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Abstract. In magnetically confined plasma research, the understandings of small and
large perturbations at equilibrium are both critical for plasma controlling and steady
state operation. Numerical simulations using original MHD model can hardly give
clear picture for small perturbations, while non-conservative perturbed MHD model
may break conservation law, and give unphysical results when perturbations grow
large after long-time computation. In this paper, we present a nonlinear conservative
perturbed MHD model by splitting primary variables in original MHD equations into
equilibrium part and perturbed part, and apply an approach in the framework of dis-
continuous Galerkin (DG) spatial discretization for numerical solutions. This enables
high resolution of very small perturbations, and also gives satisfactory non-smooth
solutions for large perturbations, which are both broadly concerned in magnetically
confined plasma research. Numerical examples demonstrate satisfactory performance
of the proposed model clearly. For small perturbations, the results have higher resolu-
tion comparing with the original MHD model; for large perturbations, the non-smooth
solutions match well with existing references, confirming reliability of the model for
instability investigations in magnetically confined plasma numerical research.

AMS subject classifications: 65M60, 65Z05, 85-08

Key words: Discontinuous Galerkin method, conservative perturbed MHD model.

1 Introduction

Numerical simulation of magnetohydrodynamics (MHD) system is always an important
subject in magnetically confined plasma research. One of the critical challenging issues of
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simulating laboratory plasma system is the macroscopic instability analysis in complex
geometry, e.g. tokamak and stellarator. In principle, the target of the tokamak or stellara-
tor, aiming for reactor, is to operate the plasma under control as a quasi-steady state sys-
tem, i.e. equilibrium with perturbations. Large perturbations may lead to confinement
degradation or even disruptions. On the other hand, small perturbations are universal
and many of them can grow up to large perturbations in long-time operation. Thus the
understandings of small and large perturbations are both critical for plasma controlling
and maintaining steady state operation. The perturbations are usually of scale compa-
rable with the experimental devices and such macroscopic dynamics of the magnetically
confined plasma system can be described by MHD models. Up to now extensive inves-
tigations using MHD models have been carried out both analytically and numerically.
However for very small perturbations in numerical simulations, the numerical errors
generated from the equilibrium part may overwhelm the small perturbations if solving
original MHD equations directly. Among fusion community, a widely used way is to
split variables in original MHD equations into equilibrium part and perturbed part, re-
sulting in non-conservative compact form MHD equations of perturbations, eliminating
numerical errors from equilibrium. Existing simulation codes, such as NIMROD [1] and
CLT [2], applying this non-conservative perturbed MHD model, together with classical
finite difference methods and finite elements methods, can give good results when solv-
ing some instability problems in small perturbations stage, like KH instability and tearing
modes. However when small perturbations grow up into strong nonlinear regime, this
non-conservative model may lead to unphysical numerical results that break the conser-
vation laws after long time computation, or even end up with numerical disruption, lim-
iting its applications considerably. Although much progress in nonlinear MHD physics in
toroidal geometry with these non-conservative MHD model has been made [1, 3], strong
nonlinear physics such as disruption [4] are still far from clear and much more efforts are
required. So the development of numerical tools for simulating MHD instabilities with
high accuracy, robustness and geometrical flexibility is still a hot point in magnetically
confined plasma research.

So far many numerical methods and codes for solving conservative MHD models in
different geometries have been developed. The most widely used numerical methodolo-
gies are based on either finite difference or finite volume spatial discretization. The ad-
vanced high order finite difference methods like ENO [5] and WENO [6] type schemes are
extensively considered to be simple, effective and easy for code developing, especially on
a Cartesian mesh or a mesh that can be mapped onto a Cartesian mesh smoothly. How-
ever, due to non-rectangular cross-section of tokamak or stellarator, it is difficult to be
applied on such complex geometry. The finite volume method can in general handle the
geometry by dividing such space into unstructured meshes, but it is rather complicated
to build up high order accuracy schemes [7, 8] on complex stencils. The recently devel-
oped numerical framework of discontinuous Galerkin (DG) method is well designed by
many authors [9–14]. It is in principle able to achieve arbitrary high order of accuracy on
both structured and unstructured mesh and more geometrical flexibility can be acquired.
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The stencil of high order schemes under DG framework is also compact and only infor-
mation of adjacent elements are required. Moreover DG framework is genuinely explicit
for temporal discretization so the coding work and parallelization is not difficult. In the
past one or two decades DG method has been widely used in different areas including
magnetohydrodynamics, turbulent flows, et al., and is becoming more popular [15]. The
outstanding advantages of geometrical adaptiveness and high accuracy of DG method
make its application to magnetic confinement researches very promising.

As a first step of our long-term MHD simulation in toroidal geometry under DG
framework, in the present study, we numerically solve the perturbed MHD equations
in conservative form using DG spatial discretization in 2D triangular mesh. This model
enables us to investigate the small fluctuations accurately and maintain the advantage of
computational robustness, shock capturing ability and reliability in nonlinear regime at
the same time, making investigation of instabilities from small amplitude to large ampli-
tude coherently. To control magnetic divergence error and maintain computation stability
the hyperbolic divergence cleaning [16, 17] (HDC) correction is applied. It is worthwhile
to point out that our approach in principle can be extended to toroidal geometry without
essential obstacles.

This paper is organized as follows. In Section 2, we derive the perturbed MHD equa-
tions in conservative form. The numerical approach is explained in Section 3. In Sec-
tion 4, we show several numerical results including both smooth and non-smooth MHD
problems, using original and perturbed MHD models respectively. Finally we draw a
conclusion.

2 The conservative MHD model for perturbations

We start from the general form of conservation laws as following

∂tU+∇·
⇀

F=0, (2.1)

in which U is conserved variables that can be a scalar or vector,
⇀

F is flux. For conven-
tional ideal or resistive MHD equations, conserved variables are density ρ, momentum

ρ
⇀

V where
⇀

V=ux
⇀

e x+uy
⇀

ey+uz
⇀

e z is speed vector with component ux, uy, uz along x, y, z di-

rection respectively. magnetic field
⇀

B=Bx
⇀

e x+By
⇀

ey+Bz
⇀

e z and energy e= p
γ−1+

1
2 ρV2+ 1

2 B2

in which adiabatic constant γ is usually set to 5/3. While written in conservation laws as
Eq. (2.1) the specific conserved variable vector of MHD is U=(ρ,ρux,ρuy,ρuz,e,Bx,By,Bz)T.
The conservative normalized resistive MHD equations can be written as

∂tρ+∇·(ρ
⇀

V)=0, (2.2a)

∂t(ρ
⇀

V)+∇·
[

ρ
⇀

V
⇀

V−
⇀

B
⇀

B+
(

p+
1

2
B2

)↔
I

]

=0, (2.2b)
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∂t

( p

γ−1
+

1

2
ρV2+

1

2
B2

)

+∇·
[

( γp

γ−1
+

1

2
ρV2+B2

)

⇀

V−(
⇀

B·
⇀

V)
⇀

B+η
⇀

J×
⇀

B

]

=0, (2.2c)

∂t

⇀

B+∇·(
⇀

V
⇀

B−
⇀

B
⇀

V−η∇
⇀

B)=0, (2.2d)

with a constant resistivity and an additional divergence free constraint ∇·
⇀

B = 0. The
equations will reduce to ideal MHD when resistivity is zero.

With the conservative property and numerical approach for hyperbolic conservations
laws, these above equations gain success in simulating strong nonlinear problems as
magnetic reconnection in space, shock-cloud interaction etc. For magnetically confined
plasma system, despite importance of nonlinearity, people are also concerned about small
perturbations which may drive instabilities and grow large. However, when using the
original MHD to simulate instabilities directly, we will add up equilibrium and small per-
turbations for initialization. Since the numerical errors are correlated with total ampli-
tude of variables, the concerned perturbed part may be overwhelmed and the structures
of such small perturbations cannot be correctly revealed. For perturbed MHD model, nu-
merical errors are only correlated with perturbations, enabling high resolution for small
perturbations. But it does suffer disadvantages for non-conservative form. So it is de-
sirable to derive a new perturbed MHD model in conservative form, which can heritage
the high resolution property in small perturbation stage, and keep better reliability and
robustness in strong nonlinear stage.

In order to derive the perturbed equations, we split all variables into equilibrium part
and perturbed part. The equilibrium part (with subscript 0) do not vary with time and
their consistency is guaranteed by external analytical or numerical database, i.e. ρ0, p0,
⇀

V0 and
⇀

B0, while the perturbed part (with tilde above) is time-dependent i.e. Ũ=U−U0,
⇀̃

F=
⇀

F−
⇀

F0. The conservative perturbed MHD equations in general form can be written as:

∂tŨ+∇·
⇀̃

F=0, (2.3)

The perturbed conserved variables for ideal MHD equations are:











































































Ũ1= ρ̃,

Ũ2=ux0ρ̃+ρ0ũx+ ρ̃ũx,

Ũ3=uy0ρ̃+ρ0ũy+ ρ̃ũy,

Ũ4=uz0ρ̃+ρ0ũz+ ρ̃ũz,

Ũ5=
p̃

γ−1+
1
2V2

0 ρ̃+ρ
(

ux0ũx+uy0ũy+uz0ũz

)

+ 1
2 ρ

(

ũ2
x+ũ2

y+ũ2
z

)

+
(

Bx0B̃x+By0B̃y+Bz0B̃z

)

+ 1
2

(

B̃2
x+ B̃2

y+ B̃2
z

)

,

Ũ6= B̃x,

Ũ7= B̃y,

Ũ8= B̃z.

(2.4)
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The perturbed flux components along x, y, z directions corresponding to each conserved
variable are:























































































F̃x,1=ux0ρ̃+ρ0ũx+ ρ̃ũx,

F̃x,2= p̃+ ρ̃u2
x0+ρũx (ũx+2ux0)+

(

By0B̃y+Bz0B̃z−Bx0B̃x

)

+ 1
2

(

B̃2
y+ B̃2

z− B̃2
x

)

,

F̃x,3=ρ0ux0ũy+ρ0ũxuy0+ ρ̃ux0uy0+ρ0ũxũy+ ρ̃ux0ũy+ ρ̃ũxuy0+ ρ̃ũxũy

−
(

Bx0B̃y+ B̃xBy0+ B̃xB̃y

)

,

F̃x,4=ρ0ux0ũz+ρ0ũxuz0+ ρ̃ux0uz0+ρ0ũxũz+ ρ̃ux0ũz+ ρ̃ũxuz0+ ρ̃ũxũz

−
(

Bx0B̃z+ B̃xBz0+ B̃xB̃z

)

,

F̃x,5= ũxH0+ux0H̃+ũxH̃− B̃xµ0−Bx0µ̃− B̃xµ̃,

F̃x,6=0,

F̃x,7=By0ũx+ B̃yux0−Bx0ũy− B̃xuy0+ B̃yũx− B̃xũy,

F̃x,8=Bz0ũx+ B̃zux0−Bx0ũz− B̃xuz0+ B̃zũx− B̃xũz,

(2.5a)



















































































F̃y,1=uy0ρ̃+ρ0ũy+ ρ̃ũy,

F̃y,2=ρ0ux0ũy+ρ0ũxuy0+ ρ̃ux0uy0+ρ0ũxũy+ ρ̃ux0ũy+ ρ̃ũxuy0+ ρ̃ũxũy

−
(

Bx0B̃y+ B̃xBy0+ B̃xB̃y

)

,

F̃y,3= p̃+ ρ̃u2
y0+ρũy

(

ũy+2uy0

)

+
(

Bx0B̃x+Bz0B̃z−By0B̃y

)

+ 1
2

(

B̃2
x+ B̃2

z− B̃2
y

)

,

F̃y,4=ρ0uy0ũz+ρ0ũyuz0+ ρ̃uy0uz0+ρ0ũyũz+ ρ̃uy0ũz+ ρ̃ũyuz0+ ρ̃ũyũz

−
(

By0B̃z+ B̃yBz0+ B̃yB̃z

)

,

F̃y,5= ũyH0+uy0H̃+ũyH̃− B̃yµ0−By0µ̃− B̃yµ̃,

F̃y,6=Bx0ũy+ B̃xuy0−By0ũx− B̃yux0+ B̃xũy− B̃yũx,

F̃y,7=0,

F̃y,8=Bz0ũy+ B̃zuy0−By0ũz− B̃yuz0+ B̃zũy− B̃yũz,

(2.5b)



















































































F̃z,1=uz0ρ̃+ρ0ũz+ ρ̃ũz,

F̃z,2=ρ0u0ũz+ρ0ũxuz0+ ρ̃ux0uz0+ρ0ũxũz+ ρ̃ux0ũz+ ρ̃ũxuz0+ ρ̃ũxũz

−
(

Bx0B̃z+ B̃xBz0+ B̃x B̃z

)

,

F̃z,3=ρ0uy0ũz+ρ0ũyuz0+ ρ̃uy0uz0+ρ0ũyũz+ ρ̃uy0ũz+ ρ̃ũyuz0+ ρ̃ũyũz

−
(

By0B̃z+ B̃yBz0+ B̃yB̃z

)

,

F̃z,4= p̃+ ρ̃u2
z0+ρũz (ũz+2uz0)+

(

Bx0B̃x+By0B̃y−Bz0B̃z

)

+ 1
2

(

B̃2
x+ B̃2

y− B̃2
z

)

,

F̃z,5= ũzH0+uz0H̃+ũzH̃− B̃zµ0−Bz0µ̃− B̃zµ̃,

F̃z,6=Bx0ũz+ B̃xuz0−Bz0ũx− B̃zux0+ B̃xũz− B̃zũx,

F̃z,7=By0ũz+ B̃yuz0+ B̃yũz−Bz0ũy− B̃zuy0− B̃zũy,

F̃z,8=0,

(2.5c)



6 J. Ma, W. Guo and Z. Yu / Commun. Comput. Phys., xx (20xx), pp. 1-20

in which H = γp
γ−1+

1
2 ρV2+B2 is enthalpy and µ =

⇀

B·
⇀

V is magnetic momentum. With
consistent equilibrium data this perturbed model is analytically equivalent to the origi-
nal MHD equations (2.2) while numerically different. No approximation is made when
deriving this model. So it is still nonlinear and there are no limitations for parameters.
In the following, we use subscript PER and ORG to represent this new perturbed MHD
model and original MHD model, respectively. Notice if all equilibrium parameters are
set to zero, the MHDPER system will be equivalent to the conventional MHDORG model.

3 Numerical approach

Discontinuous Galerkin method combines the spatial discretization techniques in finite
volume and finite element method. In this method a space of polynomial basis and test
functions in specific element is used, and weak form of hyperbolic conservation laws is
applied. Numerical flux on element interfaces are required through a similar way as in a
finite volume method, and advantages of such numerical scheme with high accuracy, ge-
ometrical flexibility and upwind properties remain for convection dominated problems.
In this section, we briefly describe our numerical approach based on the framework of
Runge-Kutta discontinuous Galerkin (RKDG) method [9–14].

3.1 Spatial discretization by discontinuous Galerkin method

We explain this numerical method on a two dimension computation domain Ω, which
is to be divided into nonoverlapping triangles. Given an element K of the triangula-
tion Th of Ω, a finite dimensional polynomial space U(K) can be defined. If one has an

approximate solution uh(
⇀

x) ∈ U(K) in the element, uh(
⇀

x) = ∑
Np

i=1uiφi(
⇀

x) and φi(
⇀

x) are
any of Np polynomial bases with highest order k chosen from the polynomial space so

Np =
(k+1)(k+2)

2 , ui are coefficients. Notice here uh(
⇀

x) can be discontinuous over adjacent
elements.

For any test function vh(
⇀

x)∈U(K), multiply vh with the conservation law and inte-
grate over element K, one obtains

∫

K
∂tuh ·vhd

⇀

x=
∫

K

⇀

f ·∇vhd
⇀

x−
∫

∂K
( f̂ ·⇀n)vhds, (3.1)

where
⇀

n is interface norm vector of boundary ∂K pointing towards outside and f̂ is cor-
responding numerical flux. In practical applications vh is often selected from one of those

Np polynomial bases {φi(
⇀

x)}, resulting subsequent equations from Eq. (3.1). To solve the
discretized equations in an easier form and with better efficiency, we choose a set of k-th

order orthonormal polynomial bases {ϕi(
⇀

x)} on the standard triangle K0 composed of
points (0,0)-(1,0)-(0,1) on two dimensional plane that

∫

K0

ϕi(
⇀

x)ϕj(
⇀

x)d
⇀

x=δij, i, j=1,2,··· ,Np.



J. Ma, W. Guo and Z. Yu / Commun. Comput. Phys., xx (20xx), pp. 1-20 7

Then for each triangle element K the polynomial bases {φi(
⇀

x)} is linearly mapped from

{ϕi(
⇀

x)} on K0 and
∫

K
φi(

⇀

x)φj(
⇀

x)d
⇀

x=2SKδij, i, j=1,2,··· ,Np,

where SK is area of element K. Eq. (3.1) then can be rewritten as:

dui

dt
=

1

2SK

∫

K

⇀

f ·∇φid
⇀

x− 1

2SK

∫

∂K
( f̂ ·⇀n)φids. (3.2)

The first term on the right hand side of Eq. (3.2) can be numerically computed through
Gauss quadrature formulations on triangles or other quadrature-free procedure with ac-
curacy up to order 2k, while the second term should also be obtained through Gauss-
Legendre quadrature procedure on each side of triangle K with accuracy up to order
2k+1. In the second term, numerical flux on element interfaces could be obtained by
solving a Riemann problem accurately or approximately in a similar way as in finite vol-
ume method:

( f̂ ·⇀n)∂K =( f̂ ·⇀n)(u−
h,∂K

,u+
h,∂K

),

which means the numerical flux should be determine by discontinuous uh value on both
sides of the element interface, where the superscript + indicates the outer side and −
indicates the inner side. A simple and straightforward choice is the local Lax-Friedrichs
flux:

( f̂ ·⇀n)LF(a,b)=
1

2
[ f (a)+ f (b)]·⇀n−C

2
(b−a), (3.3)

where C=max(Ca,Cb) is maximum absolute local characteristic speed on both sides. For
MHD system,

Cj= |
⇀

V j ·⇀n|+

√

√

√

√

√

γpj+B2
j +

√

(γpj+B2
j )

2−4γpj(
⇀

Bj ·⇀n)2

2ρi
, j= a,b. (3.4)

And the interface norm vector points from a side to b side.
For MHDORG and MHDPER models illustrated before, they have formally the same

numerical schemes. The expressions of perturbed conserved variables and fluxes on
quadrature points of the triangle can be found in Eq. (2.4) and Eq. (2.5). For numerical
flux on element boundary, both MHDPER and MHDORG model use the same parameter
C as defined in Eq. (3.4). In the MHDPER model, equilibrium data on Gauss quadrature
points of elements and interfaces are required before computation.

3.2 Constraint of free magnetic divergence

Another major challenge in using DG discretization for solving our MHD system is the

divergence free constraint ∇·
⇀

B=0. Although a divergence free initial condition guaran-
teed zero divergence by model Eq. (2.2d), in numerical calculation the divergence error
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is inevitable, which will accumulate in time, and pollute the solution or even destroy
the computation [18]. In the frame work of DG, many recent works have overcome this
difficulty by using exactly divergence-free [19–21] or locally divergence-free [22,23] tech-
niques. These indeed gave satisfactory results.

In the present work, we apply the hyperbolic divergence cleaning (HDC) method pro-
posed by Dedner [16], which has also been applied for MHD simulation in the framework
of DG method successfully [17]. Since the MHDPER model is equivalent to MHDORG

model if setting equilibrium to zero, we only illustrate its application in the MHDPER

model. The equilibrium magnetic field satisfies ∇·
⇀

B0 = 0, so in the MHDPER model we

only need to consider the divergence free constraint upon ∇·
⇀̃

B=0. By introducing a new
auxiliary variable, the general Lagrange multiplier (GLM) ψ as the ninth variable, we add
an additional equation

∂tψ+c2
h∇·

⇀̃

B=− c2
h

c2
p

ψ, (3.5)

to MHD system. ch and cp are constants. As in Ref. [16], ch is estimated from the global
maximum characteristic speed and cp is empirically set to c2

p=0.18ch. Then the magnetic
field conservation equation is modified to

∂t

⇀̃

B+∇·(
⇀̃

V
⇀

B0+
⇀

V0

⇀̃

B+
⇀̃

V
⇀̃

B−
⇀̃

B
⇀

V0−
⇀

B0

⇀̃

V−
⇀̃

B
⇀̃

V)=0. (3.6)

In this modified system, the numerically generated divergence errors will be transported
to the domain boundaries with certain speed and damped at the same time. For our nu-
merical scheme, to apply this HDC technique, only very simple modification is needed.
More specifically, according to Eq. (3.6) the corresponding flux terms of Eq. (2.5a) to
Eq. (2.5c) would be slightly modified as

F̃x,6= F̃y,7= F̃z,8=ψ, (3.7)

And the fluxes of Eq. (3.5) are as following










F̃x,9= c2
hB̃x,

F̃y,9= c2
hB̃y,

F̃z,9= c2
h B̃z.

(3.8)

For boundary fluxes through element interfaces the sixth and newly added ninth numer-
ical flux component will be given as







(
⇀̃

F ·⇀n)6=
ψ++ψ−

2 − ch
2 (B̃+

n − B̃−
n ),

(
⇀̃

F ·⇀n)9=
c2

h
2 (B̃+

n + B̃−
n )− ch

2 (ψ
+−ψ−).

(3.9)

Here subscript n means vector component along
⇀

n direction. The source term on the
right hand side of Eq. (3.5) will be discussed in time discretization subsection. These
modifications of existing numerical scheme are rather simple. Moreover, this idea can
easily be extended to arbitrary high order schemes and any kind of meshes.
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3.3 Nonlinear limiter

For the stability of computation in nonlinear non-smooth problems, nonlinear limiters are
needed. The generalized total variation bounded minmod (TVBM) slope limiter with a
constant M from [13,14] for triangular mesh is applied in our present work in component-
wise fashion.

3.4 Time discretization

The DG spatial discretization with application of HDC technique above leads to the
method of line ODE system:

du

dt
= L(u), (3.10)

Where u stands for time evolving coefficients. This semi-discretized equations can be fur-
ther discretized by using strong stability preserving (SSP) methods [24, 25] as illustrated
below:



















u(1)=un+∆tn L(un),

u(2)= 3
4 un+ 1

4 u(1)+ 1
4 ∆tn L

(

u(1)
)

,

un+1= 1
3 un+ 2

3 u(2)+ 2
3 ∆tn L

(

u(2)
)

.

(3.11)

Superscript n and n+1 stand for numerical solution at tn and tn+1 with time step ∆tn =
tn+1−tn. After each component of the system is advanced by Runge-Kutta time integra-

tion, the general Lagrange multiplier should be rescaled by a factor e−∆t·c2
h/c2

p due to HDC
method. This completes our numerical approach.

4 Simulation results

In this section, we report a series of numerical experiments including accuracy tests, non-
linear Kelvin-Helmholtz instability and coalescence instability with small perturbations
and large perturbations, Orszag-Tang vortex problem in a slightly different way. All tests
are carried out on two dimensional triangular meshes. Rectangular simulation domain is
first divided into Cartesian mesh and then each small rectangle is divided into two equal
triangles. The order of accuracy ranges from two to four, i.e. k=1,2,3.

4.1 Accuracy tests

It is necessary to perform accuracy tests before we test other numerical examples. Smooth
Alfvén wave problem and Smooth vortex problem are tested with k=1,2,3. In this sub-
section we use the MHDORG model for accuracy tests, i.e. all equilibrium parameters are
set to zero.
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4.1.1 Smooth Alfvén wave

This case describes a circularly polarized Alfvén wave [21, 23] propagating at a constant
speed in the domain [0,1/cosα]×[0,1/sinα] with initial condition as follows:

ρ=1, u‖=0, u⊥=0.1sin(2πβ), uz=0.1cos(2πβ), B‖=1, B⊥=u⊥, Bz=uz, p=0.1,

and periodic boundary condition. α=π/4 is the angle of x-axis and wave-propagating
direction, β = xcosα+ysinα, and subscripts ‖ stands for direction parallel to the wave
propagation direction while ⊥ for perpendicular. With the constant Alfvén wave speed
(B‖/

√
ρ=1) and the size of the periodic domain, all variables return to initial state once

time variable t is added by unity. L2 errors and orders of ρ, ux, p and Bx at t = 5 are
obtained for k=1,2,3 in Table 1. In general satisfactory accuracy is achieved.

Table 1: Smooth Alfvén wave problem, L2 errors and orders for t=5.

N
ρ ux p Bx

L2 error order L2 error order L2 error order L2 error order

k=1

16 6.61e-4 —— 5.00e-3 —— 1.08e-3 —— 5.00e-3 ——

32 1.77e-4 1.90 6.80e-4 2.88 1.69e-4 2.67 6.91e-4 2.86

64 4.44e-5 1.99 8.97e-5 2.92 3.03e-5 2.49 9.63e-5 2.84

128 1.11e-5 2.00 1.28e-5 2.80 6.55e-6 2.21 1.56e-5 2.63

k=2

16 2.29e-3 —— 6.54e-5 —— 3.12e-5 —— 4.96e-5 ——

32 1.58e-4 3.86 9.74e-6 2.75 3.04e-6 3.36 6.15e-6 3.01

64 9.95e-6 3.99 1.33e-6 2.87 4.03e-7 2.92 7.80e-7 2.98

128 7.71e-7 3.69 1.68e-7 2.99 7.00e-8 2.52 9.42e-8 3.05

k=3

16 7.73e-5 —— 1.99e-6 —— 5.59e-6 —— 4.40e-6 ——

32 5.07e-6 3.93 1.13e-7 4.14 1.49e-7 5.23 1.62e-7 4.76

64 1.10e-7 5.53 7.14e-9 3.98 5.48e-9 4.78 8.72e-9 4.21

128 3.63e-9 4.92 4.69e-10 3.93 2.56e-10 4.42 5.41e-10 4.01

4.1.2 Smooth vortex problem

In this case [26], a vortex with perturbations in velocity and magnetic field is dynamically
balanced by pressure, and moves stably with a constant speed vector (1,1). Following is
the initial configuration:

ρ=1, ux=1+δux, uy=1+δuy, uz=0, Bx=δBx, By=δBy, Bz=0, p=1+δp,

where

φ=
1

2π
exp

(1−r2

2

)

, δ
⇀

u=η∇φ×⇀

e z, δ
⇀

B= ξ∇φ×⇀

e z,
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δp=
1

2
[ξ2(1−r2)−η2]φ2, r2= x2+y2, ξ=1, η=1.

Periodic boundary condition is applied on domain [−L,L]×[−L,L], and the vortex goes
back to initial state every t=2L. The initial perturbed velocity, magnetic field and pres-
sure reduce to zero toward the boundary, and the domain size L is chosen to make the
boundary error to ignorable level. We chose total time in computation for the vortex to
recover its initial state twice, so the parameters are L = 5, t = 20 for k = 1, and L = 10,
t= 40 for k= 2 and k= 3. L2 errors and orders of ρ, ux, p and Bx are obtained in Table
2. It is observed that k=1 results are good enough and k=2 results suffer accuracy lost
about half an order. The k=3 results seem to lose a little accuracy. The lost in accuracy is
also observed in Ref. [23] due to smaller locally divergence-free polynomial space. This
accuracy lost is possibly induced by the HDC technique.

Table 2: Smooth vortex problem, L2 errors and orders.

N
ρ ux p Bx

L2 error order L2 error order L2 error order L2 error order

k=1, L=5, T=20

16 3.88e-4 —— 9.09e-3 —— 1.32e-3 —— 1.03e-2 ——

32 1.48e-4 1.39 1.92e-3 2.25 3.51e-4 1.91 2.39e-3 2.11

64 3.09e-5 2.26 2.67e-4 2.82 6.31e-5 2.48 3.46e-4 2.79

128 6.77e-6 2.19 3.49e-5 2.94 1.23e-5 2.36 4.53e-5 2.93

k=2, L=10, T=40

16 2.81e-4 —— 3.89e-3 —— 5.81e-4 —— 4.32e-3 ——

32 9.09e-5 1.63 5.27e-4 2.88 1.35e-4 2.11 5.95e-4 2.86

64 1.54e-5 2.56 4.88e-5 3.43 2.34e-5 2.53 5.04e-5 3.54

128 2.24e-6 2.78 9.14e-6 2.42 3.56e-6 2.71 9.13e-6 2.47

k=3, L=10, T=40

16 1.70e-4 —— 9.59e-4 —— 1.87e-4 —— 1.06e-3 ——

32 1.37e-5 3.63 3.54e-5 4.76 1.06e-5 4.15 3.71e-5 4.84

64 3.19e-7 5.43 1.79e-6 4.30 4.82e-7 4.45 1.79e-6 4.37

128 1.58e-8 4.33 1.27e-7 3.82 2.57e-8 4.23 1.28e-7 3.80

4.2 Instabilities with small perturbations

When numerically investigating linear dynamic of MHD instability at a specific equi-
librium configuration by using a time-evolution method, one usually starts from equi-
librium with very small perturbations. Comparing with the linear result obtained by
linear model, the smaller the perturbation is, the closer the numerical result should be.
However in the MHDORG model, the numerical error is estimated by the total amount
of variables, which may overwhelm the small perturbations we are interested in. If we



12 J. Ma, W. Guo and Z. Yu / Commun. Comput. Phys., xx (20xx), pp. 1-20

use the MHDPER model, the small perturbations can avoid being polluted by numerical
errors from discretized inhomogeneous equilibrium. In the following tests we compare
results given by both the MHDORG model and the MHDPER model with k=1,2,3.

4.2.1 Linear Kelvin-Helmholtz instability

The first experiment is the Kelvin-Helmholtz(KH) instability which occurs at the interface
between two fluids or plasmas moving in opposite directions. This model is solved in a
two dimensional rectangle with 0≤x≤Lx and −Ly≤y≤Ly, Lx=Ly=1, The equilibrium
parameters are given as following [27]:

ρ0=1, ux0=V0tanh(y/a), p0 =1, Bx0=0.129,

where a=0.05, V0=0.645, and all other equilibrium parameters are zero. The present per-
turbation is only δuy=εsin(kxx)exp[−(y/0.2)2], with kx=2π/Lx. ε is assumed to be very
small, for instance 1.0×10−6, in order to investigate growth rate Γ of the linear instability,
which is evaluated through exponential fitting, Ey=

∫∫

dxdy(ρv2
y)/2∼exp(2Γt), or linear

fitting of lnEy in linear stage.
We first divide the domain into N×(2N) small squares, and then split each square

into two triangles. Periodic boundary condition is applied in x direction. Lots of simula-
tions have been carried out with different N and accuracy for both models. We show the
results in Fig. 1. The dotted line parallel to x axis indicates the results of linear growth rate
Γa/V=0.1320 obtained on an N=100 refined mesh by both MHDPER and MHDORG mod-
els, as a reference value. The results show that in general the MHDPER model converges
faster than the MHDORG model. For k=1, the MHDPER result in satisfactory growth rate
at N=45, while MHDORG requires at least N=70; For k=2 the numbers of discretization
are N = 25 and N = 40; For k= 3 they are N = 15 and N = 35. The results also show that
with same mesh the high order scheme gives more accurate results than lower ones both
for MHDPER and MHDORG models.

Another advantage of MHDPER model is its much better resolution of linear structure
as can be seen in Fig. 2. Contour plot of perturbed density with different models clearly
demonstrate that the small perturbation is apparently smeared by numerical errors in
MHDORG model. This smearing of small perturbations in MHDORG model is even more
serious with lower order schemes, coarser mesh and earlier stage of the linear phase.

4.2.2 Linear Coalescence instability

This experiment [28] starts near a smooth equilibrium with the following parameters:

ρ0=1, p0 =1+8π2 A2
0, Bx0=0.2πsin(4πy),

By0=0.2πsin(4πx), A0=0.05[cos(4πx)−cos(4πy)],

other equilibrium parameters are set to zero. The initial perturbation is only in velocity
field:

δux= εsin(2πx)cos(2πy), δuy=−εsin(2πy)cos(2πx),
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(a)

(b)

(c)

Figure 1: Linear growth rate of KH instability obtained by MHDPER and MHD ORG model with different N.
Dotted line indicates a reference value.

with the perturbation amplitude ε≪1. The periodic computation domain is [−0.5,0.5]×
[−0.5,0.5] and divided into N×N×2 triangles.

In this computation we set ε= 1×10−5. Linear growth rate is evaluated through ex-
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(a) (b)

Figure 2: Contour plot of perturbed density at t= 3 on N = 30 mesh with k = 3. (a) MHDPER model; (b)
MHDORG model.

ponential fitting of the kinetic energy EK =
∫∫

dxdy(ρV2)/2∼exp(2Γt) or linear fitting of
lnEK in linear stage. A reference value 2Γ/ln10= 2.02 is obtained on an N = 200 mesh
by both MHDPER and MHDORG models with k=3. The results in Fig. 3 show that linear
growth rate obtained by the MHDPER model converges faster than the MHDORG model
in general. For k = 1, the MHDORG model does not give satisfactory accuracy even at
N = 100; For k = 2 the MHDPER model converge at N = 50 and the MHDORG model at
N=60; For k=3 they are N=30 and N=35. High order scheme also gives more accurate
results than lower ones.

We investigate the structures of perturbed magnetic flux Ã which is defined by
⇀

B=

∇A×⇀

e z, at linear stage using both MHDPER and MHDORG model. The contour plot of Ã
on an N=20 mesh with k=3 at t=1.5 is shown in Fig. 4. The linear structure of perturbed
magnetic flux obtained by the MHDPER model on such a coarse mesh matched with the
result in Fig. 6 of Ref. [28] rather well, while the result from the MHDORG model suffers
visible smearing.

4.3 Instabilities with large perturbations

When we use the MHDPER numerical model to investigate nonlinear dynamics, or insta-
bilities grow up from small perturbation to strong nonlinearity, the model should main-
tain the ability of solving non-smooth problems in strong nonlinearity with the applica-
tion of the TVBM limiter. Here we show the nonlinear stage of the KH instability and
coalescence instability in Section 4.2. Also Orszag-Tang vortex with the presence of a
given artificial equilibrium is tested.

4.3.1 Nonlinear KH instability

This example is the nonlinear stage of the tested linear KH instability in Section 4.2. When
the linear instability further develops, the perturbation will rise up to equilibrium level,
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(a)

(b)

(c)

Figure 3: Linear growth rate of Coalescence instability obtained by MHDPER and MHDORG model with different
N. Dotted line indicates a reference value 2Γ/ln10=2.02. (a) k=1; (b) k=2; (c) k=3.

leading to non-smooth structures. By applying the MHDPER model we take this compu-
tation on an N = 200 domain with k = 2 and TVBM parameter M = 10. To achieve the
nonlinear stage earlier, we start with a larger perturbation level ε=1×10−2. The contour
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(a) (b)

Figure 4: Structure of perturbed magnetic flux of Coalescence instability at t=1.5 obtained with k=3 scheme
on N=20 mesh. (a) MHDPER model; (b) MHDORG model.

(a) (b)

Figure 5: Contour plot of density of KH instability in nonlinear stage. (a) t= 4; (b) t= 6. The computation
was carried out with MHDPER model on an N=200 mesh with k=2 scheme, M=10.

plot of density within area [0,1]×[−0.3,0.3] at t=4 and t=6 are displayed in Fig. 5. The
plots are matched well with the Fig. 9 of Ref. [27].

4.3.2 Nonlinear coalescence instability

This example is the nonlinear stage of the linear coalescence instability in Section 4.2.
With N=200, k=2 and M=10, we display the total magnetic flux A at t=4.8 when the
kinetic energy reach the first local maxima. The contour lines in Fig. 6 clearly show the
pentagon structure of magnetic field lines in nonlinear stage, which is well matched with
Fig. 8 of Ref. [28].
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Figure 6: Contour plot of magnetic flux of coalescence instability in nonlinear stage at t=4.8. The computation
was carried out with MHDPER model on an N=200 mesh with k=2 scheme, M=10.

4.3.3 Orszag-Tang vortex

This is a widely used example in MHD simulations. The computation domain is [0,2π]×
[0,2π] divided into N×N×2 triangles with initial conditions:

ρ=γ2, ux=−siny, uy=sinx, uz=0, p=γ, Bx =−siny, By=sin2x, Bz=0.

Different from conventional test, we introduce an artificial inhomogeneous smooth equi-
librium:

ρ0=2, p0 =1+2A2
0, Bx0=0.4sin2y, By0=0.4sin2x, A0=0.2(cos2x−cos2y).

With such “equilibrium” we use MHDPER model with N = 200, k= 2 and M = 5 to test
the ability of the MHDPER numerical methods. The simulation went on stably and the
results are in agreement with others, e.g. [21]. The density contours at different time are
displayed in Fig. 7.

5 Concluding remarks

In summary, we present a nonlinear conservative perturbed MHD model, and apply a
numerical approach in the framework of DG spatial discretization in 2D triangular mesh.
To accommodate the magnetically confined plasma system, we split the variables in orig-
inal MHD equations into equilibrium part and perturbed part, resulting in conservative
form MHD equations of perturbations and eliminating numerical errors from equilib-
rium. With this model and DG approach, we are able to investigate instabilities from
small amplitude to large amplitude coherently with reasonable results. For small per-
turbations, this conservative perturbed MHD model gives more accurate results in early
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(a) (b)

(c) (d)

Figure 7: Contour plot of density. (a) t=0.5; (b) t=2; (c) t=3; (d) t=4. The computation was carried out
with MHDPER model on an N=200 mesh with k=2 scheme, M=5.

stage of KH and coalescence instability simulation. For large perturbations, nonlinear
simulation results of KH instability, coalescence instability and Orszag-Tang vortex also
clearly demonstrate the reliability of this model with non-smooth solutions. These results
strongly convince us that in principle our approach is suitable for magnetically confined
system. This work could be considered as a first step of our long-term MHD simulation
in toroidal geometry under DG framework. The extension of the present work to 3D
complex geometry is our long-term goal.
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