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Abstract
Computational ghost imaging has attracted wide attention from researchers in many fields over
the last two decades. Multispectral imaging as one application of computational ghost imaging
possesses spatial and spectral resolving abilities, and is very useful for surveying scenes and
extracting detailed information. Existing multispectral imagers mostly utilize narrow band filters
or dispersive optical devices to separate light of different wavelengths, and then use multiple
bucket detectors or an array detector to record them separately. Here, we propose a novel
multispectral ghost imaging method that uses one single bucket detector with multiplexed
illumination to produce a colored image. The multiplexed illumination patterns are produced by
three binary encoded matrices (corresponding to the red, green and blue colored information,
respectively) and random patterns. The results of the simulation and experiment have verified
that our method can be effective in recovering the colored object. Multispectral images are
produced simultaneously by one single-pixel detector, which significantly reduces the amount of
data acquisition.

Keywords: computational imaging, multispectral and hyperspectral imaging, image
reconstruction techniques

(Some figures may appear in colour only in the online journal)

1. Introduction

Ghost imaging [1, 2] relies on the use of two correlated light
fields and two detectors to create an image; one detector with no
spatial resolution (such as a photomultiplier tube) is used to
collect the light field which has previously interacted with an
object, and the other detector with high spatial resolution is
employed to collect the other correlated light which never
interacts with the object. Neither of the detectors alone can
produce an image of the object; however combining the mea-
surements made by both detectors can shape an image. Com-
putational ghost imaging [3] is developed from ghost imaging.
In a computational ghost imaging system, the beam splitter and
high spatial resolution detector are replaced by using a spatial
light modulator capable of generating a programmable light field
to illuminate the scene. The intensity structures are calculated
and stored in computer memory rather than being measured by a

detector with high spatial resolution. So only a single bucket
photodetector is needed as an imaging device in a computational
ghost imaging system. A single bucket detector has some sig-
nificant advantages, such as high sensitivity, a wide spectrum
range, low cost, small in size and light weight. So these
advantages ensure that computational ghost imaging has great
potential in many fields. Recently, it has made great progress
and has already been put into practical applications, such as
multilayer fluorescence imaging [4], optical encryption [5],
remote sensing [6] and object tracking [7], etc.

Multispectral imaging which possesses spatial and
spectral resolving abilities has attracted significant attention.
Bian et al [8] proposed that by utilizing the fast response of
the detector, the 3D spatial–spectral information from the
scene can be multiplexed into a dense 1D measurement
sequence and then demultiplexed computationally under the
single-pixel imaging scheme. Wang et al [9] proposed a
temporal multiplexing scheme for hyperspectral computa-
tional ghost imaging. They proposed a spectrum-encoded
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acquisition scheme to achieve the computational ghost ima-
ging of hyperspectral data. Taking advantage of the speed gap
between the extremely fast response of the bucket detector
and the lower magnitude spatial illumination modulation,
their approach temporally multiplexes a group of diverse
spectra into each elapsed 2D illumination pattern. Welsh et al
[10, 11] employed a digital light projector in a computational
ghost imaging system with multiple spectrally-filtered pho-
todetectors to simultaneously obtain the red, green and blue
colored planes. The imaging system can obtain multi-
wavelength reconstructions of real objects.

Most of the natural scenes have sparse characteristics
under some transformations based on compression theory,
and they can be recovered exactly from a relatively small
number of measurements. Furthermore, full sampling infor-
mation regarding the imaging object can be reconstructed
under random sampling by employing a compressed sensing
algorithm [12]. In this paper, we demonstrate a novel multi-
spectral ghost imaging method that uses one single bucket
detector with multiplexed illumination to produce a colored

image. The multiplexed illumination patterns are produced by
three binary encoded matrices (corresponding to red, green
and blue colored information, respectively) and random pat-
terns. We investigated the proposed method numerically and
experimentally. The results of the simulation and experiment
confirm that our method is effective.

2. Method of multispectral image reconstruction

In general, iterative and compressed sensing algorithms are
the two main types of reconstruction algorithms that can be
employed in processing the acquired data in a computational
ghost imaging system. An iterative algorithm utilizes an entire
data set in a bulk process to find the best solution for a set of
unknowns [10], while compressed sensing algorithms utilize
less than 30% of Nyquist limit measurements to extract the
objects [13]. So, here, we apply a compressed sensing algo-
rithm for our imaging reconstruction.

Figure 1. Procedure of our method for reconstructing an object. RPS: random patterns, S; CPI: colored patterns, I; PI: projection illumination;
CS->T: solve T based on equation (5); CS->TR, CS->TG and CS->TB: compute TR, TG, and TB, based on equation (8); RI: recovered
image.
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In our proposed method, the multiplexed illumination pat-
terns are color mixed. Firstly, three N×N encoded matrices
named ER, EG and EB are produced by a computer program, and
the three encoded matrices should abide by some properties, as
follows:

(1) ER, EG and EB are binary matrices.
(2) ER+EG+EB=E.

(3) ⋅ = ¹
= ={E E

m n
E n

m n
0

m
, R, G, B.m n

m

That means the three encoded matrices are orthogonal and
all the elements of E are equal to 1. For ith projection, a random
N×N pattern Si (x, y) is used to produce a multiplexed illumi-
nation pattern Ii which fuses the three products of the random
pattern and the encoded matrices, as follows:

= ⋅ + ⋅ + ⋅( ) ( ) ( ) ( )I E S x y E S x y E S x y, , , . 1i i i iR G B

ER·Si(x, y), EG·Si(x, y) and EB·Si(x, y) will be simulta-
neously loaded into the projection system. Then the multiplexed

Figure 2. Simulation results of the imaging of a colored object under different measurements. (a) The result of 3000 measurements. (b) The
result of 3500 measurements. (c) The result of 4000 measurements. (d) The result of 4500 measurements.
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illumination pattern will be projected onto the object under a
certain frequency and the corresponding reflected intensity is
detected by a single-pixel photodetector. The measured signal
Ui can be expressed as follows:

å= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅
´

(

) ( )

U C E S T C E S T

C E S T . 2

i
N N

i i

i

R R R G G G

B B B

Here, TR, TG and TB are the red, green and blue information of
the imaging scene, respectively. CR, CG and CB represent
correction coefficients of the single-pixel detector responding
to the red, green and blue light, respectively, which can be
gained by spectrum calibration, and the symbol ∑N×N

represents that the N×N elements of the matrix are summed.
equation (2) can be rearranged as below:

å= ⋅
´

( )U S T. 3i
N N

i

Here, T is the fused information of the imaging scene, and
can be expressed as T=CR·ER·TR+CG·EG·TG+
CB·EB·TB. For M projections, equation (3) can be
simplified as below:

⋅ = ( )S T U. 4

Here, U is a measurement signal vector of M×1; the random
patterns S are reshaped toM×N2, and the object information
T is a vector of N2×1. Under the conditionM=N, it seems
hopeless to solve the object information T since the number of
equations is much smaller than the number of unknown
variables. However, most of the time T is compressible, and
can be accurately recovered under the condition M=N.
Here, we use a second-order cone program of min-TV with
quadratic constraints (available at www.l1-magic.org) to
solve T. The constrained linear equation turns into the
following optimization:

 g⋅ - ( ) ( )TV T S T Umin subject to . 52

The specified parameter g is set to 0.01. Once T is
recovered, TR, TG and TB can be extracted by making use of
the property of ER, EG and EB as below:

⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

( )
( )

( )
( )

E T E C E T C E T C E T
E T E C E T C E T C E T

E T E C E T C E T C E T .
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Then, equation (6) can be sorted out and simplified as fol-
lows:

= ⋅ = ⋅ ⋅
= ⋅ = ⋅ ⋅
= ⋅ = ⋅ ⋅

( )
( )
( ) ( )

Y E T C E T
Y E T C E T
Y E T C E T . 7

R R R R R
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Here, YR, YG and YB are known N×N matrices which can be
reshaped to N2×1 matrices, respectively, and CR·ER,
CG·EG and CB·EB are also known N×N matrices which
can be reshaped to an N2×N2 diagonal matrix. TR, TG and
TB are N2×1 matrices. In order to exactly capture the full
sampling information of the imaging object, optimizations
can be resorted to, as follows:

 d⋅ ⋅ -
=

 ( ) ( )
( )

TV T C E T Y

m

min subject to
R, G, B. 8

m m m m m 2

Here, the specified parameter d is set to 0.01. Finally, TR, TG and
TB are reshaped to N×N matrices, and the final reconstructed
colored image can be produced by fusing TR, TG and TB.

The whole procedure of the proposed method is demon-
strated in figure 1. First, the computer program produces three
binary encoded matrices ER, EG, EB and random patterns S. The
multiplexed illumination colored patterns I are produced by
fusing the product of random patterns and the three encoded
matrices. They are loaded into the projection system, and then
projected onto the scene. The reflected light intensity U is col-
lected by a single-pixel photodetector. The fused information
from the scene T can be restored by equation (5). Then, T is
separated into three parts which are named YR, YG and YB,
indicating the red, green and blue information under partial
random sampling, respectively. The full sampling information of
the red, green and blue reflected from the scene named TR, TG
and TB can be recovered by equation (8). Finally, the colored
image will be reconstructed by integrating the full sampling
information of the red, green and blue reflected information.

3. Experimental verification

3.1. Quantitative research on simulation

In order to evaluate our method, we designed a colored object
(with a pixel resolution of 81×81) containing three parts: a red
isosceles triangle, a green rectangle and a blue right triangle. The
simulation results are shown in figure 2 which demonstrates the
recovered results under 3000, 3500, 4000 and 4500 measure-
ments, respectively. In figures 2(a)–(d), the first row shows the
fused information of the imaging object T. The results of the red,

Figure 3. The plot of RMSE with respect to pattern numbers.
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green and blue information under partial random sampling in the
gray level are shown in the second row (from left to right), which
are separated by the three encoded matrices ER, EG, EB and the
information T, respectively. The third row (from left to right)
shows the full sampling results of the red, green and blue
information of the colored object in the gray level. The fourth
row shows the final reconstruction result of the imaging object. In
this paper, the number of 1’s in the three binary matrices ER, EG
and EB is equal to 2187 which is one-third of the total pixels of
the imaging object. Of course, the number of 1’s in the three
binary matrices need not be equal in some other situation. From
the simulation results, we can see that the recovered quality gets
better when the illumination patterns increase. Figure 3 is the plot
of the RMSE (root mean square error) with respect to the pattern
numbers for the quantitative analysis in our method. The RMSE
of TR, TG and TB are almost constant when the measurements
exceed 5000. The results of the simulation show that our method
can distinguish the specific colored information and reconstruct
the colored object via multiplexed illumination.

3.2. Experimental study

Next, an experimental system was built in the laboratory
environment to test our method .The imaging object is
depicted in figure 4(a). The red, green and blue encoded
matrices are shown in figures 4(b)–(d), respectively. The
multiplexed illumination patterns, which were employed in
the simulation experiment, are projected onto the imaging
object. The multispectral computational ghost imaging setup
is shown in figure 5. The commercial digital light projector
(SONY 3-LCD VPL-CX131) illuminates the object with the
multiplexed patterns. The 3-LCD projector contains an
ultrahigh voltage mercury lamp which produces white light;
two dichroic mirrors can separate the white light into red,
green and blue light which will transmit onto the corresp-
onding LCDs. The LCDs can be programmed by a computer
programmer, respectively. The detection unit (a photo-
multiplier, THORLABS PMM02-1, 280–850 nm) collects the
reflected light from the object. An analogue to digital con-
verter (NI USB-6211, maximum sampling rate is 250 k s–1 for

Figure 4. (a) The imaging target. (b) The encoded matrix of red showing in the red level. (c) The encoded matrix of green showing in the
green level. (d) The encoded matrix of blue showing in the blue level.

Figure 5. Schematic of our experimental system.
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a single channel) is used to digitize the detected signal and a
computer is employed to generate the illumination patterns
and perform multispectral reconstructions of the test object.
The corresponding experimental results are shown in figure 6.
The pixel resolution of the imaging is 81×81. The rank
sequences of the experimental results are the as same as the
simulation results in figure 2. From the experimental results
shown in figure 6, we find that the quality of the recovered
results are enhanced as the measurements increase. The
experimental results confirm that our method is effective.
However, there are some differences between the recovered
results of the simulation and experiment. The possible reasons
are as follows: (1) The imaging object is binary in the
simulation, while the experimental imaging object is gray;

(2) there are possibly some disturbances (such as electronic
noise, stray light, etc) in the experimental environment, while
the noises are neglected in the simulation.

The results of the simulation and experiment have shown
that our method can recover the colored object, and the
quality of the recovered multispectral image gets better as the
measurements increase. Of course, the quality of the recov-
ered image in the experiment can be further improved by
other approaches, such as the application of 2D orthogonal
sinusoidal patterns instead of random patterns in [14] when
the image of the object contains mainly low spatial fre-
quencies. Our method has some superiority: one is that
multispectral images are produced simultaneously by one
single-pixel detector which makes our system more compact

Figure 6. Experimental results of the imaging of two adjacent colored figures under different measurements. (a) The result of 3000
measurements. (b) The result of 4000 measurements. (c) The result of 5000 measurements. (d) The result of 6000 measurements.
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and robust; the other one is that the red, green and blue
information are encoded by the three binary matrices, which
is crucial for recovering the multispectral image. The imaging
object cannot be exactly recovered if the encoded matrices are
inaccurate. Therefore, our proposed method can also be
applied in information encryption.

In this paper, a proposed method is introduced to perform
the imaging of three wavelength bands (which are set to
standard visible red, green and blue). A commercial digital
light projector is employed to achieve multispectral imaging
in our imaging system. We cannot adjust its configuration to
change the wavelength bands or increase the number of
wavelength bands in the existing set-up. The wavelength
bands can be changed by adjusting the corresponding color
separation filters in the redesigned optical illumination sys-
tem. Our method can also be extended to more than three
wavelengths by redesigning the optical system. The main
change is to adjust the corresponding optical illumination
system and the binary encoded matrices. An example is
provided below to achieve eight wavelength bands. Suppose
the imaging pixel resolution is 80×80. First, it is necessary
to produce eight binary encoded matrices. The eight encoded
matrices are orthogonal, and the number of 1’s in each
encoded matrix is 800. That is to say, the sampling rate of the
single wavelength bands is 12.5%. The multiplexed illumi-
nation patterns are produced by eight encoded matrices
(corresponding to eight wavelength bands, respectively) and
random patterns. Then, it needs eight independent light
modulators and eight optical filters and beam combinations in
the new optical system in order to project the 8-wavelength-
band multiplexed illumination patterns. The image recovery
technique is similar to the three wavelength bands described
in detail in section 2.

4. Conclusions

In summary, we have proposed and validated a novel multi-
spectral computational ghost imaging method with multi-
plexed illumination. The multiplexed illumination patterns are
produced by three binary encoded matrices (corresponding to
red, green and blue colored information, respectively) and
random patterns. In order to exactly recover the multispectral
imaging object, compressed sensing algorithms are employed
four times in our reconstructed procedure, so it is still slightly
time consuming. The next focus is to improve the efficiency
of the recovered algorithms. Besides, in the simulation and
experiment, we have found that the imaging quality is easily

influenced by the three binary encoded matrices which are
crucial to accomplish multiplexed illumination, so future
research will aim to optimize the encoded matrices.
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