforms [14–19]. The evaluation procedure is
described in this section in relation to our mobile observation. Details of DOAS analysis are presented
in Platt and Stutz (2008) [20].

The zenith scattered sunlight I0 is collected by the mobile DOAS as I due to atmospheric extinction.
I and I0 agree with the Lambert-Beer law:

I = I0 · exp(−σ · c · L) (1)

where σ (unit: cm2/molec.) is the cross section of trace gas, c (unit: molec./cm3) is the concentration,
and L (unit: cm) is the length of the absorption route. The concentration of trace gas can be evaluated
based on the least square fit algorithm using Equation (1). Unknown to the length of absorption route
with mobile DOAS observations, the slant column density (SCD, unit: molec./cm2) can be retrieved
using Equation (1). The SCD is defined as the trace gas concentration integrated along the effective
light path:

SCD =
∫

c(l) · dl =
1
σ
(

I0

I
) (2)

The vertical column density (VCD) (unit: molecules/cm2) can be calculated with the SCD and air
mass factor (AMF, non-dimensional variable) [21] as shown in Equation (3). The AMF can be obtained
with radiation transfer model and geometric approximation, which depends on the solar zenith angle,
wavelength, and elevation angle:

VCD =
SCD
AMF

(3)

2.3.2. Estimation of Emission

The emission of source can be detected in combination with the VCD and the measurement
route, wind speed, and wind direction. For one area of interest, the emission flux is calculated using
Equation (4) [3,4,7]:

F =
∫

A
div(VCD ·

→
W) · dA =

∮
S

VCD(
→
s ) ·

→
W ·→n · d→s (4)

where
→
W indicates the average wind vector, A indicates the encircled area,

→
n indicates the normal

vector parallel to the Earth’s surface and orthogonal to the driving direction at the position of the
driving route, and

→
s is the driving route. For mobile DOAS measurements, we can convert Equation (4)

to Equation (5):

F = ∑
i

VCD(si) ·
→
W ·→n · ∆si = ∑

i
VCD(si) ·

→
W · sin(β)(si) · ∆si (5)

where β is the angle between the driving direction and wind direction, and ∆si is the distance between
two successive spectra.

The NOx emission is estimated based on the conversion of NO2 emission with two correction
factors: chemical transformation factor and lifetime correction factor:

FNOx = R · cL · FNO2 = R · cL ·∑
i

VCDNO2(si) ·
→
W · sin(β)(si) · ∆si (6)
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The chemical transformation factor can be written as R = NOx/NO2, NOx = NO + NO2:

R =
NOx
NO2

=
NO + NO2

NO2
= 1 +

NO
NO2

= 1 + cτ (7)

cτ = NO/NO2 is the Leighton ratio [11], which is generally derived from model simulations.
In this study, we calculate the value from observation data of point instruments near the power plant.

cL in Equation (6) is the lifetime correction factor, which is derived using Equation (8):

cL = e
D/W

t (8)

where D (unit: meters) is the mean distance from the source to the measurement site of about 2 km
during this observation. t (unit: second) indicates the NOx lifetime, which depends on photochemical
reaction and meteorological condition and is difficult to determine for the specific situation of our
measurements. We use an average value of 5 h for the NOx lifetime, which is derived from long-term
satellite observations of polluted area in summer and autumn in eastern China [22].

2.4. Data Analysis

The VCDs of SO2 and NO2 are retrieved through the DOAS method as discussed in Section 2.3.1.
During our retrieval process, a spectrum is first selected arbitrarily on the upwind path as reference
spectrum to determine the concentration distribution trends along the route. The minimum
concentration of SO2 and NO2 along each driving route is then chosen as the Fraunhofer spectra
to re-retrieve the measurement spectra.

The wavelength range of 310 to 324 nm with three strong absorption peaks is selected for the SO2

fit. Absorption cross sections of SO2, NO2, HCHO, O3 (Bogumil et al. [23]), and Ring are included
in the fit. The Ring spectrum is generated from the measured Fraunhofer reference spectrum using
the DOASIS [24] software. For the analysis of NO2, the wavelength range of 345 to 365 nm is
selected, and the cross section of O4 at 298 K is also included, except for NO2, HCHO, O3 at 293 K
(Bogumil et al. [23]), and Ring spectrum. The wavelength calibration is performed using a highly
resolved solar spectrum (Kurucz et al. [25]) convoluted by the instrument’s slit function. The software
of WinDOAS [26] is used to evaluate the SO2 and NO2 SCDs. An example for such a spectral fitting
is shown in Figure 3, where the SCD is 1.92 × 1017 ± 6.56 × 1015 molec./cm2 and 5.76 × 1016 ±
1.53 × 1015 molec./cm2 for SO2 and NO2, respectively. The fit uncertainties of retrieved values from
these two spectra for SO2 and NO2 are about 3.41% and 2.66%, respectively. For all measured spectra,
the fit uncertainties are less than 15% for NO2 and 20% for SO2.
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Figure 3. SO2 and NO2 fitting. The spectra are recorded at the time of 12:35:02 on 16 October
2011. (a) SO2 retrieval result, SO2 SCD = 1.92 × 1017 molec./cm2, SO2 residual = 1.66 × 10−3;
(b) NO2 retrieval result, NO2 SCD = 5.76 × 1016 molec./cm2, NO2 residual = 5.92 × 10−4.
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In the previous study, the VCDs of SO2 and NO2 were derived through the geometric
approximation of AMF with mobile DOAS observation. According to the relationship between
AMF and elevation angle (AMFtrop ≈ 1/sin(α)), the tropospheric AMF is close to 1 due to zenith
observation and measurement time at noon. As a result, the retrieved SCD is approximated to VCD.
However, AMFNO2 is larger than 1 (Figure 4a,b) and AMFSO2 is approximately equal to 1 (Figure 4c,d),
which are retrieved using a radiative transfer model McArtim [27] simulation during the measurement
time. In this study, the SO2 and NO2 VCDs are calculated using the simulated AMF.
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Figure 4. Simulated AMF for different aerosol and trace gas profiles. The rectangle regarding the solar
zenith angle (SZA) is the time of mobile DOAS observations. (a) NO2 AMF simulation in the scenarios
of different SZAs and aerosol optical density (0.2, 0.5, 0.8 and 1.2); (b) NO2 AMF simulation in the
scenarios of different SZAs and NO2 concentration (25 ppb, 46 ppb and 64 ppb) (c) SO2 AMF simulation
in the scenarios of different SZAs and aerosol optical density (0.2, 0.5, 0.8 and 1.2); (d) SO2 AMF
simulation in the scenarios of different SZAs and SO2 concentration (25ppb, 45 ppb, 110 ppb and
140 ppb).

AMF strongly depends on NO2 and aerosol profiles, which use radiative transfer model
simulation. The different scenarios of aerosol, SO2, and NO2 are set to estimate the uncertainties of
SO2 and NO2 AMF (Figure 4). The height of boundary layer is taken from LIDAR and ceilometer
observations away from mobile DOAS (5 km). The concentrations of SO2 and NO2 are taken from
point instruments near the power plant. The average boundary layer is about 1 km, and aerosol optical
density (AOD) ranged from 0.2 to 1.2 as observed from the LIDAR and ceilometer. We assumed that
the aerosol profiles are given by constant values below the boundary layer height and exponential
profiles above for the AMF simulation. The NO2 scenarios of 64, 25, and 46 ppb and SO2 scenarios of
25, 45, 110, and 140 ppb are set based on the data from point instruments. The NO2 and SO2 profiles
are given with a “box” shape, only aiming at plume observation from the power plant.
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NO2 AMF uncertainties are about 6%, caused by aerosol and NO2 profiles during the measurement
period (the solar zenith angle between 50◦ and 60◦) from Figure 4. However, the SO2 AMF is free
of solar zenith angle, aerosol, and SO2 variations. As a result, the uncertainties of SO2 AMF can be
neglected compared with other errors.

3. Analysis of Mobile DOAS Error

3.1. Usage of Driving Speed

The selection of driving speed is a key factor for mobile DOAS observations, and the peak
value may be lost if the driving speed is too fast. Otherwise, the conversion may be yielded for
emission plume resulting in inconsistency between emission and measurement if the speed is too low.
Thus, the selection of appropriate speed represented by sampling points during plume observation is
important to accurately estimate emission. We have estimated the SO2 emission for different samples
and compared them with those of CEMS. The optimal sampling is achieved by intercomparison
of CEMS and mobile DOAS, and the optimal speed is presented combined with plume width and
sampling time.

The average width of plume is calculated based on multiple scanning measurements for different
sampling assuming similar weather conditions:

L =

n
∑

i=1
vi · si · ∆ti

n
(9)

where n indicates the number of times of all scanning measurements, vi is the driving speed for each
scanning measurement, and si indicates the number of sampling for each scanning measurement.
The average plume width, optimal sampling, and optimal speed are shown in Figure 5. The maximum
and minimum plume width is 1.28± 0.07 km and 0.53± 0.11 km, respectively, during the measurement
period. The intercomparison of the results between CEMS and mobile DOAS and the sampling with
the minimum difference, which is the optimal sampling, are shown in Figure 5. The optimal driving
speed of 36.21 ± 5.44 km/h is calculated based on the average plume width, optimal sampling, and
sampling time.
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3.2. Usage of Wind

Wind information is one of the largest error sources in emission estimation. The question on
the usage of ground-based wind or plume-height wind has not been discussed in detail in previous
studies. As shown in Figure 1, one wind LIDAR is set up near the power plant to obtain the vertical
wind data, particularly the wind data at 200 m height. Meanwhile, we also access this data from MM5
model [28] simulation except for the LIDAR. The ground-based wind data (the altitude is about 10 m)
are taken from the miniature weather station mounted on the car.

The SO2 emission is estimated with ground-based wind and plume-height wind for different
sampling as discussed in Section 3.1 and compared with CEMS results. Figure 6 demonstrates two
examples of SO2 emission on 26 October and 10 November under different conditions.
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Figure 6. SO2 emission and relative deviation. (a) SO2 emission results on 26 October; (b) SO2 emission
results on 10 November. The dots and lines indicate SO2 emission and relative deviation, respectively.
The negative relative deviation indicates that the mobile DOAS result is lower than that of CEMS.

The emission result is closer to that of CEMS when it calculates the emission with 200 m height
wind. In this case, the 200 m height is the source from the stack height of 180 m. In addition, further
results suggest the difference between mobile DOAS and CEMS, which is lower when the 200 m height
wind and driving speed of 30–40 km/h are used to calculate emission.

3.3. Comparison of SO2 Emission Using Different Wind Data

As discussed in Section 3.2, the SO2 emission estimation using mobile DOAS is more accurate
when the plume height wind is adopted. The plume height wind is mainly sourced from sounding
balloon, model simulation, and wind LIDAR. However, these data rather than ground-based wind
data for actual measurement in general are difficult to access. To evaluate the SO2 emission error
caused by wind, the ground-based wind, 200 m height wind from wind LIDAR or model, and 200 m
height wind calculation from ground-based wind are used to estimate emission, and the detailed error
analysis for the three types of wind data are performed in this study.

The empirical formula [29] of wind profile shows that the relationship of ground-based wind
speed and different altitudes of wind speed, with altitude z ≤ 200 m, is as follows:

u = u0 · (
z
z0
)

m
(10)

where z0 is the altitude of the ground-based weather station (z0 = 10 m), u0 is the wind speed at the
altitude of z0, and m is a factor that relates to atmospheric stability with m = 0.15 [29] for “D-class” and
m = 0.10 for “C-class”. This “C- or D-class” sources from six Pasquill–Turner stability class are derived
from the combination of wind speed, solar radiation, and cloud cover: from 1 or A for extremely
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unstable to 6 or F for extremely stable conditions [30,31]. The atmospheric stability of “D-class” is
selected for the majority of measurement time (16, 27 and 29 October and 6, 10, 11 and 13 November),
except for 26 October and 28 October, which are regarded as “C-class.” The related classifications are
discussed in our previous study, which takes into account wind speed, solar radiation, and cloud
cover [28].

Figure 7 shows the ground-based wind speed (referred to as A1), 200 m height wind speed source
from wind LIDAR or model (referred to as B1), and 200 m height wind speed with calculation from
ground-based wind (referred to as C1). The wind speed of A1 is lower than those of B1 and C1.
Apart from the wind speed on 10 November and 13 November with the largest difference of 1.06 m/s
and 0.86 m/s, respectively, C1 agrees with B1 in most of the conditions. In addition, the wind speed
trend is in good agreement for A1, B1, and C1, except for 29 October and 10 November.
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Figure 7. Three types of wind speed. Blue indicates the wind speed source from ground-based wind;
pink indicates the wind speed source from 200 m height (LIDAR or model); and green indicates the
wind speed source from 200 m height with calculation from ground-based wind.

Figure 8 shows that the SO2 emission estimations with B1 and C1 winds are larger than those
with A1 as presented in Figure 6 in majority of the cases. However, the SO2 emission with A1 wind
is larger than those with B1 and C1 on 26 October and 28 October because of the deviation of wind
direction between ground-based wind and 200 m altitude. The ratios of emission estimation with
C1 and B1 winds fluctuate around 1, whereas the maximum ratio is 1.81 and 1.88 on 26 October and
28 October, respectively. This scenario can be explained by the fact that we also consider the wind
direction more than wind speed when estimating the emission. However, the empirical formula as
presented in Equation (10) reveals that the wind speed at an altitude of 200 m and the hypothesis of
wind direction for C1 and A1 agree are prerequisites when calculating the emission with C1 wind.
In other words, the significant difference of wind direction between B1 wind and C1 wind can result in
large deviation in emission estimation using B1 and C1 winds.
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Figure 8. SO2 emission estimation with different types of wind and ratios of emission with C1 and
B1 wind.

Table 1 lists the SO2 emission from mobile DOAS observations with three different wind and
CEMS observations. It shows that the similar trends of relative deviation between CEMS and SO2

estimation with B1 and C1 winds based on mobile DOAS are presented apart from the results of
26 October and 28 October.

Table 1. Comparison of SO2 emission between mobile DOAS for three different winds and CEMS.
The percentage indicates the deviation with respect to emission from CEMS. The negative values imply
that CEMS is lower than those from mobile DOAS; the positive values imply otherwise.

Emission from CEMS kg/s Surface Wind % 200 m Wind % Calculation at 200 m Wind %

16 October 0.096 −41.67 −4.17 −12.50
26 October 0.029 110.34 −6.90 68.97
27 October 0.042 −59.52 −28.57 −30.95
28 October 0.069 53.62 33.33 150.72
29 October 0.139 −77.70 −70.50 −73.38

6 November 0.064 −26.56 −17.19 −18.75
10 November 0.087 −74.71 −6.90 −32.18
11 November 0.056 −76.79 −50.00 −60.71
13 November 0.119 −48.74 −15.97 −23.53

However, although the emission estimation with B1 and C1 winds has a small difference,
their ratio fluctuates around 1, which can be explained by the errors of empirical formula and the value
of m. In addition, the relatively low deviations for emission estimation with the wind of 200 m height
further verify the discussions in Section 3.1. The result of the relatively larger deviations is caused by
the fog weather on 29 October. If the plume height wind is difficult to access, then we could estimate
emission with the wind calculation from ground-based wind using the empirical formula based on
the mobile DOAS observations when the weather system is relatively stable and when vertical wind
direction has no significant variation.

3.4. Total Errors of Emission Flux

According to the above analysis, the relative deviations of emission estimation are lower under a
drive velocity of 30–40 km/h, and the wind field at plume height is selected when flux is calculated.
However, the total errors of mobile DOAS have not been listed. This section discusses the total errors
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of emission flux based on the mobile DOAS observations. The total errors of emission flux can be
calculated using Equation (11):

∆Fi
Fi

=

√√√√
(

∆
→
W
→
W

)

2

+ (
∆SCD
SCD

)
2
+ (

∆AMF
AMF

)
2
+ (

∆s
s
)

2
(11)

From the above formula, four components are included in emission estimation errors: wind error

(∆
→
W), SCD (∆SCD) error, AMF (∆AMF) error, and distance difference (∆s, represented by drive velocity)

error. The accuracy of drive speed is about 1% resulting from GPS. The drive speed variation is 1 km/h,
and the flux can change by 2% to 3% from the actual calculation. Thus, the variation of 0.3–0.4 km/h
(the optimal speed is 30–40 km/h) for drive velocity can result in a change in approximately 1% on
emission estimation. As a result, the distance difference error is 1%. In addition, the SCD errors of SO2

and NO2 are low at 20% and 15%, respectively, and the AMF error of NO2 is about 6%. According
to the discussions in Section 2.4, the AMF error of SO2 is negligible during the measurement periods.
Furthermore, the largest error source of emission estimation is from wind field, including wind
direction and wind speed errors as listed in Table 2. The average wind error is about 25%, considering
the uncertainties of wind direction and wind speed. As a result, the total estimation errors of SO2 and
NO2 are 32% and 30%, respectively.

Table 2. Wind field uncertainty of emission estimation.

Date Time
Wind

Direction
(Degree)

Wind
Speed
(m/s)

Uncertainties
from Wind
Direction

Uncertainties
from Wind

Speed

Uncertainties
from Wind

16 October 10:00–12:00 274.13 ± 2.15 1.81 ± 0.4 1% 22% 22%
26 October 12:30–14:00 135.25 ± 9.51 2.17 ± 0.2 14% 10% 17%
27 October 12:00–13:00 123 ± 6 1.9 ± 0.3 19% 14% 24%
28 October 11:40–13:00 183.02 ± 10.10 2.74 ± 0.42 2% 15% 16%
29 October 13:30–14:10 112.21 ± 1.81 2.92 ± 0.36 10% 12% 16%

6 November 11:00–13:00 230.8 ± 12 2.03 ± 0.64 24% 33% 41%
10 November 13:00–14:30 167.67 ± 9.46 2.33 ± 0.54 3% 24% 25%
11 November 11:30–12:10 211.17 ± 28.06 1.05 ± 0.29 33% 29% 44%
13 November 11:40–12:10 192.58 ± 7.29 2.66 ± 0.61 3% 23% 24%

3.5. Emission Estimation of NOx

From Equation (6), the prerequisite for estimation of NOx emission is the knowledge of the
ratio of NO and NO2, which is expected to be established for ozone-rich condition. However,
the measurements are performed close to the stacks of power plants. The reaction of NO with
ozone will eventually consume all available ozone, which prevents further conversion of NO into
NO2. Only after additional ozone-rich air is mixed with the ozone-depleted air masses can the ratio be
established. Thus, we analyze the NO, NO2, and O3 concentration from point instrument observations
located 1.7 km away from the power plant during the measurement period of this study. We calculate
the ratio of NO and NO2 (Table 3) under an O3 concentration higher than NO concentration. Moreover,
the NOx lifetime factor is calculated using wind speed with Equation (8).
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Table 3. NO, NO2, and O3 concentration and the values of R and CL.

Date NO
mg/m3

NO2
mg/m3 Leighton Ratio O3

mg/m3 R CL
Wind Speed

m/s

16 October 0.041 0.072 0.57 0.042 1.57 1.06 1.81
19 October 0.014 0.041 0.34 0.024 1.34 1.04 3.00
28 October 0.04 0.116 0.34 0.048 1.34 1.06 2.74

6 November 0.015 0.044 0.34 0.048 1.34 1.07 2.03
10 November 0.028 0.063 0.44 0.028 1.44 1.05 2.33

The NOx emission is then estimated with R, CL, and NO2 emission flux (from mobile DOAS
observation) based on Equation (6). Figure 9 shows the comparison of NOx emission between
mobile DOAS and CEMS, indicating a good agreement with the average flux of 0.15 ± 0.06 kg/s and
0.17 ± 0.07 kg/s from mobile DOAS and CEMS observations, respectively.
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Figure 9. NOx emission flux from mobile DOAS and CEMS observations.

4. Conclusions

A power plant in Shijiazhuang city was selected as the experimental site to study the emission
flux estimation error with a mobile DOAS system under different measurement conditions and is
explored to detect NOx flux from power plant emission. This study has significantly contributed
to the measurement of mobile DOAS on emission from air pollution sources, thus improving
estimation accuracy.

The optimal drive velocity of 30–40 km/h and the wind field at plume height are selected when
mobile DOAS observations are made by comparing the SO2 emission flux from mobile DOAS with
CEMS under different drive speeds and wind fields (ground-based and plume-height wind field).
The emission flux can also be estimated with the plume-height wind speed based on empirical formula
calculation when the weather system is relatively stable and vertical wind direction has no significant
variation. In addition, the total error of mobile DOAS observations is estimated, which are sourced
from wind field error, VCD error, and drive speed variation error. As a result, the total errors of
SO2 and NO2 are 32% and 30%, respectively, taking into account wind field uncertainty of 25%,
SO2 SCD uncertainty of 20%, NO2 SCD uncertainty of 15%, NO2 AMF uncertainty of 6%, and drive
speed uncertainty of 1%. Finally, the NOx emission from the power plant is estimated with a value
of 0.15 ± 0.06 kg/s, which is in good agreement with that from CEMS observation with a value of
0.17 ± 0.07 kg/s.
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