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In this paper, we propose a gray-scale texture descriptor, name the global and local oriented

edge magnitude patterns (GLOEMP), for texture classi¯cation. GLOEMP is a framework,

which is able to e®ectively combine local texture, global structure information and contrast of
texture images. In GLOEMP, the principal orientation is determined by Histogram of Gradient

(HOG) feature, then each direction is respectively shown in detail by a local binary patterns

(LBP) occurrence histogram. Due to the fact that GLOEMP characterizes image information
across di®erent directions, it contains very abundant information. The global-level rotation

compensation method is proposed, which shifts the principal orientation of the HOG to the ¯rst

position, thus allowing GLOEMP to be robust to rotations. In addition, gradient magnitudes

are used as weights to add to the histogram, making GLOEMP robust to lighting variances as
well, and it also possesses a strong ability to express edge information. The experimental results

obtained from the representative databases demonstrate that the proposed GLOEMP frame-

work is capable of achieving signi¯cant improvement, in some cases reaching classi¯cation

accuracy of 10% higher than over the traditional rotation invariant LBP method.

Keywords : Texture classi¯cation; local binary pattern; histogram of gradient; rotation
invariant.
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1. Introduction

Texture analysis is currently an actively studied research topic in the ¯elds of

computer vision and pattern recognition. Generally, texture analysis involves four

basic problematic issues: classifying images based on texture content; segmenting an

image into regions of homogeneous texture; synthesizing textures for graphics

applications; and establishing shape information from texture cues. Among these

issues, texture classi¯cation has been the most widely studied, due to the fact that it

has a wide range of applications, such as fabrics inspection, remote sensing, and

medical image analysis, etc.

The local binary pattern (LBP) feature has emerged as a widely applied tool in

the ¯elds of texture classi¯cation and retrieval.1,4–6,10,11,13,14,16 Ojala et al. ¯rst

proposed the algorithm of LBPs.14 Various extensions of the LBP has been proposed

in the past decades, such as LBP variance with global matching (LBPVGM),4

adaptive LBP (ALBP) algorithm,6 LBP histogram Fourier features (LBP-HF),1

Dominant LBP,11 Completed LBP,5 a pattern of oriented edge magnitudes

(POEM),16 local tetra patterns,13 local quantization code (LQC),22 completed robust

local binary pattern (CRLBP),23 and scale selective local binary patterns,24 and so

forth. LBPVGM is an alternative hybrid scheme, globally rotation invariant

matching with locally variant LBP texture features. The scheme ¯rst estimate the

principal orientations of the texture image, and then uses them to align LBP his-

tograms. ALBP scheme uses the least square estimation to adaptively minimize the

local di®erence for more stable directional statistical features. LBP-HF is a rotation-

invariant image descriptor computed from discrete Fourier transforms of LBP

histograms.

In addition, the current texture representations are combining or fusing di®erent

single features: LBP and Gabor features as in Refs. 20 and 21, LBP and SIFT (Scale-

invariant Feature Transform) as in Refs. 3, 19 and 18, LBP and HOG as in Ref. 17.

In Ref. 20, Zhang et al. introduced a combination approach extending LBP to local

gabor binary pattern (LGBP) by applying multiorientation and multiscale Gabor

¯ltering as a preprocessing step of LBP. They ¯rst calculate the 40 Gabor magnitude

images, then apply the LBP method on these resulting images. This additional stage

greatly improves performance when compared with the pure LBP algorithm. In a

similar way, they proposed the histogram of Gabor phase pattern (HGPP)21 com-

bining the spatial histogram and the Gabor phase information encoding scheme.

Unlike LGBP, HGPP encodes both real and imaginary images: it has to encode 90

images of the same size as the original one. These algorithms try to bring the

advantages of di®erent single features: the LBP method is a \micropattern" cap-

turing image details at ¯ne scales, whereas the Gabor ¯lters are capable of charac-

terizing image information over coarser scales and through di®erent orientations.

While the LBP method is good choice for describing texture information, the SIFT12

and HOG approaches,21,25,26 are widely accepted as the best feature to capture edge

or local shape information. In Ref. 14, Ojala et al. indicated that it was possible to
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regard image texture as a two-dimensional phenomenon characterized by two or-

thogonal properties, namely spatial structure (pattern) and contrast (the \amount"

of local image texture). Spatial structure includes global structure information, local

shape pattern, local texture pattern, etc. For instance, the HOG pattern detects

global structure information, and the LBP detects micro-structures (e.g. edges, lines,

spots and °at areas) the underlying distribution of which is estimated by means of a

discrete occurrence histogram. Contrast is liable to be a®ected by illumination con-

ditions, thus it is always represented by gradient magnitudes. Therefore, by com-

bining the HOG, LBP and gradient magnitude features, it is possible to e®ectively

represent a texture image. It is both a challenge and our motivation to determine a

feature which satis¯es both the criteria of distinctiveness and robustness. In this

study, a novel texture descriptor is proposed, known as global and local oriented edge

magnitudes patterns (GLOEMP), which is robust to both scale and rotation varia-

tions. In order to verify the e®ectiveness of proposed GLOEMPmethod, comparative

experiments were performed. For this study, data from the public texture image

database Outex, Contrib-TC and rotated texture images (RTIs) datasets are used.

the experimental results show that the proposed GLOEMP feature is capable of

yielding an excellent performance in terms of texture classi¯cation.

2. GLOEMP

In order to build rotation invariant features possessing distinctiveness, the authors

propose applying the concept of calculating both the HOG-based structure, to de-

scribe the distribution of the holistic orientations and compensate the global-level

rotation, and the LBP-based structure, to describe the distribution of local texture

for each orientation. Then, the sequence of the holistic orientation is adjusted, and all

histograms originate from its principal orientation. Based on the result of this step,

all identical texture images may be considered to be on the same rotation. Finally,

the LBP codes of each orientation are integrated based on the distribution of holistic

edge information. The processing of building the GLOEMP is illustrated in Fig 1.

2.1. Details of GLOEMP feature extraction

The image gradient is computed, and the gradient orientation of each pixel is evenly

discretized across 0� � 360�. Then, a HOG is formed from the gradient orientations

of the image, the HOG has K bins covering the 360� range of orientations. Each

sample added to the histogram is weighted by its gradient magnitude. As shown in

Fig. 2, exhaustive searching is used in the system to determine the rotation orien-

tation with minimal distance between the template and test images, and this rotated

orientation is assigned as the principal orientation �main. Then, all the bins of the

histogram are shifted until the principal orientation shifts to the ¯rst position. It

should be noted that the HOG is only used to determine the principal orientation and

to adjust the distribution of the holistic orientations, and each orientation is re-

spectively shown in detail by an LBP occurrence histogram.

GLOEMP for Texture Classi¯cation
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Supposing the texture image is M �N, after computing the image gradient and

discretizing the orientation for each pixel, the entire image is represented by building

a histogram, as follows:

Hð�Þ ¼
XM

x¼1

Xn

y¼1

mðx; yÞfð�k; �pÞ; k 2 ½1; k�; ð1Þ

Fig. 1. Processes of building the GLOEMP.

Fig. 2. Processes of determining the principal orientation �main.

J. Dong, X. Yuan & F. Xiong

1750007-4

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 @

 S
A

N
T

A
 B

A
R

B
A

R
A

 o
n 

09
/2

2/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



where �P is quanti¯ed orientation of each pixel P ðx, yÞ;K is the number of bins of the

histogram; mðx, yÞ is the gradient magnitude of pixel P ðx, yÞ, and f is de¯ned as

follows:

f(a1, a2) =
1 if a1 = a2, (2a)

0 otherwise, (2b)

The second step is to compute LBP at each pixel. We use the notation to denote

LBP feature, which is de¯ned as:

LBPriu2
P,R =




P−1

P=0

s(gp − gc), if U(LBPP,R) ≤ 2,

P + 1 otherwise, (3b)

(3a)

where

UðLBPP ;RÞ ¼ jsðgp�1 � gcÞ � sðg0 � gcÞj þ
XP�1

P¼0

jsðgp � gcÞ � sðgp�1 � gcÞj; ð4Þ

s(x) =
1 x ≥ 0, (5a)

0 x < 0, (5b)

where gc is the gray value of the central pixel; gp is the value of its neighbors; P is the

number of the neighbors; and R is radius of the neighborhood. Superscript riu2

re°ects the use of rotation invariant uniform patterns which have U value of at

most 2.

Finally, we build LBP histograms for each direction �k. This procedure is applied

to the accumulated gradient magnitudes and across di®erent directions to build the

GLOEMP features. A GLOEMP feature is calculated for each discretized direction

�k

GLOEMP �k
P ;R ¼

XM

x¼1

XN

y¼1

gð�k; �ÞLBPriu2
P ; R; k 2 ½1; k�; ð6Þ

where

g(a1, a2) =
m(x, y), if a1 = a2, (7a)

0, otherwise, (7b)

where � is the discretized direction of pixel (x, yÞ and mðx, yÞ is the gradient mag-

nitude of pixel (x, yÞ.
The ¯nal feature is determined as follows:

GLOEMP ¼ fGLOEMP�1 ;GLOEMP�2 ; . . . ;GLOEMP�kg: ð8Þ

GLOEMP for Texture Classi¯cation

1750007-5

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 @

 S
A

N
T

A
 B

A
R

B
A

R
A

 o
n 

09
/2

2/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2.2. Properties of the GLOEMP feature

For each pixel, GLOEMP characterizes not only local texture information, but also

the relationships of the general distribution of the orientations. The feature possesses

the following three properties:

(1) GLOEMP characterizes image information across di®erent directions, thus it

contains richer image information.

(2) GLOEMP uses gradient magnitudes as weight to add to the histogram, making

it robust to lighting variance. In addition, GLOEMP has a strong ability to

express edge information.

(3) The global-level rotation compensation method is proposed, which shifts the

principal orientation of HOG to the ¯rst position, making GLOEMP robust to

rotations. The former one property allow the features to convey rich image

information, and the latter two properties allow the algorithm to be robust to

exterior variations. There are various metrics to evaluate the goodness between

two histograms, such as histogram intersection, loglikelihood radio, and chi-

square statistic.14 In this study, a test sample T is assigned to the class of model

L that minimizes the chi-square distance:

DðT ;LÞ ¼
XX

X¼1

ðTx � LxÞ2=ðTx þ LxÞ; ð9Þ

where X is the number of bins, and Tx and Lx are respectively the values of the

sample and the model image at the xth bin.

3. Experiments

3.1. Experiment setup

In order to evaluate the e®ectiveness of the proposed method, a series of experiments

were performed on three large and comprehensive public texture databases as shown

in Fig. 3: the Outex database,8 Contributed classi¯cation test suites (Contrib-TC)

database and RTI dataset.9,7 As a LBP based scheme, the proposed GLOEMP is

compared with the representative LBP schemes in Ref. 14. Furthermore, we also

compare GLOEMP with three state-of-the-art rotation invariant texture classi¯ca-

tion algorithms, the LBPVGM schemes in Ref. 4, the ALBP algorithm in Ref. 6 and

the LBP-HF in Ref. 1. In the experiments, we also evaluate di®erent combinations of

two operators proposed, GLOBP and LOEMP. GLOBP has the same structure as

GLOEMP, but it does not use gradient magnitudes as weight, thus Eqs. (7a)

and (7b) were altered as follows:

g(a1, a2) =
1, if a1 = a2, (10a)

0, otherwise. (10b)

J. Dong, X. Yuan & F. Xiong
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(a)

(b) (c)

Fig. 3. Examples of texture samples for experiments: (a) examples from the Outex-TC-00014 dataset; (b)

examples from the Contrib-TC-00006 dataset; (c) examples from RTI dataset.

GLOEMP for Texture Classi¯cation
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3.2. Experimental results

3.2.1. Experimental results on the Outex database

The Outex-TC-00014 (TC14) dataset8 is used in the experiments as shown in

Fig. 3(a). The test suit contains 68 textures. In TC14, as test sample, two di®erently

illuminated samples of the very same textures were utilized. The numbers of training

and testing samples in this test were 680 and 1360, respectively.

For the number of bins of the HOG K, in this experiment K is set to 10 based on

experience. The total 10� 28 ¼ 280 bins feature was used for GLOEMP8,1 and

GLOEMP16,3. Recognition accuracies versus di®erent K on the TC14 dataset are

illustrated in Fig. 4(a), and the best recognition accuracy may be obtained whenK is

equal to 10 on the TC14 database. Table 1 lists the experimental results by di®erent

schemes. We could make the following ¯ndings:

. The GLOEMP achieves much better result than the GLOEP in most cases. It is in

accordance with our analysis in Sec. 2.2 that the GLOEMP uses gradient mag-

nitudes as weight to add to the histogram, making it robust to lighting variance. In

addition, the GLOEMP has a strong ability to express edge information.

. The GLOEMP achieves better and more robust results than the state-of-the-art

methods ALBP, LBP-HF and LBPVGM. It is due to the fact that GLOEMP

combines both global structure information and local texture feature, and char-

acterizes image information across di®erent directions, it contains very abundant

information, the GLOEMP feature is more distinctive than the other features.

. The GLOEMP is simple and fast to build the feature histogram, its feature size

is smaller than that of the state-of-the-art methods: ALBP, LBP −HF

and LBPVGM. For example, the dimension of the LBP −HF riu2
8;1 is 326, and

LBP −HF riu2
16;3 is 73,766; the dimension of the LBPVGM riu2

8;1 is 256 and the

LBPVGM riu2
16;3 is 65,536.

(a) (b)

Fig. 4. (a) Recognition rate versus di®erent number of quantized orientation (k) on the TC14 dataset; (b)

recognition rate versus di®erent number of quantized orientation (k) on the TC6 dataset.
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. The GLOEMP is training free on feature extraction, and can still get good results

when the training samples are limited.

. When multi-scale features (GLOEMP8;1 and GLOEMP16;3) are combined, the

GLOEMP achieves more accurate results, and the improvement may be very

signi¯cant.

3.2.2. Experimental results on the Contrib-TC database

In Contrib-TC-00006 (TC6),8 the 54 VisTex textures were split into 128� 128 sub-

images as shown in Fig. 3(b). Since the size of the original images was 512� 512, this

makes up a total of 16 sub-images per texture. Half of the samples from each texture

were used in training while the rest served as testing data. The number of training

images from each class is 8, and the remaining eight images per class were used as the

test set. The average accuracy over 20 randomly splits is listed in Table 2. The most

ideal results are marked in bold font.

For the number of bins of the HOG K, in this experiment K is set to 10 based on

experience; LBPriu2 and LBPriu2 used 10þ 18 ¼ 28 bins; and the total 10� 28 ¼ 280

bins feature was used for GLOEMP8;1 and GLOEMP16;3.

Table 2. Experimental results of comparative

experiments on the Outex database.

P ;R (8,1) (16,3) (8,1)þ(16,3)

LBP riu2
P ;R

84.03% 87.27% 87.27%

GLOBP riu2
P ;R

94.91% 96.76% 96.06%

LBP−HF riu2
P ;R

97.22% 88.19% 94.68%

LBP−HFU2
P ;R

97.92% 92.82% 93.75%

ALBP riu2
P ;R

85.42% 86.81% 90.05%

ALBPU2
P ;R

95.83% 93.98% 95.60%

LBPVGM riu2
P ;R

90.05% 29.17% 44.21%

GLOEMP riu2
P ;R 95.14% 96.76% 99.31%

Table 1. Experimental results of comparative
experiments on the Outex database.

P ;R (8,1) (16,3) (8,1)þ(16,3)

LBP riu2
P ;R

43.38% 46.84% 57.94%

GLOBP riu2
P ;R

57.65% 58.75% 65.59%

LBP−HF riu2
P ;R

45.66% 39.34% 51.69%

LBP−HFU2
P ;R

46.91% 53.82% 53.75%

ALBP riu2
P ;R

40.96% 46.99% 47.79%

ALBPU2
P ;R

58.01% 58.46% 57.72%

LBPVGM riu2
P ;R

51.62% 8.09% 19.26%

GLOEMP riu2
P ;R

58.31% 59.26% 68.24%

GLOEMP for Texture Classi¯cation

1750007-9

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 @

 S
A

N
T

A
 B

A
R

B
A

R
A

 o
n 

09
/2

2/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



Recognition accuracies versus di®erent K on TC6 dataset are illustrated in

Fig. 4(b), and the best recognition accuracy may be obtained when K is equal to 10

on the Outex database.

Similar conclusions to those in Sec. 3.2.1 can be made from the experimental

results on the TC6 dataset. The proposed GLOEMP gets better results than GLOEP

for all cases.

3.2.3. Experimental results on the RTI dataset

The 13 texture images digitized from the Brodatz album and other sources (namely

bark, brick, bubbles, grass, leather, pigskin, ra±a, sand, straw, water, weave, wood

and wool),9,7 as shown in Fig. 3(b). The same set of seven di®erent rotations was

used: 0�; 30�; 60�; 90�; 120�; 150� and 200�. Table 3 presents the results on RTI

dataset using di®erent methods. The most ideal results are marked in bold font.

Similar conclusions to those in Sec. 3.2.1 can be made from the experimental

results on the TC6 dataset. The proposed GLOEMP gets better results than GLOEP

for all cases. Furthermore, GLOEMP achieves better and more robust results than

the state-of-the-art methods ALBP, LBP-HF and LBPVGM. It is due to the fact

that the global-level rotation compensation method is proposed, which shifts the

principal orientation of HOG to the ¯rst position, making GLOEMP robust to

rotations.

4. Conclusions

In order to better represent the local texture, local shape and global structure in-

formation in texture images, this paper proposed a novel texture descriptor for

texture classi¯cation, known as GLOEMP. Global structure was described by the

HOG feature, and the distribution of the LBP pattern was used to describe the local

texture pattern for each orientation. Based on the HOG feature, ¯rst the principal

orientations of the texture image were estimated, then all the bins were shifted until

the principal orientation shifted to the ¯rst position, in order to compensate for the

Table 3. Experimental results of comparative
experiments on the RTI dataset.

P ;R (8,1) (16,3)

LBP riu2
P ;R

46.15% 52.75%

GLOBP riu2
P ;R

82.42% 100%

LBP−HF riu2
P ;R

79.12% 80.90%

LBP−HFU2
P ;R

82.42% 98.90%

ALBP riu2
P ;R

89.01% 96.70%

ALBPU2
P ;R

50.55% 56.04%

LBPVGM riu2
P ;R

38.46% 36.26%

GLOBP riu2
P ;R

94.51% 97.80%

GLOEMP riu2
P ;R

97.80% 100%
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rotations of texture images. In addition, GLOEMP e±ciently joined LBP and local

gradient magnitudes, localedge magnitudes were computed and accumulated into

the LBP bin. The experimental results on three large databases demonstrated

that the proposed GLOEMP feature produces much higher classi¯cation accuracy

than the traditional rotation invariant LBP and the other state-of-the-art methods.

In future, more texture datasets such as UIUC, CUReT, KTH-TIP and real images

will be used to verify the proposed algorithm.
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