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Abstract
A summary is given on recent experiments in L-mode with ion cyclotron resonance heating
(ICRH) of hydrogen minority in deuterium plasmas on EAST. Experiments show a degradation
of confinement with increasing power. Furthermore, the energy confinement time increases with
plasma current and magnetic field, whereas it is insensitive to line averaged density. Minority
heating has been found to be efficient, and parameters were optimized to maximize its efficiency.
ICRH in lower hybrid waves heated plasma was also investigated.

Keywords: EAST, ICRH, confinement

(Some figures may appear in colour only in the online journal)

1. Introduction

Ion cyclotron resonance heating (ICRH) has several advan-
tages among other radio frequency (RF) methods: technolo-
gical feasibility of the RF system for this frequency range
( f=20–120MHz), no density limit for fast Alfvén (com-
pressional) waves to access plasma core, and existence of
several damping mechanisms allow to fulfill various heating
scenarios [1]. The principles of ICRH have been analyzed
extensively [2, 3]. Only a brief review of the theoretical basis
of ICRH on EAST is given here. In general, heating in the ion
cyclotron range of frequencies (ICRF) is related to resonance
layers, such as the ion cyclotron resonance and the ion–ion
hybrid resonance. To provide a wave electric field component
in the correct direction, ICRF waves have to be applied to
EAST at the fundamental frequency, to heat a hydrogen

minority in a D bulk plasma D(H). In detail, ICRH aims at
coupling electromagnetic power to the perpendicular motion
of plasma ions, through the fundamental ion cyclotron reso-
nance:

w w- - =  ( )k v 0. 1ci i

In equation (1), w is the wave frequency, w = e B mci i i

is the ion cyclotron frequency (ei is the ion charge and mi its
mass), v i its velocity along the magnetic field B, the wave
being launched with a propagation vector k (k being its
component parallel to B). Besides, minority heating (MH)
mechanism consists for the wave to drive suprathermal min-
ority ions which heat the bulk by colliding with ions and
electrons. In general, the averaged energy of the suprathermal
ions is such that they mainly slow down on the bulk electrons,
leading to a predominant electron heating.

The minority scenario is the most widely used scenario
for ICRH on existing machines, such as JET [4–6] ASDEX-
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Upgrade [7, 8] and Tore Supra [9, 10]. In JET, to maximize
the constructive interference effect, plasma and ICRH para-
meters are pushed close to technical limits obtained in D-T
experiments [11, 12]. Mode conversion heating [13–15] has
been proven to heat electrons. On EAST, fundamental heating
of a hydrogen minority in D majority plasma [16–20] is
successfully performed. Besides, significant performances of
this heating method have also been demonstrated [21] and
ICRH-induced high confinement have been achieved on
EAST [22].

This paper presents a summary of ICRH experiments
performed during EAST 2015/2016 campaigns. The exper-
imental setup is described in section 2 and the confinement is
analyzed in section 3 [23, 24]. Heating behavior of EAST
plasmas during the application of ICRH is detailed in
section 4.

2. Experimental setup

EAST ICRF system can operate in a frequency range from 25
to 70MHz and eight 1.5 MW ICRF systems have been put
into use. ICRF system includes high-power and wide-fre-
quency radio amplifier, the phase shifter system, the matching
system and two 4-straps antennas. The transmission line size
is 9 inch, the characteristic impedance is 50Ω, and dry
nitrogen gas is filled at the pressure of 3 atm between inner
and outer conductor [25].

All discharges were fulfilling the following criteria:
major radius R=1.85 m, minor radius a= 0.45 m, plasma
current IP=0.4–0.6 MA and toroidal magnetic field
BT=1.7–2.4 T, plasma line averaged density ne= (2.0–4.4)
×1019 m−3, ICRH power (difference value between injected
and reflected power) PICRH=0.73–2.1 MW. The diagnostics
used on EAST involved in this paper are summarized as
follows [26]: ne is measured by a 3-channel HCN inter-
ferometer, BT is measured by flux loops, IP is obtained by the
Rogowski loops, Usurf is loop voltage measured by flux loops.
Furthermore, the radiated power measurement is given by fast
bolometer. Finally, electron temperature and ion temperature
are measured by tangential x-ray crystal spectrometer [27].

3. Confinement of hydrogen MH in D plasma

Characterization of energy confinement in tokamak is essen-
tial for developing and testing candidate theories and models,
which are used for energy confinement and identifying the
parameters. Under limited ranges, parameters used in scaling
law expression are; total heating power (ohm heating power
and auxiliary heating power) P, BT, IP, elongation k, R, a, ne,
and isotopic mass M [28]. The strong dependences of τE with
ne, IP, P and BT will be investigated respectively in
section 3.2. In this section, a method to calculate the energy
confinement time, based on the exponential property of the
diamagnetic energy is introduced. Results are compared with

the ITER89-P scaling law.

t =- - ( )M I R a k n B P0.048 . 2E
ITER89 P 0.5

P
0.85 1.2 0.3 0.5

e
0.1

T
0.2 0.5

3.1. Calculation of the global energy confinement time

In zero-dimensional analysis, the plasma stored energy W
evolution measured on EAST by the diamagnetic loops
diagnostic, is ruled by the power balance equation [29]

= -
t

( )P . 3W

t

Wd

d E

In equation (3), tE is the energy confinement time.
And the solution is [30]

*= - - - t-( ) ( ) ( ) ( )W t W W W 1 e . 4t
0 0 F E

In equation (4), t0 is the starting time of the rise or fall of
energy. W0 is the energy value at t0 and WF is the final energy

value when the energy tends to be constant ~( )0 .W

t

d

d
W0 and

W ,F which can been obtained from the diamagnetic signal,
together with tE (assuming an initial value, usually 50 ms) are
applied to equation (4), then fitting can been done. tE is then
determined by Newton interpolation. Figure 1 shows an
example of the fitting. When the curve is perfectly fitted to the
diamagnetic energy, the final value of tE can been confirmed.

3.2. Global characteristics of only H minority ICRH plasmas
confinement

The key problem of tokamak research is the accessibility of
confinement regimes with tE values sufficiently high to reach
ignition. Since the ion energy distribution function becomes
non-thermal while ICRH is applied, particular care has been
devoted to the evaluation of the energy confinement times. In

Figure 1. An example shot of the fitting calculation method.
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this section, the effect of ne, P, BT and IP on the energy
confinement time will be summarized. The energy confine-
ment time values are normalized to the values of the Ohmic
phase of the respective discharges—t t ( )OH ,E E where
t = ⋅( ) ( )W U IOHE surf P —in order to eliminate or at least
significantly reduce isotope effects due to different species
compositions (H, D) of the plasmas [2].

Firstly, the global confinement time dependence on

plasma line averaged density µt
t( )( )

n
OH e

0.1E

E
was investi-

gated in figure 2. Main parameters for figure 2 are BT =
1.7–2.5 T, IP = 0.4–0.6 MA, ne = (2.0–4.0)×1019 m−3,
PICRH=1.3–2.0 MW. A change of the particle density (by
gas puff, pellets or impurity seeding) during the discharge
produces a radial current, implicitly a rotation that can modify
the state of confinement. Besides, in reactor-grade plasma, the
confinement can be strongly influenced by adequate particle
fueling [31].

As shown in ITER89-P scaling law energy confinement
time is related with total heating power t µ -P .E

0.5 Con-
sidering that when the energy tending to be constant, time
derivative of stored energy tends to be zero ~( )0 ,W

t

d

d
then:

*h= - = +P P P P ,W

tabs
d

d ohm ICRH

where Pabs is the total absorbed power of plasma due to ohm
heating and ICRH, Pohm is ohmic heating power and η is the
heating efficiency of ICRH (will be detailed in section 4).
Summarizing a large number of experimental results, as
shown in section 4, the averaged heating efficiency of ICRH
is estimated as 0.35. In figure 3, the confinement degradation
found in regimes with localized and distributed on-axis
heating agrees well with ITER scaling predictions (corresp-
onding values t

t ( )OH
E

E
=0.45–0.99). Main parameters for

figure 3 are BT=2.24–2.4 T, ne= (2.0–4.4) ×1019 m−3,
IP=0.37–0.46MA, PICRH=0.93–2.0 MW. With the
increase of P, plasma confinement degrades.

Influence of t t ( )OHE E on BT and IP are shown in
figures 4 and 5, respectively. Main parameters involved in

Figure 2.Dependence of energy confinement time (normalized to the
value of the Ohmic phase) on plasma line averaged density.

Figure 3.Dependence of energy confinement time (normalized to the
value of the Ohmic phase) on total heating power.

Figure 4.Dependence of energy confinement time (normalized to the
value of the Ohmic phase) on toroidal magnetic field.

Figure 5.Dependence of energy confinement time (normalized to the
value of the Ohmic phase) on plasma current.
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figures 4 and 5 are the same with figure 2. The t t ( )OHE E

increases with BT in these discharges, although BT changes
only in three values. Similarly, µt

t ( )
I .

OH P
0.85E

E

4. Heating efficiency of H MH

With reference to equation (3), the change in the stored
energy is very small ~( )0W

t

d

d
when stored energy reaches a

maximum. So setting the left side of equation (3) to zero, the
heating efficiency h can be expressed as:

h = t
D

-D +D
( ). 5

W
P P

P
E

ohm rad

ICRH

In equation (5), DW is the increment of internal stored
energy when the ICRH power is applied, DPohm =
D ´U Isurf P is the change of ohmic heating power, DPrad is
the increment of the radiated power.

Figure 6(a) shows the variations of heating efficiency
with gap between the ICRH antenna and the last closed
flux surface. Main parameters for figures 6(a) and (b)

are IP=0.4–0.5 MA, ne= (2.0–2.5) ×1019 m−3, PICRH=
1.14–2.1 MW, BT=2.4 T. Heating efficiency reaches the
maximum value when the gap is around 2 cm. For smaller
gaps impurities cause more of the stored energy to be radiated
away, which can be seen in figure 6(b). Furthermore, for
smaller gaps, experimental results show that the coupling
efficiency is reduced due to an increase of the evanescent
layer’s width [32]. These inosculate with the discovery that
the band structure—observed on the lower divertor outer shelf
—depends on the gap, perhaps suggesting RF rectification
may play a role in the deposition [33]. Unfortunately, com-
pared to what was found in the literature for other machines,
ICRH heating efficiency on EAST is much lower. Here are
some reasons: on EAST, RF power deposition in the SOL can
be large and follows the magnetic field lines from the antenna
to divertor regions. Furthermore, the strong SOL deposition

Figure 6. (a) ICRH heating efficiency η as a function of the gap
between the ICRH antenna and the plasma last closed flux surface;
(b) radiation power along with the change of gap.

Figure 7. Scatterplot of D ´( )T n0e e and D ´( )T n0i e (in
1022 keV m−3) indicative of the increase of plasma electron energy
density and ion energy density versus applied ICRH power (in MW)
obtained with the ICRF antenna system on EAST.

Figure 8. Increment of central electron and ion temperatures plotted
against power per particle times I .P The proportionality to current
takes account of the scaling of confinement with I .P
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and the spiral formation lead to low heating efficiency.
Moreover, ICRH transmission line length is about 80 m long,
so RF power dissipation on lines due to conductor loss and
medium loss is high, RF power transmission system has a low
power propagation efficiency [34].

The increase of electron and ion temperature are sum-
marized in figure 7, the main plasma parameters are
IP=0.45–0.5 MA, BT=2.3 T, ne= (2.0–3.8)×1019 m−3,
PICRH=0.52–1.57MW. The increase of central electron
temperature due to ICRH power is found to be significantly
higher than that of the central ion temperature, which agrees
qualitatively with theoretical expectations [35]. In H MH
scenario, ICRH can create high energy H+ ions, which slow
down through Coulomb collisions with electrons, giving rise
to strong electron heating at the fundamental resonance
layer [36].

Furthermore, the electron and ion temperatures in EAST
experiments are also summarized in figure 8. The main
parameters are the same as for the data shown in figure 7. The
figure shows the central electron and ion temperatures against
the rate of power per particle by IP. The maximum of central
electron temperature increment is 0.45 keV result from the
ICRH power, which is larger than ions one, indicating that
strong electron heating was found in fundamental heating of a
hydrogen minority in D majority plasma on EAST.

Figure 9 shows a typical shot of the ICRF heating in
combination with lower hybrid wave (LHW) injection, which
includes the time evolution of plasma stored energy, total
radiated power, loop voltage, plasma line averaged density,
and power of ICRH and LHW. The plasma is sustained by the
ICRH and LH (4.6 GHz) heating. It was obvious that the
plasma stored energy and total radiated power rose sig-
nificantly and the other parameters such as plasma density and

the LH power almost remain constant during the injection of
ICRH power.

Figure 10(a) shows the dependence of ICRH efficiency on
ne under different auxiliary heating conditions. Main parameters
for figures 10(a) and (b) are IP=0.45–0.5MA, PICRH=
0.82–2.6MW, PLHW=0.74–1.71MW, ne=(2.0–4.0)×
1019m−3, BT=2.3 T. The ICRF heating in combination with
LHW injection produced a higher heating efficiency. As shown
in figure 9, the LH power is not changing during the ICRF
pulse. Furthermore, the increment of the stored energy and the
total radiated power are due to ICRH power injection. In
figure 10(a), the heating efficiency increases with the increase
of ne. An increase in density leads to: 1) an increase in collision
rates between electrons and ions; 2) an increase in antenna
loading resistance µ( )R nc e ; and 3) modify the confinement.
The heating efficiency is significantly improved with the
increase of ne. Besides, the heating efficiency can be improved
by combining ICRH with LH heating [37]. The dependence of
the global ICRH efficiency on ne is also illustrated in
figure 10(b). Considering the increase of plasma energy content
per megawatt of ICRH power launched, it increases with the
density. And it has been found to depend on the other target
plasma conditions, such as temperature and impurity level.
Moreover, the global ICRH efficiency is found to be higher in
ICRF and LH heated plasmas than in purely ICRF heated
plasmas.

Figure 11 summarizes the increase of electron and ion
temperature of ICRH discharges and ICRH+LHW dis-
charges. The main plasma parameters are same with
figures 10(a) and (b). With the increase of ne, electron
temperature and ion temperature increase and electron
temperature rise more. Furthermore, electron and ion tem-
peratures increase larger when the plasma is heated by a

Figure 9. Typical shot of the ICRF heating in combination with lower hybrid wave injection, the LH power is not changing during the ICRF
pulse.
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combination of ICRF and LH, which corresponds to the
higher heating efficiency of ICRH under this condition.

5. Conclusions

The heating and confinement characteristics with ICRH were
investigated in detail in Ohmic heated target plasmas and in
plasmas where ICRH was combined with LHW. The energy
confinement time increases with plasma current and magnetic
field and decreases with the heating power. The results
obtained show L-mode confinement that is in good agreement
with the ITER89-P empirical scaling expressions. Besides,
heating in the MH scheme has been found to be efficient, the
heating efficiency has been estimated to be around 35%.
ICRF core heating efficiency is low perhaps due to RF edge
deposition along the magnetic field lines in the SOL, as seen
on NSTX, and the large loss in the long transmission lines.
The noteworthy, ICRH specific impurity problems, such as
the strong release of heavy metal impurities, are mitigated by

extensive lithiumisation. However, impurity is still another
important topic of further investigations.
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